clean(autogpt): Remove old plugin system (#7097)

### Background

Follow up after merging https://github.com/Significant-Gravitas/AutoGPT/pull/7054, old plugins will no longer be used.

### Changes 🏗️

- Removed all dead code needed to load and use plugins.
- Removed `auto-gpt-plugin-template` dependency
- Removed `rev=` from `autogpt-forge` dependency (the set `rev` had incompatible `duckduckgo-search` versions)
- Kept `--install-plugin-deps` CLI option and dead code associated (may be needed for new plugins)
This commit is contained in:
Krzysztof Czerwinski
2024-04-28 21:10:53 +02:00
committed by GitHub
parent 0014e2ac14
commit d38e8b8f6c
26 changed files with 11 additions and 1490 deletions

View File

@@ -44,9 +44,6 @@ OPENAI_API_KEY=your-openai-api-key
## AI_SETTINGS_FILE - Specifies which AI Settings file to use, relative to the AutoGPT root directory. (defaults to ai_settings.yaml)
# AI_SETTINGS_FILE=ai_settings.yaml
## PLUGINS_CONFIG_FILE - The path to the plugins_config.yaml file, relative to the AutoGPT root directory. (Default plugins_config.yaml)
# PLUGINS_CONFIG_FILE=plugins_config.yaml
## PROMPT_SETTINGS_FILE - Specifies which Prompt Settings file to use, relative to the AutoGPT root directory. (defaults to prompt_settings.yaml)
# PROMPT_SETTINGS_FILE=prompt_settings.yaml

View File

@@ -52,7 +52,6 @@ def bootstrap_agent(task: str, continuous_mode: bool) -> Agent:
smart_llm=config.smart_llm,
allow_fs_access=not config.restrict_to_workspace,
use_functions_api=config.openai_functions,
plugins=config.plugins,
),
prompt_config=agent_prompt_config,
history=Agent.default_settings.history.copy(deep=True),

View File

@@ -4,8 +4,6 @@ from autogpt.agents.agent import Agent, AgentConfiguration, AgentSettings
from autogpt.config import AIDirectives, AIProfile, Config
from autogpt.core.resource.model_providers import ChatModelProvider
from autogpt.file_storage.base import FileStorage
from autogpt.logs.config import configure_chat_plugins
from autogpt.plugins import scan_plugins
def create_agent(
@@ -65,9 +63,6 @@ def _configure_agent(
" must be specified"
)
app_config.plugins = scan_plugins(app_config)
configure_chat_plugins(app_config)
agent_state = state or create_agent_state(
agent_id=agent_id,
task=task,
@@ -105,7 +100,6 @@ def create_agent_state(
smart_llm=app_config.smart_llm,
allow_fs_access=not app_config.restrict_to_workspace,
use_functions_api=app_config.openai_functions,
plugins=app_config.plugins,
),
history=Agent.default_settings.history.copy(deep=True),
)

View File

@@ -15,7 +15,6 @@ from typing import (
overload,
)
from auto_gpt_plugin_template import AutoGPTPluginTemplate
from colorama import Fore
from pydantic import BaseModel, Field, validator
@@ -96,21 +95,6 @@ class BaseAgentConfiguration(SystemConfiguration):
summary_max_tlength: Optional[int] = None
# TODO: move to ActionHistoryConfiguration
plugins: list[AutoGPTPluginTemplate] = Field(default_factory=list, exclude=True)
class Config:
arbitrary_types_allowed = True # Necessary for plugins
@validator("plugins", each_item=True)
def validate_plugins(cls, p: AutoGPTPluginTemplate | Any):
assert issubclass(
p.__class__, AutoGPTPluginTemplate
), f"{p} does not subclass AutoGPTPluginTemplate"
assert (
p.__class__.__name__ != "AutoGPTPluginTemplate"
), f"Plugins must subclass AutoGPTPluginTemplate; {p} is a template instance"
return p
@validator("use_functions_api")
def validate_openai_functions(cls, v: bool, values: dict[str, Any]):
if v:

View File

@@ -135,7 +135,6 @@ class FileManagerComponent(DirectiveProvider, CommandProvider):
Returns:
str: A message indicating success or failure
"""
logger.info(f"self: {self}")
if directory := os.path.dirname(filename):
self.workspace.make_dir(directory)
await self.workspace.write_file(filename, contents)

View File

@@ -37,13 +37,11 @@ from autogpt.config import (
from autogpt.core.resource.model_providers.openai import OpenAIProvider
from autogpt.core.runner.client_lib.utils import coroutine
from autogpt.file_storage import FileStorageBackendName, get_storage
from autogpt.logs.config import LoggingConfig, configure_chat_plugins, configure_logging
from autogpt.logs.config import configure_logging
from autogpt.logs.helpers import print_attribute, speak
from autogpt.models.action_history import ActionInterruptedByHuman
from autogpt.plugins import scan_plugins
from autogpt.utils.exceptions import AgentTerminated, InvalidAgentResponseError
from autogpt.utils.utils import DEFAULT_FINISH_COMMAND
from scripts.install_plugin_deps import install_plugin_dependencies
from .configurator import apply_overrides_to_config
from .setup import apply_overrides_to_ai_settings, interactively_revise_ai_settings
@@ -166,12 +164,6 @@ async def run_auto_gpt(
title_color=Fore.YELLOW,
)
if install_plugin_deps:
install_plugin_dependencies()
config.plugins = scan_plugins(config)
configure_chat_plugins(config)
# Let user choose an existing agent to run
agent_manager = AgentManager(file_storage)
existing_agents = agent_manager.list_agents()
@@ -408,11 +400,6 @@ async def run_auto_gpt_server(
llm_provider = _configure_openai_provider(config)
if install_plugin_deps:
install_plugin_dependencies()
config.plugins = scan_plugins(config)
# Set up & start server
database = AgentDB(
database_string=os.getenv("AP_SERVER_DB_URL", "sqlite:///data/ap_server.db"),
@@ -726,12 +713,7 @@ async def get_user_feedback(
while user_feedback is None:
# Get input from user
if config.chat_messages_enabled:
console_input = clean_input(config, "Waiting for your response...")
else:
console_input = clean_input(
config, Fore.MAGENTA + "Input:" + Style.RESET_ALL
)
console_input = clean_input(config, Fore.MAGENTA + "Input:" + Style.RESET_ALL)
# Parse user input
if console_input.lower().strip() == config.authorise_key:

View File

@@ -20,34 +20,6 @@ logger = logging.getLogger(__name__)
def clean_input(config: "Config", prompt: str = ""):
try:
if config.chat_messages_enabled:
for plugin in config.plugins:
if not hasattr(plugin, "can_handle_user_input"):
continue
if not plugin.can_handle_user_input(user_input=prompt):
continue
plugin_response = plugin.user_input(user_input=prompt)
if not plugin_response:
continue
if plugin_response.lower() in [
"yes",
"yeah",
"y",
"ok",
"okay",
"sure",
"alright",
]:
return config.authorise_key
elif plugin_response.lower() in [
"no",
"nope",
"n",
"negative",
]:
return config.exit_key
return plugin_response
# ask for input, default when just pressing Enter is y
logger.debug("Asking user via keyboard...")
@@ -215,7 +187,7 @@ def print_motd(config: "Config", logger: logging.Logger):
},
msg=motd_line,
)
if is_new_motd and not config.chat_messages_enabled:
if is_new_motd:
input(
Fore.MAGENTA
+ Style.BRIGHT

