bug fixes, sha frontend, updating file locations

This commit is contained in:
Silen Naihin
2023-09-01 10:54:35 -07:00
parent abed1ae879
commit 6eeefbd800
9 changed files with 236 additions and 355 deletions

View File

@@ -123,7 +123,6 @@ jobs:
sudo dpkg -i google-chrome-stable_current_amd64.deb
sudo apt-get install -f
- name: Set up Python ${{ env.min-python-version }}
uses: actions/setup-python@v2
with:
@@ -198,7 +197,7 @@ jobs:
pip install ../../dist/*.whl
bash -c "$(curl -fsSL https://raw.githubusercontent.com/merwanehamadi/helicone/b7ab4bc53e51d8ab29fff19ce5986ab7720970c6/mitmproxy.sh)" -s start
if [ "${GITHUB_EVENT_NAME}" == "pull_request" ] || [ "${{ github.event_name }}" == "push" ]; then
set +e # Ignore non-zero exit codes and continue execution
echo "Running the following command: ${prefix}agbenchmark start --maintain --mock"
@@ -211,25 +210,25 @@ jobs:
fi
echo "Running the following command: ${prefix}agbenchmark start --mock"
${prefix}agbenchmark start --mock
echo "Running the following command: ${prefix}agbenchmark start --mock --category=retrieval"
${prefix}agbenchmark start --mock --category=retrieval
echo "Running the following command: ${prefix}agbenchmark start --mock --category=interface"
${prefix}agbenchmark start --mock --category=interface
echo "Running the following command: ${prefix}agbenchmark start --mock --category=code"
${prefix}agbenchmark start --mock --category=code
echo "Running the following command: ${prefix}agbenchmark start --mock --category=memory"
${prefix}agbenchmark start --mock --category=memory
echo "Running the following command: ${prefix}agbenchmark start --mock --suite TestRevenueRetrieval"
${prefix}agbenchmark start --mock --suite TestRevenueRetrieval
echo "Running the following command: ${prefix}agbenchmark start --test=TestWriteFile"
${prefix}agbenchmark start --test=TestWriteFile
cd ../..
poetry install
poetry run uvicorn server:app --reload &
@@ -285,7 +284,7 @@ jobs:
git rebase origin/$current_branch
if git push origin HEAD; then
echo "Success!"
poetry run python send_to_googledrive.py || echo "Failed to upload to Google Drive"
poetry run python reports/send_to_googledrive.py || echo "Failed to upload to Google Drive"
exit 0
else
echo "Attempt $(($attempts + 1)) failed. Retrying..."

3
.gitignore vendored
View File

@@ -1,5 +1,8 @@
agbenchmark/workspace/
backend/backend_stdout.txt
reports/df.pkl
reports/df_backwards.pkl
reports/reports_raw.pkl
# Byte-compiled / optimized / DLL files
__pycache__/