View File

@@ -7,9 +7,8 @@ import re
from pathlib import Path
from typing import Any, Optional, Union
from auto_gpt_plugin_template import AutoGPTPluginTemplate
from colorama import Fore
from pydantic import Field, SecretStr, validator
from pydantic import SecretStr, validator
import autogpt
from autogpt.app.utils import clean_input
@@ -25,7 +24,6 @@ from autogpt.core.resource.model_providers.openai import (
)
from autogpt.file_storage import FileStorageBackendName
from autogpt.logs.config import LoggingConfig
from autogpt.plugins.plugins_config import PluginsConfig
from autogpt.speech import TTSConfig
logger = logging.getLogger(__name__)
@@ -33,7 +31,6 @@ logger = logging.getLogger(__name__)
PROJECT_ROOT = Path(autogpt.__file__).parent.parent
AI_SETTINGS_FILE = Path("ai_settings.yaml")
AZURE_CONFIG_FILE = Path("azure.yaml")
PLUGINS_CONFIG_FILE = Path("plugins_config.yaml")
PROMPT_SETTINGS_FILE = Path("prompt_settings.yaml")
GPT_4_MODEL = OpenAIModelName.GPT4
@@ -54,9 +51,6 @@ class Config(SystemSettings, arbitrary_types_allowed=True):
authorise_key: str = UserConfigurable(default="y", from_env="AUTHORISE_COMMAND_KEY")
exit_key: str = UserConfigurable(default="n", from_env="EXIT_KEY")
noninteractive_mode: bool = False
chat_messages_enabled: bool = UserConfigurable(
default=True, from_env=lambda: os.getenv("CHAT_MESSAGES_ENABLED") == "True"
)
# TTS configuration
logging: LoggingConfig = LoggingConfig()
@@ -181,29 +175,6 @@ class Config(SystemSettings, arbitrary_types_allowed=True):
from_env="USER_AGENT",
)
###################
# Plugin Settings #
###################
plugins_dir: str = UserConfigurable("plugins", from_env="PLUGINS_DIR")
plugins_config_file: Path = UserConfigurable(
default=PLUGINS_CONFIG_FILE, from_env="PLUGINS_CONFIG_FILE"
)
plugins_config: PluginsConfig = Field(
default_factory=lambda: PluginsConfig(plugins={})
)
plugins: list[AutoGPTPluginTemplate] = Field(default_factory=list, exclude=True)
plugins_allowlist: list[str] = UserConfigurable(
default_factory=list,
from_env=lambda: _safe_split(os.getenv("ALLOWLISTED_PLUGINS")),
)
plugins_denylist: list[str] = UserConfigurable(
default_factory=list,
from_env=lambda: _safe_split(os.getenv("DENYLISTED_PLUGINS")),
)
plugins_openai: list[str] = UserConfigurable(
default_factory=list, from_env=lambda: _safe_split(os.getenv("OPENAI_PLUGINS"))
)
###############
# Credentials #
###############
@@ -231,16 +202,6 @@ class Config(SystemSettings, arbitrary_types_allowed=True):
# Stable Diffusion
sd_webui_auth: Optional[str] = UserConfigurable(from_env="SD_WEBUI_AUTH")
@validator("plugins", each_item=True)
def validate_plugins(cls, p: AutoGPTPluginTemplate | Any):
assert issubclass(
p.__class__, AutoGPTPluginTemplate
), f"{p} does not subclass AutoGPTPluginTemplate"
assert (
p.__class__.__name__ != "AutoGPTPluginTemplate"
), f"Plugins must subclass AutoGPTPluginTemplate; {p} is a template instance"
return p
@validator("openai_functions")
def validate_openai_functions(cls, v: bool, values: dict[str, Any]):
if v:
@@ -266,7 +227,6 @@ class ConfigBuilder(Configurable[Config]):
for k in {
"ai_settings_file", # TODO: deprecate or repurpose
"prompt_settings_file", # TODO: deprecate or repurpose
"plugins_config_file", # TODO: move from project root
"azure_config_file", # TODO: move from project root
}:
setattr(config, k, project_root / getattr(config, k))
@@ -278,12 +238,6 @@ class ConfigBuilder(Configurable[Config]):
):
config.openai_credentials.load_azure_config(config_file)
config.plugins_config = PluginsConfig.load_config(
config.plugins_config_file,
config.plugins_denylist,
config.plugins_allowlist,
)
return config

View File

@@ -1,4 +1,4 @@
from .config import configure_chat_plugins, configure_logging
from .config import configure_logging
from .helpers import user_friendly_output
from .log_cycle import (
CURRENT_CONTEXT_FILE_NAME,
@@ -13,7 +13,6 @@ from .log_cycle import (
__all__ = [
"configure_logging",
"configure_chat_plugins",
"user_friendly_output",
"CURRENT_CONTEXT_FILE_NAME",
"NEXT_ACTION_FILE_NAME",

View File

@@ -8,11 +8,9 @@ import sys
from pathlib import Path
from typing import TYPE_CHECKING, Optional
from auto_gpt_plugin_template import AutoGPTPluginTemplate
from openai._base_client import log as openai_logger
if TYPE_CHECKING:
from autogpt.config import Config
from autogpt.speech import TTSConfig
from autogpt.core.configuration import SystemConfiguration, UserConfigurable
@@ -34,8 +32,6 @@ DEBUG_LOG_FORMAT = (
SPEECH_OUTPUT_LOGGER = "VOICE"
USER_FRIENDLY_OUTPUT_LOGGER = "USER_FRIENDLY_OUTPUT"
_chat_plugins: list[AutoGPTPluginTemplate] = []
class LogFormatName(str, enum.Enum):
SIMPLE = "simple"
@@ -222,19 +218,3 @@ def configure_logging(
# Disable debug logging from OpenAI library
openai_logger.setLevel(logging.WARNING)
def configure_chat_plugins(config: Config) -> None:
"""Configure chat plugins for use by the logging module"""
logger = logging.getLogger(__name__)
# Add chat plugins capable of report to logger
if config.chat_messages_enabled:
if _chat_plugins:
_chat_plugins.clear()
for plugin in config.plugins:
if hasattr(plugin, "can_handle_report") and plugin.can_handle_report():
logger.debug(f"Loaded plugin into logger: {plugin.__class__.__name__}")
_chat_plugins.append(plugin)

View File

@@ -3,7 +3,7 @@ from typing import Any, Optional
from colorama import Fore
from .config import SPEECH_OUTPUT_LOGGER, USER_FRIENDLY_OUTPUT_LOGGER, _chat_plugins
from .config import SPEECH_OUTPUT_LOGGER, USER_FRIENDLY_OUTPUT_LOGGER
def user_friendly_output(
@@ -21,10 +21,6 @@ def user_friendly_output(
"""
logger = logging.getLogger(USER_FRIENDLY_OUTPUT_LOGGER)
if _chat_plugins:
for plugin in _chat_plugins:
plugin.report(f"{title}: {message}")
logger.log(
level,
message,