View File

@@ -1,181 +0,0 @@
import os
import json
import pandas as pd
import glob
from gql.transport.aiohttp import AIOHTTPTransport
from gql import gql, Client
import os
def get_reports():
# Initialize an empty list to store the report data
report_data = []
# Specify the path to the reports directory
reports_dir = 'reports'
# Iterate over all agent directories in the reports directory
for agent_name in os.listdir(reports_dir):
agent_dir = os.path.join(reports_dir, agent_name)
# Check if the item is a directory (an agent directory)
if os.path.isdir(agent_dir):
# Construct the path to the report.json file
# Use glob to find all run directories in the agent_dir
run_dirs = glob.glob(os.path.join(agent_dir, '*'))
# For each run directory, add the report.json to the end
report_files = [os.path.join(run_dir, 'report.json') for run_dir in run_dirs]
for report_file in report_files:
# Check if the report.json file exists
if os.path.isfile(report_file):
# Open the report.json file
with open(report_file, 'r') as f:
# Load the JSON data from the file
report = json.load(f)
# Iterate over all tests in the report
for test_name, test_data in report['tests'].items():
try:
# Append the relevant data to the report_data list
if agent_name is not None:
report_data.append({
'agent': agent_name.lower(),
'benchmark_start_time': report['benchmark_start_time'],
'challenge': test_name,
'categories': ', '.join(test_data['category']),
'task': test_data['task'],
'success': test_data['metrics']['success'],
'difficulty': test_data['metrics']['difficulty'],
'success_%': test_data['metrics']['success_%'],
'run_time': test_data['metrics']['run_time']
})
except KeyError:
pass
return pd.DataFrame(report_data)
def get_helicone_data():
helicone_api_key = os.getenv('HELICONE_API_KEY')
url = "https://www.helicone.ai/api/graphql"
# Replace <KEY> with your personal access key
transport = AIOHTTPTransport(url=url, headers={
"authorization": f"Bearer {helicone_api_key}"
})
client = Client(transport=transport, fetch_schema_from_transport=True)
SIZE = 250
i = 0
data = []
print("Fetching data from Helicone")
while True:
query = gql(
"""
query ExampleQuery($limit: Int, $offset: Int){
heliconeRequest(
limit: $limit
offset: $offset
) {
prompt
properties{
name
value
}
requestBody
response
createdAt
}
}
"""
)
print(f"Fetching {i * SIZE} to {(i + 1) * SIZE} records")
try:
result = client.execute(query,
variable_values={
"limit": SIZE,
"offset": i * SIZE
}
)
except Exception as e:
print(f"Error occurred: {e}")
result = None
i += 1
if result:
for item in result["heliconeRequest"]:
properties = {prop['name']: prop['value'] for prop in item['properties']}
data.append({
'createdAt': item['createdAt'],
'agent': properties.get('agent'),
'job_id': properties.get('job_id'),
'challenge': properties.get('challenge'),
'benchmark_start_time': properties.get('benchmark_start_time'),
'prompt': item['prompt'],
'model': item['requestBody'].get('model'),
'request': item['requestBody'].get('messages'),
})
if not result or (len(result["heliconeRequest"]) == 0):
print("No more results")
break
df = pd.DataFrame(data)
# Drop rows where agent is None
df = df.dropna(subset=['agent'])
# Convert the remaining agent names to lowercase
df['agent'] = df['agent'].str.lower()
return df
if os.path.exists('reports_raw.pkl') and os.path.exists('helicone_raw.pkl'):
reports_df = pd.read_pickle('reports_raw.pkl')
helicone_df = pd.read_pickle('helicone_raw.pkl')
else:
reports_df = get_reports()
reports_df.to_pickle('reports_raw.pkl')
helicone_df = get_helicone_data()
helicone_df.to_pickle('helicone_raw.pkl')
def try_formats(date_str):
formats = ['%Y-%m-%d-%H:%M', '%Y-%m-%dT%H:%M:%S%z']
for fmt in formats:
try:
return pd.to_datetime(date_str, format=fmt)
except ValueError:
pass
return None
helicone_df['benchmark_start_time'] = pd.to_datetime(helicone_df['benchmark_start_time'].apply(try_formats), utc=True)
helicone_df = helicone_df.dropna(subset=['benchmark_start_time'])
helicone_df['createdAt'] = pd.to_datetime(helicone_df['createdAt'], unit='ms', origin='unix')
reports_df['benchmark_start_time'] = pd.to_datetime(reports_df['benchmark_start_time'].apply(try_formats), utc=True)
reports_df = reports_df.dropna(subset=['benchmark_start_time'])
assert pd.api.types.is_datetime64_any_dtype(helicone_df['benchmark_start_time']), "benchmark_start_time in helicone_df is not datetime"
assert pd.api.types.is_datetime64_any_dtype(reports_df['benchmark_start_time']), "benchmark_start_time in reports_df is not datetime"
reports_df['report_time'] = reports_df['benchmark_start_time']
df = pd.merge_asof(helicone_df.sort_values('benchmark_start_time'),
reports_df.sort_values('benchmark_start_time'),
left_on='benchmark_start_time',
right_on='benchmark_start_time',
by=['agent', 'challenge'],
direction='backward')
df.to_pickle('df.pkl')
print(df.info())
print("Data saved to df.pkl")
print("To load the data use: df = pd.read_pickle('df.pkl')")