View File

@@ -1,5 +1,4 @@
import logging
from contextlib import suppress
from typing import Any, Sequence, overload
import numpy as np
@@ -51,16 +50,9 @@ async def get_embedding(
if isinstance(input, str):
input = input.replace("\n", " ")
with suppress(NotImplementedError):
return _get_embedding_with_plugin(input, config)
elif multiple and isinstance(input[0], str):
input = [text.replace("\n", " ") for text in input]
with suppress(NotImplementedError):
return [_get_embedding_with_plugin(i, config) for i in input]
model = config.embedding_model
logger.debug(
@@ -86,13 +78,3 @@ async def get_embedding(
)
embeddings.append(result.embedding)
return embeddings
def _get_embedding_with_plugin(text: str, config: Config) -> Embedding:
for plugin in config.plugins:
if plugin.can_handle_text_embedding(text):
embedding = plugin.handle_text_embedding(text)
if embedding is not None:
return embedding
raise NotImplementedError

View File

@@ -1,251 +0,0 @@
"""Handles loading of plugins."""
from typing import Any, Dict, List, Optional, Tuple, TypedDict, TypeVar
from auto_gpt_plugin_template import AutoGPTPluginTemplate
PromptGenerator = TypeVar("PromptGenerator")
class Message(TypedDict):
role: str
content: str
class BaseOpenAIPlugin(AutoGPTPluginTemplate):
"""
This is a BaseOpenAIPlugin class for generating AutoGPT plugins.
"""
def __init__(self, manifests_specs_clients: dict):
# super().__init__()
self._name = manifests_specs_clients["manifest"]["name_for_model"]
self._version = manifests_specs_clients["manifest"]["schema_version"]
self._description = manifests_specs_clients["manifest"]["description_for_model"]
self._client = manifests_specs_clients["client"]
self._manifest = manifests_specs_clients["manifest"]
self._openapi_spec = manifests_specs_clients["openapi_spec"]
def can_handle_on_response(self) -> bool:
"""This method is called to check that the plugin can
handle the on_response method.
Returns:
bool: True if the plugin can handle the on_response method."""
return False
def on_response(self, response: str, *args, **kwargs) -> str:
"""This method is called when a response is received from the model."""
return response
def can_handle_post_prompt(self) -> bool:
"""This method is called to check that the plugin can
handle the post_prompt method.
Returns:
bool: True if the plugin can handle the post_prompt method."""
return False
def post_prompt(self, prompt: PromptGenerator) -> PromptGenerator:
"""This method is called just after the generate_prompt is called,
but actually before the prompt is generated.
Args:
prompt (PromptGenerator): The prompt generator.
Returns:
PromptGenerator: The prompt generator.
"""
return prompt
def can_handle_on_planning(self) -> bool:
"""This method is called to check that the plugin can
handle the on_planning method.
Returns:
bool: True if the plugin can handle the on_planning method."""
return False
def on_planning(
self, prompt: PromptGenerator, messages: List[Message]
) -> Optional[str]:
"""This method is called before the planning chat completion is done.
Args:
prompt (PromptGenerator): The prompt generator.
messages (List[str]): The list of messages.
"""
def can_handle_post_planning(self) -> bool:
"""This method is called to check that the plugin can
handle the post_planning method.
Returns:
bool: True if the plugin can handle the post_planning method."""
return False
def post_planning(self, response: str) -> str:
"""This method is called after the planning chat completion is done.
Args:
response (str): The response.
Returns:
str: The resulting response.
"""
return response
def can_handle_pre_instruction(self) -> bool:
"""This method is called to check that the plugin can
handle the pre_instruction method.
Returns:
bool: True if the plugin can handle the pre_instruction method."""
return False
def pre_instruction(self, messages: List[Message]) -> List[Message]:
"""This method is called before the instruction chat is done.
Args:
messages (List[Message]): The list of context messages.
Returns:
List[Message]: The resulting list of messages.
"""
return messages
def can_handle_on_instruction(self) -> bool:
"""This method is called to check that the plugin can
handle the on_instruction method.
Returns:
bool: True if the plugin can handle the on_instruction method."""
return False
def on_instruction(self, messages: List[Message]) -> Optional[str]:
"""This method is called when the instruction chat is done.
Args:
messages (List[Message]): The list of context messages.
Returns:
Optional[str]: The resulting message.
"""
def can_handle_post_instruction(self) -> bool:
"""This method is called to check that the plugin can
handle the post_instruction method.
Returns:
bool: True if the plugin can handle the post_instruction method."""
return False
def post_instruction(self, response: str) -> str:
"""This method is called after the instruction chat is done.
Args:
response (str): The response.
Returns:
str: The resulting response.
"""
return response
def can_handle_pre_command(self) -> bool:
"""This method is called to check that the plugin can
handle the pre_command method.
Returns:
bool: True if the plugin can handle the pre_command method."""
return False
def pre_command(
self, command_name: str, arguments: Dict[str, Any]
) -> Tuple[str, Dict[str, Any]]:
"""This method is called before the command is executed.
Args:
command_name (str): The command name.
arguments (Dict[str, Any]): The arguments.
Returns:
Tuple[str, Dict[str, Any]]: The command name and the arguments.
"""
return command_name, arguments
def can_handle_post_command(self) -> bool:
"""This method is called to check that the plugin can
handle the post_command method.
Returns:
bool: True if the plugin can handle the post_command method."""
return False
def post_command(self, command_name: str, response: str) -> str:
"""This method is called after the command is executed.
Args:
command_name (str): The command name.
response (str): The response.
Returns:
str: The resulting response.
"""
return response
def can_handle_chat_completion(
self, messages: Dict[Any, Any], model: str, temperature: float, max_tokens: int
) -> bool:
"""This method is called to check that the plugin can
handle the chat_completion method.
Args:
messages (List[Message]): The messages.
model (str): The model name.
temperature (float): The temperature.
max_tokens (int): The max tokens.
Returns:
bool: True if the plugin can handle the chat_completion method."""
return False
def handle_chat_completion(
self, messages: List[Message], model: str, temperature: float, max_tokens: int
) -> str:
"""This method is called when the chat completion is done.
Args:
messages (List[Message]): The messages.
model (str): The model name.
temperature (float): The temperature.
max_tokens (int): The max tokens.
Returns:
str: The resulting response.
"""
def can_handle_text_embedding(self, text: str) -> bool:
"""This method is called to check that the plugin can
handle the text_embedding method.
Args:
text (str): The text to be convert to embedding.
Returns:
bool: True if the plugin can handle the text_embedding method."""
return False
def handle_text_embedding(self, text: str) -> list[float]:
"""This method is called to create a text embedding.
Args:
text (str): The text to be convert to embedding.
Returns:
list[float]: The created embedding vector.
"""
def can_handle_user_input(self, user_input: str) -> bool:
"""This method is called to check that the plugin can
handle the user_input method.
Args:
user_input (str): The user input.
Returns:
bool: True if the plugin can handle the user_input method."""
return False
def user_input(self, user_input: str) -> str:
"""This method is called to request user input to the user.
Args:
user_input (str): The question or prompt to ask the user.
Returns:
str: The user input.
"""
def can_handle_report(self) -> bool:
"""This method is called to check that the plugin can
handle the report method.
Returns:
bool: True if the plugin can handle the report method."""
return False
def report(self, message: str) -> None:
"""This method is called to report a message to the user.
Args:
message (str): The message to report.
"""

View File

@@ -1,330 +0,0 @@
"""Handles loading of plugins."""
from __future__ import annotations
import importlib.util
import inspect
import json
import logging
import os
import zipfile
from pathlib import Path
from typing import TYPE_CHECKING, List
from urllib.parse import urlparse
from zipimport import ZipImportError, zipimporter
import openapi_python_client
import requests
from auto_gpt_plugin_template import AutoGPTPluginTemplate
from openapi_python_client.config import Config as OpenAPIConfig
if TYPE_CHECKING:
from autogpt.config import Config
from autogpt.models.base_open_ai_plugin import BaseOpenAIPlugin
logger = logging.getLogger(__name__)
def inspect_zip_for_modules(zip_path: str) -> list[str]:
"""
Inspect a zipfile for a modules.
Args:
zip_path (str): Path to the zipfile.
debug (bool, optional): Enable debug logging. Defaults to False.
Returns:
list[str]: The list of module names found or empty list if none were found.
"""
result = []
with zipfile.ZipFile(zip_path, "r") as zfile:
for name in zfile.namelist():
if name.endswith("__init__.py") and not name.startswith("__MACOSX"):
logger.debug(f"Found module '{name}' in the zipfile at: {name}")
result.append(name)
if len(result) == 0:
logger.debug(f"Module '__init__.py' not found in the zipfile @ {zip_path}.")
return result
def write_dict_to_json_file(data: dict, file_path: str) -> None:
"""
Write a dictionary to a JSON file.
Args:
data (dict): Dictionary to write.
file_path (str): Path to the file.
"""
with open(file_path, "w") as file:
json.dump(data, file, indent=4)
def fetch_openai_plugins_manifest_and_spec(config: Config) -> dict:
"""
Fetch the manifest for a list of OpenAI plugins.
Args:
urls (List): List of URLs to fetch.
Returns:
dict: per url dictionary of manifest and spec.
"""
# TODO add directory scan
manifests = {}
for url in config.plugins_openai:
openai_plugin_client_dir = f"{config.plugins_dir}/openai/{urlparse(url).netloc}"
create_directory_if_not_exists(openai_plugin_client_dir)
if not os.path.exists(f"{openai_plugin_client_dir}/ai-plugin.json"):
try:
response = requests.get(f"{url}/.well-known/ai-plugin.json")
if response.status_code == 200:
manifest = response.json()
if manifest["schema_version"] != "v1":
logger.warning(
"Unsupported manifest version: "
f"{manifest['schem_version']} for {url}"
)
continue
if manifest["api"]["type"] != "openapi":
logger.warning(
f"Unsupported API type: {manifest['api']['type']} for {url}"
)
continue
write_dict_to_json_file(
manifest, f"{openai_plugin_client_dir}/ai-plugin.json"
)
else:
logger.warning(
f"Failed to fetch manifest for {url}: {response.status_code}"
)
except requests.exceptions.RequestException as e:
logger.warning(f"Error while requesting manifest from {url}: {e}")
else:
logger.info(f"Manifest for {url} already exists")
manifest = json.load(open(f"{openai_plugin_client_dir}/ai-plugin.json"))
if not os.path.exists(f"{openai_plugin_client_dir}/openapi.json"):
openapi_spec = openapi_python_client._get_document(
url=manifest["api"]["url"], path=None, timeout=5
)
write_dict_to_json_file(
openapi_spec, f"{openai_plugin_client_dir}/openapi.json"
)
else:
logger.info(f"OpenAPI spec for {url} already exists")
openapi_spec = json.load(open(f"{openai_plugin_client_dir}/openapi.json"))
manifests[url] = {"manifest": manifest, "openapi_spec": openapi_spec}
return manifests
def create_directory_if_not_exists(directory_path: str) -> bool:
"""
Create a directory if it does not exist.
Args:
directory_path (str): Path to the directory.
Returns:
bool: True if the directory was created, else False.
"""
if not os.path.exists(directory_path):
try:
os.makedirs(directory_path)
logger.debug(f"Created directory: {directory_path}")
return True
except OSError as e:
logger.warning(f"Error creating directory {directory_path}: {e}")
return False
else:
logger.info(f"Directory {directory_path} already exists")
return True
def initialize_openai_plugins(manifests_specs: dict, config: Config) -> dict:
"""
Initialize OpenAI plugins.
Args:
manifests_specs (dict): per url dictionary of manifest and spec.
config (Config): Config instance including plugins config
debug (bool, optional): Enable debug logging. Defaults to False.
Returns:
dict: per url dictionary of manifest, spec and client.
"""
openai_plugins_dir = f"{config.plugins_dir}/openai"
if create_directory_if_not_exists(openai_plugins_dir):
for url, manifest_spec in manifests_specs.items():
openai_plugin_client_dir = f"{openai_plugins_dir}/{urlparse(url).hostname}"
_meta_option = (openapi_python_client.MetaType.SETUP,)
_config = OpenAPIConfig(
**{
"project_name_override": "client",
"package_name_override": "client",
}
)
prev_cwd = Path.cwd()
os.chdir(openai_plugin_client_dir)
if not os.path.exists("client"):
client_results = openapi_python_client.create_new_client(
url=manifest_spec["manifest"]["api"]["url"],
path=None,
meta=_meta_option,
config=_config,
)
if client_results:
logger.warning(
f"Error creating OpenAPI client: {client_results[0].header} \n"
f" details: {client_results[0].detail}"
)
continue
spec = importlib.util.spec_from_file_location(
"client", "client/client/client.py"
)
module = importlib.util.module_from_spec(spec)
try:
spec.loader.exec_module(module)
finally:
os.chdir(prev_cwd)
client = module.Client(base_url=url)
manifest_spec["client"] = client
return manifests_specs
def instantiate_openai_plugin_clients(manifests_specs_clients: dict) -> dict:
"""
Instantiates BaseOpenAIPlugin instances for each OpenAI plugin.
Args:
manifests_specs_clients (dict): per url dictionary of manifest, spec and client.
config (Config): Config instance including plugins config
debug (bool, optional): Enable debug logging. Defaults to False.
Returns:
plugins (dict): per url dictionary of BaseOpenAIPlugin instances.
"""
plugins = {}
for url, manifest_spec_client in manifests_specs_clients.items():
plugins[url] = BaseOpenAIPlugin(manifest_spec_client)
return plugins
def scan_plugins(config: Config) -> List[AutoGPTPluginTemplate]:
"""Scan the plugins directory for plugins and loads them.
Args:
config (Config): Config instance including plugins config
debug (bool, optional): Enable debug logging. Defaults to False.
Returns:
List[Tuple[str, Path]]: List of plugins.
"""
loaded_plugins = []
# Generic plugins
plugins_path = Path(config.plugins_dir)
plugins_config = config.plugins_config
# Directory-based plugins
for plugin_path in [f for f in Path(config.plugins_dir).iterdir() if f.is_dir()]:
# Avoid going into __pycache__ or other hidden directories
if plugin_path.name.startswith("__"):
continue
plugin_module_name = plugin_path.name
qualified_module_name = ".".join(plugin_path.parts)
try:
plugin = importlib.import_module(qualified_module_name)
except ImportError as e:
logger.error(
f"Failed to load {qualified_module_name} from {plugin_path}: {e}"
)
continue
if not plugins_config.is_enabled(plugin_module_name):
logger.warning(
f"Plugin folder {plugin_module_name} found but not configured. "
"If this is a legitimate plugin, please add it to plugins_config.yaml "
f"(key: {plugin_module_name})."
)
continue
for _, class_obj in inspect.getmembers(plugin):
if (
hasattr(class_obj, "_abc_impl")
and AutoGPTPluginTemplate in class_obj.__bases__
):
loaded_plugins.append(class_obj())
# Zip-based plugins
for plugin in plugins_path.glob("*.zip"):
if moduleList := inspect_zip_for_modules(str(plugin)):
for module in moduleList:
plugin = Path(plugin)
module = Path(module)
logger.debug(f"Zipped Plugin: {plugin}, Module: {module}")
zipped_package = zipimporter(str(plugin))
try:
zipped_module = zipped_package.load_module(str(module.parent))
except ZipImportError as e:
logger.error(f"Failed to load {module.parent} from {plugin}: {e}")
continue
for key in dir(zipped_module):
if key.startswith("__"):
continue
a_module = getattr(zipped_module, key)
if not inspect.isclass(a_module):
continue
if (
issubclass(a_module, AutoGPTPluginTemplate)
and a_module.__name__ != "AutoGPTPluginTemplate"
):
plugin_name = a_module.__name__
plugin_configured = plugins_config.get(plugin_name) is not None
plugin_enabled = plugins_config.is_enabled(plugin_name)
if plugin_configured and plugin_enabled:
logger.debug(
f"Loading plugin {plugin_name}. "
"Enabled in plugins_config.yaml."
)
loaded_plugins.append(a_module())
elif plugin_configured and not plugin_enabled:
logger.debug(
f"Not loading plugin {plugin_name}. "
"Disabled in plugins_config.yaml."
)
elif not plugin_configured:
logger.warning(
f"Not loading plugin {plugin_name}. "
f"No entry for '{plugin_name}' in plugins_config.yaml. "
"Note: Zipped plugins should use the class name "
f"({plugin_name}) as the key."
)
else:
if (
module_name := getattr(a_module, "__name__", str(a_module))
) != "AutoGPTPluginTemplate":
logger.debug(
f"Skipping '{module_name}' because it doesn't subclass "
"AutoGPTPluginTemplate."
)
# OpenAI plugins
if config.plugins_openai:
manifests_specs = fetch_openai_plugins_manifest_and_spec(config)
if manifests_specs.keys():
manifests_specs_clients = initialize_openai_plugins(manifests_specs, config)
for url, openai_plugin_meta in manifests_specs_clients.items():
if not plugins_config.is_enabled(url):
plugin_name = openai_plugin_meta["manifest"]["name_for_model"]
logger.warning(
f"OpenAI Plugin {plugin_name} found but not configured"
)
continue
plugin = BaseOpenAIPlugin(openai_plugin_meta)
loaded_plugins.append(plugin)
if loaded_plugins:
logger.info(f"\nPlugins found: {len(loaded_plugins)}\n" "--------------------")
for plugin in loaded_plugins:
logger.info(f"{plugin._name}: {plugin._version} - {plugin._description}")
return loaded_plugins