View File

@@ -1 +0,0 @@
{}

View File

@@ -1,162 +0,0 @@
{
"TestAdaptLink": [
false,
false
],
"TestAdaptSimpleTypoWithGuidance": [
false,
false
],
"TestAdaptTeslaRevenue": [
false,
false
],
"TestAgentProtocol_CreateAgentTask": [
false,
false
],
"TestAgentProtocol_ExecuteAgentTaskStep": [
false,
false
],
"TestAgentProtocol_GetAgentTask": [
false,
false
],
"TestAgentProtocol_ListAgentTaskSteps": [
false,
false
],
"TestAgentProtocol_ListAgentTasksIds": [
false,
false
],
"TestBasicMemory": [
false,
false
],
"TestBasicRetrieval": [
false,
false
],
"TestDebugMultipleTypo": [
false,
false
],
"TestDebugSimpleTypoWithGuidance": [
false,
false
],
"TestDebugSimpleTypoWithoutGuidance": [
false,
false
],
"TestFunctionCodeGeneration": [
false,
false
],
"TestPasswordGenerator_Easy": [
false,
false
],
"TestPlanCreation": [
true,
true
],
"TestProductAdvisor_GamingMonitor": [
false,
false
],
"TestReadFile": [
true,
true
],
"TestRememberGoal_Advanced": [
false,
false
],
"TestRememberGoal_Hard": [
false,
false
],
"TestRememberGoal_Medium": [
false,
false
],
"TestRememberGoal_Simple": [
false,
false
],
"TestRememberMultipleIds": [
false,
false
],
"TestRememberMultipleIdsWithNoise": [
false,
false
],
"TestRememberMultiplePhrasesWithNoise": [
false,
false
],
"TestRetrieval3": [
false,
false
],
"TestReturnCode_Modify": [
false,
false
],
"TestReturnCode_Simple": [
false,
false
],
"TestReturnCode_Tests": [
false,
false
],
"TestReturnCode_Write": [
false,
false
],
"TestRevenueRetrieval_1.0": [
false,
false
],
"TestRevenueRetrieval_1.1": [
false,
false
],
"TestRevenueRetrieval_1.2": [
false,
false
],
"TestSearch": [
false,
false
],
"TestThreeSum": [
false,
false
],
"TestWebApp_ListAnimals": [
false,
false
],
"TestWrite5FilesWithArray": [
false,
false
],
"TestWrite6Files": [
false,
false
],
"TestWriteFile": [
true,
true
],
"TestWritingCLI_FileOrganizer": [
false,
false
]
}