View File

@@ -1,11 +0,0 @@
from typing import Any
from pydantic import BaseModel
class PluginConfig(BaseModel):
"""Class for holding configuration of a single plugin"""
name: str
enabled: bool = False
config: dict[str, Any] = None

View File

@@ -1,118 +0,0 @@
from __future__ import annotations
import logging
from pathlib import Path
from typing import Union
import yaml
from pydantic import BaseModel
from autogpt.plugins.plugin_config import PluginConfig
logger = logging.getLogger(__name__)
class PluginsConfig(BaseModel):
"""Class for holding configuration of all plugins"""
plugins: dict[str, PluginConfig]
def __repr__(self):
return f"PluginsConfig({self.plugins})"
def get(self, name: str) -> Union[PluginConfig, None]:
return self.plugins.get(name)
def is_enabled(self, name) -> bool:
plugin_config = self.plugins.get(name)
return plugin_config is not None and plugin_config.enabled
@classmethod
def load_config(
cls,
plugins_config_file: Path,
plugins_denylist: list[str],
plugins_allowlist: list[str],
) -> "PluginsConfig":
empty_config = cls(plugins={})
try:
config_data = cls.deserialize_config_file(
plugins_config_file,
plugins_denylist,
plugins_allowlist,
)
if type(config_data) is not dict:
logger.error(
f"Expected plugins config to be a dict, got {type(config_data)}."
" Continuing without plugins."
)
return empty_config
return cls(plugins=config_data)
except BaseException as e:
logger.error(
f"Plugin config is invalid. Continuing without plugins. Error: {e}"
)
return empty_config
@classmethod
def deserialize_config_file(
cls,
plugins_config_file: Path,
plugins_denylist: list[str],
plugins_allowlist: list[str],
) -> dict[str, PluginConfig]:
if not plugins_config_file.is_file():
logger.warning("plugins_config.yaml does not exist, creating base config.")
cls.create_empty_plugins_config(
plugins_config_file,
plugins_denylist,
plugins_allowlist,
)
with open(plugins_config_file, "r") as f:
plugins_config = yaml.load(f, Loader=yaml.SafeLoader)
plugins = {}
for name, plugin in plugins_config.items():
if type(plugin) is dict:
plugins[name] = PluginConfig(
name=name,
enabled=plugin.get("enabled", False),
config=plugin.get("config", {}),
)
elif isinstance(plugin, PluginConfig):
plugins[name] = plugin
else:
raise ValueError(f"Invalid plugin config data type: {type(plugin)}")
return plugins
@staticmethod
def create_empty_plugins_config(
plugins_config_file: Path,
plugins_denylist: list[str],
plugins_allowlist: list[str],
):
"""
Create an empty plugins_config.yaml file.
Fill it with values from old env variables.
"""
base_config = {}
logger.debug(f"Legacy plugin denylist: {plugins_denylist}")
logger.debug(f"Legacy plugin allowlist: {plugins_allowlist}")
# Backwards-compatibility shim
for plugin_name in plugins_denylist:
base_config[plugin_name] = {"enabled": False, "config": {}}
for plugin_name in plugins_allowlist:
base_config[plugin_name] = {"enabled": True, "config": {}}
logger.debug(f"Constructed base plugins config: {base_config}")
logger.debug(f"Creating plugin config file {plugins_config_file}")
with open(plugins_config_file, "w+") as f:
f.write(yaml.dump(base_config))
return base_config