214
reports/match_records.py Normal file
View File

@@ -0,0 +1,214 @@
import os
import json
import pandas as pd
import glob
from gql.transport.aiohttp import AIOHTTPTransport
from gql import gql, Client
import os
def get_reports():
# Initialize an empty list to store the report data
report_data = []
# Get the current working directory
current_dir = os.getcwd()
# Check if the current directory ends with 'reports'
if current_dir.endswith("reports"):
reports_dir = "/"
else:
reports_dir = "reports"
# Iterate over all agent directories in the reports directory
for agent_name in os.listdir(reports_dir):
agent_dir = os.path.join(reports_dir, agent_name)
# Check if the item is a directory (an agent directory)
if os.path.isdir(agent_dir):
# Construct the path to the report.json file
# Use glob to find all run directories in the agent_dir
run_dirs = glob.glob(os.path.join(agent_dir, "*"))
# For each run directory, add the report.json to the end
report_files = [
os.path.join(run_dir, "report.json") for run_dir in run_dirs
]
for report_file in report_files:
# Check if the report.json file exists
if os.path.isfile(report_file):
# Open the report.json file
with open(report_file, "r") as f:
# Load the JSON data from the file
report = json.load(f)
# Iterate over all tests in the report
for test_name, test_data in report["tests"].items():
try:
# Append the relevant data to the report_data list
if agent_name is not None:
report_data.append(
{
"agent": agent_name.lower(),
"benchmark_start_time": report[
"benchmark_start_time"
],
"challenge": test_name,
"categories": ", ".join(
test_data["category"]
),
"task": test_data["task"],
"success": test_data["metrics"]["success"],
"difficulty": test_data["metrics"][
"difficulty"
],
"success_%": test_data["metrics"][
"success_%"
],
"run_time": test_data["metrics"][
"run_time"
],
}
)
except KeyError:
pass
return pd.DataFrame(report_data)
def get_helicone_data():
helicone_api_key = os.getenv("HELICONE_API_KEY")
url = "https://www.helicone.ai/api/graphql"
# Replace <KEY> with your personal access key
transport = AIOHTTPTransport(
url=url, headers={"authorization": f"Bearer {helicone_api_key}"}
)
client = Client(transport=transport, fetch_schema_from_transport=True)
SIZE = 250
i = 0
data = []
print("Fetching data from Helicone")
while True:
query = gql(
"""
query ExampleQuery($limit: Int, $offset: Int){
heliconeRequest(
limit: $limit
offset: $offset
) {
prompt
properties{
name
value
}
requestBody
response
createdAt
}
}
"""
)
print(f"Fetching {i * SIZE} to {(i + 1) * SIZE} records")
try:
result = client.execute(
query, variable_values={"limit": SIZE, "offset": i * SIZE}
)
except Exception as e:
print(f"Error occurred: {e}")
result = None
i += 1
if result:
for item in result["heliconeRequest"]:
properties = {
prop["name"]: prop["value"] for prop in item["properties"]
}
data.append(
{
"createdAt": item["createdAt"],
"agent": properties.get("agent"),
"job_id": properties.get("job_id"),
"challenge": properties.get("challenge"),
"benchmark_start_time": properties.get("benchmark_start_time"),
"prompt": item["prompt"],
"model": item["requestBody"].get("model"),
"request": item["requestBody"].get("messages"),
}
)
if not result or (len(result["heliconeRequest"]) == 0):
print("No more results")
break
df = pd.DataFrame(data)
# Drop rows where agent is None
df = df.dropna(subset=["agent"])
# Convert the remaining agent names to lowercase
df["agent"] = df["agent"].str.lower()
return df
if os.path.exists("reports_raw.pkl") and os.path.exists("helicone_raw.pkl"):
reports_df = pd.read_pickle("reports_raw.pkl")
helicone_df = pd.read_pickle("helicone_raw.pkl")
else:
reports_df = get_reports()
reports_df.to_pickle("reports_raw.pkl")
helicone_df = get_helicone_data()
helicone_df.to_pickle("helicone_raw.pkl")
def try_formats(date_str):
formats = ["%Y-%m-%d-%H:%M", "%Y-%m-%dT%H:%M:%S%z"]
for fmt in formats:
try:
return pd.to_datetime(date_str, format=fmt)
except ValueError:
pass
return None
helicone_df["benchmark_start_time"] = pd.to_datetime(
helicone_df["benchmark_start_time"].apply(try_formats), utc=True
)
helicone_df = helicone_df.dropna(subset=["benchmark_start_time"])
helicone_df["createdAt"] = pd.to_datetime(
helicone_df["createdAt"], unit="ms", origin="unix"
)
reports_df["benchmark_start_time"] = pd.to_datetime(
reports_df["benchmark_start_time"].apply(try_formats), utc=True
)
reports_df = reports_df.dropna(subset=["benchmark_start_time"])
assert pd.api.types.is_datetime64_any_dtype(
helicone_df["benchmark_start_time"]
), "benchmark_start_time in helicone_df is not datetime"
assert pd.api.types.is_datetime64_any_dtype(
reports_df["benchmark_start_time"]
), "benchmark_start_time in reports_df is not datetime"
reports_df["report_time"] = reports_df["benchmark_start_time"]
df = pd.merge_asof(
helicone_df.sort_values("benchmark_start_time"),
reports_df.sort_values("benchmark_start_time"),
left_on="benchmark_start_time",
right_on="benchmark_start_time",
by=["agent", "challenge"],
direction="backward",
)
df.to_pickle("df.pkl")
print(df.info())
print("Data saved to df.pkl")
print("To load the data use: df = pd.read_pickle('df.pkl')")

View File

@@ -29,6 +29,15 @@ creds_info = json.loads(creds_string)
# Define the base directory containing JSON files
base_dir = "reports"
# Get the current working directory
current_dir = os.getcwd()
# Check if the current directory ends with 'reports'
if current_dir.endswith("reports"):
base_dir = "/"
else:
base_dir = "reports"
# Create a list to store each row of data
rows = []