View File

@@ -1,16 +1,5 @@
# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand.
[[package]]
name = "abstract-singleton"
version = "1.0.1"
description = "An abstract singleton class."
optional = false
python-versions = ">=3.8"
files = [
{file = "abstract_singleton-1.0.1-py3-none-any.whl", hash = "sha256:1f5e2359a609360bc08d975f578cce75a752df06db561efb679e69646199ec1d"},
{file = "abstract_singleton-1.0.1.tar.gz", hash = "sha256:d97d26ecbcb7422f78df1b0bca48a03df5ba04cf58844c6da033a7840beaae82"},
]
[[package]]
name = "agbenchmark"
version = "0.0.10"
@@ -276,24 +265,6 @@ tests = ["attrs[tests-no-zope]", "zope-interface"]
tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"]
tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"]
[[package]]
name = "auto_gpt_plugin_template"
version = "0.0.2"
description = "The template plugin for Auto-GPT."
optional = false
python-versions = ">=3.8"
files = []
develop = false
[package.dependencies]
abstract-singleton = "*"
[package.source]
type = "git"
url = "https://github.com/Significant-Gravitas/Auto-GPT-Plugin-Template"
reference = "0.1.0"
resolved_reference = "7612a14c629dc64ad870eee4d05850d60e1dd9ce"
[[package]]
name = "autoflake"
version = "2.2.1"
@@ -338,13 +309,13 @@ uvicorn = "^0.23.2"
webdriver-manager = "^4.0.1"
[package.extras]
benchmark = ["agbenchmark @ git+https://github.com/Significant-Gravitas/AutoGPT.git#subdirectory=benchmark"]
benchmark = ["agbenchmark @ file:///Users/czerwinski/Library/Caches/pypoetry/virtualenvs/agpt-JtDOdZb2-py3.11/src/AutoGPT/benchmark"]
[package.source]
type = "git"
url = "https://github.com/Significant-Gravitas/AutoGPT.git"
reference = "ab05b7ae70754c063909"
resolved_reference = "ab05b7ae70754c06390982d237d86dc7290cd1aa"
reference = "HEAD"
resolved_reference = "fd3f8fa5fc86271e4e319258fefdb3065d1aa0d4"
subdirectory = "autogpts/forge"
[[package]]
@@ -7263,4 +7234,4 @@ benchmark = ["agbenchmark"]
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "afa9674e032573e483e977e818766efe18ea4f52efa1ce6dfc71686772371b5b"
content-hash = "e6eab5c079d53f075ce701e86a2007e7ebeb635ac067d25f555bfea363bcc630"

View File

@@ -22,9 +22,8 @@ serve = "autogpt.app.cli:serve"
[tool.poetry.dependencies]
python = "^3.10"
auto-gpt-plugin-template = {git = "https://github.com/Significant-Gravitas/Auto-GPT-Plugin-Template", rev = "0.1.0"}
# autogpt-forge = { path = "../forge" }
autogpt-forge = {git = "https://github.com/Significant-Gravitas/AutoGPT.git", rev = "ab05b7ae70754c063909", subdirectory = "autogpts/forge"}
autogpt-forge = {git = "https://github.com/Significant-Gravitas/AutoGPT.git", subdirectory = "autogpts/forge"}
beautifulsoup4 = "^4.12.2"
boto3 = "^1.33.6"
charset-normalizer = "^3.1.0"

View File

@@ -1,66 +0,0 @@
import logging
import os
import subprocess
import sys
import zipfile
from glob import glob
from pathlib import Path
logger = logging.getLogger(__name__)
def install_plugin_dependencies():
"""
Installs dependencies for all plugins in the plugins dir.
Args:
None
Returns:
None
"""
plugins_dir = Path(os.getenv("PLUGINS_DIR", "plugins"))
logger.debug("Checking for dependencies in zipped plugins...")
# Install zip-based plugins
for plugin_archive in plugins_dir.glob("*.zip"):
logger.debug(f"Checking for requirements in '{plugin_archive}'...")
with zipfile.ZipFile(str(plugin_archive), "r") as zfile:
if not zfile.namelist():
continue
# Assume the first entry in the list will be (in) the lowest common dir
first_entry = zfile.namelist()[0]
basedir = first_entry.rsplit("/", 1)[0] if "/" in first_entry else ""
logger.debug(f"Looking for requirements.txt in '{basedir}'")
basereqs = os.path.join(basedir, "requirements.txt")
try:
extracted = zfile.extract(basereqs, path=plugins_dir)
except KeyError as e:
logger.debug(e.args[0])
continue
logger.debug(f"Installing dependencies from '{basereqs}'...")
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "-r", extracted]
)
os.remove(extracted)
os.rmdir(os.path.join(plugins_dir, basedir))
logger.debug("Checking for dependencies in other plugin folders...")
# Install directory-based plugins
for requirements_file in glob(f"{plugins_dir}/*/requirements.txt"):
logger.debug(f"Installing dependencies from '{requirements_file}'...")
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "-r", requirements_file],
stdout=subprocess.DEVNULL,
)
logger.debug("Finished installing plugin dependencies")
if __name__ == "__main__":
install_plugin_dependencies()

View File

@@ -3,10 +3,8 @@ from __future__ import annotations
import os
import uuid
from pathlib import Path
from tempfile import TemporaryDirectory
import pytest
import yaml
from pytest_mock import MockerFixture
from autogpt.agents.agent import Agent, AgentConfiguration, AgentSettings
@@ -48,23 +46,8 @@ def storage(app_data_dir: Path) -> FileStorage:
return storage
@pytest.fixture
def temp_plugins_config_file():
"""
Create a plugins_config.yaml file in a temp directory
so that it doesn't mess with existing ones.
"""
config_directory = TemporaryDirectory()
config_file = Path(config_directory.name) / "plugins_config.yaml"
with open(config_file, "w+") as f:
f.write(yaml.dump({}))
yield config_file
@pytest.fixture(scope="function")
def config(
temp_plugins_config_file: Path,
tmp_project_root: Path,
app_data_dir: Path,
mocker: MockerFixture,
@@ -75,19 +58,8 @@ def config(
config.app_data_dir = app_data_dir
config.plugins_dir = "tests/unit/data/test_plugins"
config.plugins_config_file = temp_plugins_config_file
config.noninteractive_mode = True
# avoid circular dependency
from autogpt.plugins.plugins_config import PluginsConfig
config.plugins_config = PluginsConfig.load_config(
plugins_config_file=config.plugins_config_file,
plugins_denylist=config.plugins_denylist,
plugins_allowlist=config.plugins_allowlist,
)
yield config
@@ -125,7 +97,6 @@ def agent(
smart_llm=config.smart_llm,
allow_fs_access=not config.restrict_to_workspace,
use_functions_api=config.openai_functions,
plugins=config.plugins,
),
history=Agent.default_settings.history.copy(deep=True),
)

View File

@@ -41,7 +41,6 @@ def dummy_agent(config: Config, llm_provider, memory_json_file):
fast_llm=config.fast_llm,
smart_llm=config.smart_llm,
use_functions_api=config.openai_functions,
plugins=config.plugins,
),
prompt_config=agent_prompt_config,
history=Agent.default_settings.history.copy(deep=True),

View File

@@ -1,274 +0,0 @@
"""This is the Test plugin for AutoGPT."""
from typing import Any, Dict, List, Optional, Tuple, TypeVar
from auto_gpt_plugin_template import AutoGPTPluginTemplate
PromptGenerator = TypeVar("PromptGenerator")
class AutoGPTGuanaco(AutoGPTPluginTemplate):
"""
This is plugin for AutoGPT.
"""
def __init__(self):
super().__init__()
self._name = "AutoGPT-Guanaco"
self._version = "0.1.0"
self._description = "This is a Guanaco local model plugin."
def can_handle_on_response(self) -> bool:
"""This method is called to check that the plugin can
handle the on_response method.
Returns:
bool: True if the plugin can handle the on_response method."""
return False
def on_response(self, response: str, *args, **kwargs) -> str:
"""This method is called when a response is received from the model."""
if len(response):
print("OMG OMG It's Alive!")
else:
print("Is it alive?")
def can_handle_post_prompt(self) -> bool:
"""This method is called to check that the plugin can
handle the post_prompt method.
Returns:
bool: True if the plugin can handle the post_prompt method."""
return False
def post_prompt(self, prompt: PromptGenerator) -> PromptGenerator:
"""This method is called just after the generate_prompt is called,
but actually before the prompt is generated.
Args:
prompt (PromptGenerator): The prompt generator.
Returns:
PromptGenerator: The prompt generator.
"""
def can_handle_on_planning(self) -> bool:
"""This method is called to check that the plugin can
handle the on_planning method.
Returns:
bool: True if the plugin can handle the on_planning method."""
return False
def on_planning(
self, prompt: PromptGenerator, messages: List[str]
) -> Optional[str]:
"""This method is called before the planning chat completeion is done.
Args:
prompt (PromptGenerator): The prompt generator.
messages (List[str]): The list of messages.
"""
def can_handle_post_planning(self) -> bool:
"""This method is called to check that the plugin can
handle the post_planning method.
Returns:
bool: True if the plugin can handle the post_planning method."""
return False
def post_planning(self, response: str) -> str:
"""This method is called after the planning chat completeion is done.
Args:
response (str): The response.
Returns:
str: The resulting response.
"""
def can_handle_pre_instruction(self) -> bool:
"""This method is called to check that the plugin can
handle the pre_instruction method.
Returns:
bool: True if the plugin can handle the pre_instruction method."""
return False
def pre_instruction(self, messages: List[str]) -> List[str]:
"""This method is called before the instruction chat is done.
Args:
messages (List[str]): The list of context messages.
Returns:
List[str]: The resulting list of messages.
"""
def can_handle_on_instruction(self) -> bool:
"""This method is called to check that the plugin can
handle the on_instruction method.
Returns:
bool: True if the plugin can handle the on_instruction method."""
return False
def on_instruction(self, messages: List[str]) -> Optional[str]:
"""This method is called when the instruction chat is done.
Args:
messages (List[str]): The list of context messages.
Returns:
Optional[str]: The resulting message.
"""
def can_handle_post_instruction(self) -> bool:
"""This method is called to check that the plugin can
handle the post_instruction method.
Returns:
bool: True if the plugin can handle the post_instruction method."""
return False
def post_instruction(self, response: str) -> str:
"""This method is called after the instruction chat is done.
Args:
response (str): The response.
Returns:
str: The resulting response.
"""
def can_handle_pre_command(self) -> bool:
"""This method is called to check that the plugin can
handle the pre_command method.
Returns:
bool: True if the plugin can handle the pre_command method."""
return False
def pre_command(
self, command_name: str, arguments: Dict[str, Any]
) -> Tuple[str, Dict[str, Any]]:
"""This method is called before the command is executed.
Args:
command_name (str): The command name.
arguments (Dict[str, Any]): The arguments.
Returns:
Tuple[str, Dict[str, Any]]: The command name and the arguments.
"""
def can_handle_post_command(self) -> bool:
"""This method is called to check that the plugin can
handle the post_command method.
Returns:
bool: True if the plugin can handle the post_command method."""
return False
def post_command(self, command_name: str, response: str) -> str:
"""This method is called after the command is executed.
Args:
command_name (str): The command name.
response (str): The response.
Returns:
str: The resulting response.
"""
def can_handle_chat_completion(
self,
messages: list[Dict[Any, Any]],
model: str,
temperature: float,
max_tokens: int,
) -> bool:
"""This method is called to check that the plugin can
handle the chat_completion method.
Args:
messages (Dict[Any, Any]): The messages.
model (str): The model name.
temperature (float): The temperature.
max_tokens (int): The max tokens.
Returns:
bool: True if the plugin can handle the chat_completion method."""
return False
def handle_chat_completion(
self,
messages: list[Dict[Any, Any]],
model: str,
temperature: float,
max_tokens: int,
) -> str:
"""This method is called when the chat completion is done.
Args:
messages (Dict[Any, Any]): The messages.
model (str): The model name.
temperature (float): The temperature.
max_tokens (int): The max tokens.
Returns:
str: The resulting response.
"""
def can_handle_text_embedding(self, text: str) -> bool:
"""This method is called to check that the plugin can
handle the text_embedding method.
Args:
text (str): The text to be convert to embedding.
Returns:
bool: True if the plugin can handle the text_embedding method."""
return False
def handle_text_embedding(self, text: str) -> list:
"""This method is called when the chat completion is done.
Args:
text (str): The text to be convert to embedding.
Returns:
list: The text embedding.
"""
def can_handle_user_input(self, user_input: str) -> bool:
"""This method is called to check that the plugin can
handle the user_input method.
Args:
user_input (str): The user input.
Returns:
bool: True if the plugin can handle the user_input method."""
return False
def user_input(self, user_input: str) -> str:
"""This method is called to request user input to the user.
Args:
user_input (str): The question or prompt to ask the user.
Returns:
str: The user input.
"""
def can_handle_report(self) -> bool:
"""This method is called to check that the plugin can
handle the report method.
Returns:
bool: True if the plugin can handle the report method."""
return False
def report(self, message: str) -> None:
"""This method is called to report a message to the user.
Args:
message (str): The message to report.
"""

View File

@@ -1,81 +0,0 @@
import pytest
from autogpt.models.base_open_ai_plugin import BaseOpenAIPlugin
class DummyPlugin(BaseOpenAIPlugin):
"""A dummy plugin for testing purposes."""
@pytest.fixture
def dummy_plugin():
"""A dummy plugin for testing purposes."""
manifests_specs_clients = {
"manifest": {
"name_for_model": "Dummy",
"schema_version": "1.0",
"description_for_model": "A dummy plugin for testing purposes",
},
"client": None,
"openapi_spec": None,
}
return DummyPlugin(manifests_specs_clients)
def test_dummy_plugin_inheritance(dummy_plugin):
"""Test that the DummyPlugin class inherits from the BaseOpenAIPlugin class."""
assert isinstance(dummy_plugin, BaseOpenAIPlugin)
def test_dummy_plugin_name(dummy_plugin):
"""Test that the DummyPlugin class has the correct name."""
assert dummy_plugin._name == "Dummy"
def test_dummy_plugin_version(dummy_plugin):
"""Test that the DummyPlugin class has the correct version."""
assert dummy_plugin._version == "1.0"
def test_dummy_plugin_description(dummy_plugin):
"""Test that the DummyPlugin class has the correct description."""
assert dummy_plugin._description == "A dummy plugin for testing purposes"
def test_dummy_plugin_default_methods(dummy_plugin):
"""Test that the DummyPlugin class has the correct default methods."""
assert not dummy_plugin.can_handle_on_response()
assert not dummy_plugin.can_handle_post_prompt()
assert not dummy_plugin.can_handle_on_planning()
assert not dummy_plugin.can_handle_post_planning()
assert not dummy_plugin.can_handle_pre_instruction()
assert not dummy_plugin.can_handle_on_instruction()
assert not dummy_plugin.can_handle_post_instruction()
assert not dummy_plugin.can_handle_pre_command()
assert not dummy_plugin.can_handle_post_command()
assert not dummy_plugin.can_handle_chat_completion(None, None, None, None)
assert not dummy_plugin.can_handle_text_embedding(None)
assert dummy_plugin.on_response("hello") == "hello"
assert dummy_plugin.post_prompt(None) is None
assert dummy_plugin.on_planning(None, None) is None
assert dummy_plugin.post_planning("world") == "world"
pre_instruction = dummy_plugin.pre_instruction(
[{"role": "system", "content": "Beep, bop, boop"}]
)
assert isinstance(pre_instruction, list)
assert len(pre_instruction) == 1
assert pre_instruction[0]["role"] == "system"
assert pre_instruction[0]["content"] == "Beep, bop, boop"
assert dummy_plugin.on_instruction(None) is None
assert dummy_plugin.post_instruction("I'm a robot") == "I'm a robot"
pre_command = dummy_plugin.pre_command("evolve", {"continuously": True})
assert isinstance(pre_command, tuple)
assert len(pre_command) == 2
assert pre_command[0] == "evolve"
assert pre_command[1]["continuously"] is True
post_command = dummy_plugin.post_command("evolve", "upgraded successfully!")
assert isinstance(post_command, str)
assert post_command == "upgraded successfully!"
assert dummy_plugin.handle_chat_completion(None, None, None, None) is None
assert dummy_plugin.handle_text_embedding(None) is None

View File

@@ -1,125 +0,0 @@
import os
import yaml
from autogpt.config.config import Config
from autogpt.plugins import inspect_zip_for_modules, scan_plugins
from autogpt.plugins.plugin_config import PluginConfig
from autogpt.plugins.plugins_config import PluginsConfig
PLUGINS_TEST_DIR = "tests/unit/data/test_plugins"
PLUGIN_TEST_ZIP_FILE = "Auto-GPT-Plugin-Test-master.zip"
PLUGIN_TEST_INIT_PY = "Auto-GPT-Plugin-Test-master/src/auto_gpt_vicuna/__init__.py"
PLUGIN_TEST_OPENAI = "https://weathergpt.vercel.app/"
def test_scan_plugins_openai(config: Config):
config.plugins_openai = [PLUGIN_TEST_OPENAI]
plugins_config = config.plugins_config
plugins_config.plugins[PLUGIN_TEST_OPENAI] = PluginConfig(
name=PLUGIN_TEST_OPENAI, enabled=True
)
# Test that the function returns the correct number of plugins
result = scan_plugins(config)
assert len(result) == 1
def test_scan_plugins_generic(config: Config):
# Test that the function returns the correct number of plugins
plugins_config = config.plugins_config
plugins_config.plugins["auto_gpt_guanaco"] = PluginConfig(
name="auto_gpt_guanaco", enabled=True
)
plugins_config.plugins["AutoGPTPVicuna"] = PluginConfig(
name="AutoGPTPVicuna", enabled=True
)
result = scan_plugins(config)
plugin_class_names = [plugin.__class__.__name__ for plugin in result]
assert len(result) == 2
assert "AutoGPTGuanaco" in plugin_class_names
assert "AutoGPTPVicuna" in plugin_class_names
def test_scan_plugins_not_enabled(config: Config):
# Test that the function returns the correct number of plugins
plugins_config = config.plugins_config
plugins_config.plugins["auto_gpt_guanaco"] = PluginConfig(
name="auto_gpt_guanaco", enabled=True
)
plugins_config.plugins["auto_gpt_vicuna"] = PluginConfig(
name="auto_gptp_vicuna", enabled=False
)
result = scan_plugins(config)
plugin_class_names = [plugin.__class__.__name__ for plugin in result]
assert len(result) == 1
assert "AutoGPTGuanaco" in plugin_class_names
assert "AutoGPTPVicuna" not in plugin_class_names
def test_inspect_zip_for_modules():
result = inspect_zip_for_modules(str(f"{PLUGINS_TEST_DIR}/{PLUGIN_TEST_ZIP_FILE}"))
assert result == [PLUGIN_TEST_INIT_PY]
def test_create_base_config(config: Config):
"""
Test the backwards-compatibility shim to convert old plugin allow/deny list
to a config file.
"""
config.plugins_allowlist = ["a", "b"]
config.plugins_denylist = ["c", "d"]
os.remove(config.plugins_config_file)
plugins_config = PluginsConfig.load_config(
plugins_config_file=config.plugins_config_file,
plugins_denylist=config.plugins_denylist,
plugins_allowlist=config.plugins_allowlist,
)
# Check the structure of the plugins config data
assert len(plugins_config.plugins) == 4
assert plugins_config.get("a").enabled
assert plugins_config.get("b").enabled
assert not plugins_config.get("c").enabled
assert not plugins_config.get("d").enabled
# Check the saved config file
with open(config.plugins_config_file, "r") as saved_config_file:
saved_config = yaml.load(saved_config_file, Loader=yaml.SafeLoader)
assert saved_config == {
"a": {"enabled": True, "config": {}},
"b": {"enabled": True, "config": {}},
"c": {"enabled": False, "config": {}},
"d": {"enabled": False, "config": {}},
}
def test_load_config(config: Config):
"""
Test that the plugin config is loaded correctly from the plugins_config.yaml file.
"""
# Create a test config and write it to disk
test_config = {
"a": {"enabled": True, "config": {"api_key": "1234"}},
"b": {"enabled": False, "config": {}},
}
with open(config.plugins_config_file, "w+") as f:
f.write(yaml.dump(test_config))
# Load the config from disk
plugins_config = PluginsConfig.load_config(
plugins_config_file=config.plugins_config_file,
plugins_denylist=config.plugins_denylist,
plugins_allowlist=config.plugins_allowlist,
)
# Check that the loaded config is equal to the test config
assert len(plugins_config.plugins) == 2
assert plugins_config.get("a").enabled
assert plugins_config.get("a").config == {"api_key": "1234"}
assert not plugins_config.get("b").enabled
assert plugins_config.get("b").config == {}

View File

@@ -33,7 +33,6 @@ Configuration is controlled through the `Config` object. You can set configurati
- `OPENAI_API_KEY`: *REQUIRED*- Your [OpenAI API Key](https://platform.openai.com/account/api-keys).
- `OPENAI_ORGANIZATION`: Organization ID in OpenAI. Optional.
- `PLAIN_OUTPUT`: Plain output, which disables the spinner. Default: False
- `PLUGINS_CONFIG_FILE`: Path of the Plugins Config file relative to the AutoGPT root directory. Default: plugins_config.yaml
- `PROMPT_SETTINGS_FILE`: Location of the Prompt Settings file relative to the AutoGPT root directory. Default: prompt_settings.yaml
- `REDIS_HOST`: Redis Host. Default: localhost
- `REDIS_PASSWORD`: Redis Password. Optional. Default: