Merge pull request #837 from AlrikOlson/prompt-generator

Refactor seed prompt loading: replace text file with Python class for easier maintenance
This commit is contained in:
Richard Beales
2023-04-13 20:25:42 +01:00
committed by GitHub
7 changed files with 298 additions and 87 deletions

View File

@@ -1,6 +1,6 @@
import yaml
import data
import os
from prompt import get_prompt
class AIConfig:
@@ -91,5 +91,5 @@ class AIConfig:
for i, goal in enumerate(self.ai_goals):
full_prompt += f"{i+1}. {goal}\n"
full_prompt += f"\n\n{data.load_prompt()}"
full_prompt += f"\n\n{get_prompt()}"
return full_prompt

View File

@@ -1,19 +0,0 @@
import os
from pathlib import Path
def load_prompt():
"""Load the prompt from data/prompt.txt"""
try:
# get directory of this file:
file_dir = Path(__file__).parent
prompt_file_path = file_dir / "data" / "prompt.txt"
# Load the prompt from data/prompt.txt
with open(prompt_file_path, "r") as prompt_file:
prompt = prompt_file.read()
return prompt
except FileNotFoundError:
print("Error: Prompt file not found", flush=True)
return ""

View File

@@ -1,63 +0,0 @@
CONSTRAINTS:
1. ~4000 word limit for short term memory. Your short term memory is short, so immediately save important information to files.
2. If you are unsure how you previously did something or want to recall past events, thinking about similar events will help you remember.
3. No user assistance
4. Exclusively use the commands listed in double quotes e.g. "command name"
COMMANDS:
1. Google Search: "google", args: "input": "<search>"
5. Browse Website: "browse_website", args: "url": "<url>", "question": "<what_you_want_to_find_on_website>"
6. Start GPT Agent: "start_agent", args: "name": "<name>", "task": "<short_task_desc>", "prompt": "<prompt>"
7. Message GPT Agent: "message_agent", args: "key": "<key>", "message": "<message>"
8. List GPT Agents: "list_agents", args: ""
9. Delete GPT Agent: "delete_agent", args: "key": "<key>"
10. Write to file: "write_to_file", args: "file": "<file>", "text": "<text>"
11. Read file: "read_file", args: "file": "<file>"
12. Append to file: "append_to_file", args: "file": "<file>", "text": "<text>"
13. Delete file: "delete_file", args: "file": "<file>"
14. Search Files: "search_files", args: "directory": "<directory>"
15. Evaluate Code: "evaluate_code", args: "code": "<full_code_string>"
16. Get Improved Code: "improve_code", args: "suggestions": "<list_of_suggestions>", "code": "<full_code_string>"
17. Write Tests: "write_tests", args: "code": "<full_code_string>", "focus": "<list_of_focus_areas>"
18. Execute Python File: "execute_python_file", args: "file": "<file>"
19. Execute Shell Command, non-interactive commands only: "execute_shell", args: "command_line": "<command_line>".
20. Task Complete (Shutdown): "task_complete", args: "reason": "<reason>"
21. Generate Image: "generate_image", args: "prompt": "<prompt>"
22. Do Nothing: "do_nothing", args: ""
RESOURCES:
1. Internet access for searches and information gathering.
2. Long Term memory management.
3. GPT-3.5 powered Agents for delegation of simple tasks.
4. File output.
PERFORMANCE EVALUATION:
1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.
2. Constructively self-criticize your big-picture behavior constantly.
3. Reflect on past decisions and strategies to refine your approach.
4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.
You should only respond in JSON format as described below
RESPONSE FORMAT:
{
"thoughts": {
"text": "thought",
"reasoning": "reasoning",
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
"criticism": "constructive self-criticism",
"speak": "thoughts summary to say to user"
},
"command": {
"name": "command name",
"args": {
"arg name": "value"
}
}
}
Ensure the response can be parsed by Python json.loads

View File

@@ -3,7 +3,6 @@ import random
import commands as cmd
import utils
from memory import get_memory, get_supported_memory_backends
import data
import chat
from colorama import Fore, Style
from spinner import Spinner
@@ -17,6 +16,7 @@ import yaml
import argparse
from logger import logger
import logging
from prompt import get_prompt
cfg = Config()
@@ -171,8 +171,8 @@ def load_variables(config_file="config.yaml"):
with open(config_file, "w") as file:
documents = yaml.dump(config, file)
prompt = data.load_prompt()
prompt_start = """Your decisions must always be made independently without seeking user assistance. Play to your strengths as a LLM and pursue simple strategies with no legal complications."""
prompt = get_prompt()
prompt_start = """Your decisions must always be made independently without seeking user assistance. Play to your strengths as an LLM and pursue simple strategies with no legal complications."""
# Construct full prompt
full_prompt = f"You are {ai_name}, {ai_role}\n{prompt_start}\n\nGOALS:\n\n"

63
scripts/prompt.py Normal file
View File

@@ -0,0 +1,63 @@
from promptgenerator import PromptGenerator
def get_prompt():
"""
This function generates a prompt string that includes various constraints, commands, resources, and performance evaluations.
Returns:
str: The generated prompt string.
"""
# Initialize the PromptGenerator object
prompt_generator = PromptGenerator()
# Add constraints to the PromptGenerator object
prompt_generator.add_constraint("~4000 word limit for short term memory. Your short term memory is short, so immediately save important information to files.")
prompt_generator.add_constraint("If you are unsure how you previously did something or want to recall past events, thinking about similar events will help you remember.")
prompt_generator.add_constraint("No user assistance")
prompt_generator.add_constraint('Exclusively use the commands listed in double quotes e.g. "command name"')
# Define the command list
commands = [
("Google Search", "google", {"input": "<search>"}),
("Browse Website", "browse_website", {"url": "<url>", "question": "<what_you_want_to_find_on_website>"}),
("Start GPT Agent", "start_agent", {"name": "<name>", "task": "<short_task_desc>", "prompt": "<prompt>"}),
("Message GPT Agent", "message_agent", {"key": "<key>", "message": "<message>"}),
("List GPT Agents", "list_agents", {}),
("Delete GPT Agent", "delete_agent", {"key": "<key>"}),
("Write to file", "write_to_file", {"file": "<file>", "text": "<text>"}),
("Read file", "read_file", {"file": "<file>"}),
("Append to file", "append_to_file", {"file": "<file>", "text": "<text>"}),
("Delete file", "delete_file", {"file": "<file>"}),
("Search Files", "search_files", {"directory": "<directory>"}),
("Evaluate Code", "evaluate_code", {"code": "<full_code_string>"}),
("Get Improved Code", "improve_code", {"suggestions": "<list_of_suggestions>", "code": "<full_code_string>"}),
("Write Tests", "write_tests", {"code": "<full_code_string>", "focus": "<list_of_focus_areas>"}),
("Execute Python File", "execute_python_file", {"file": "<file>"}),
("Execute Shell Command, non-interactive commands only", "execute_shell", { "command_line": "<command_line>"}),
("Task Complete (Shutdown)", "task_complete", {"reason": "<reason>"}),
("Generate Image", "generate_image", {"prompt": "<prompt>"}),
("Do Nothing", "do_nothing", {}),
]
# Add commands to the PromptGenerator object
for command_label, command_name, args in commands:
prompt_generator.add_command(command_label, command_name, args)
# Add resources to the PromptGenerator object
prompt_generator.add_resource("Internet access for searches and information gathering.")
prompt_generator.add_resource("Long Term memory management.")
prompt_generator.add_resource("GPT-3.5 powered Agents for delegation of simple tasks.")
prompt_generator.add_resource("File output.")
# Add performance evaluations to the PromptGenerator object
prompt_generator.add_performance_evaluation("Continuously review and analyze your actions to ensure you are performing to the best of your abilities.")
prompt_generator.add_performance_evaluation("Constructively self-criticize your big-picture behavior constantly.")
prompt_generator.add_performance_evaluation("Reflect on past decisions and strategies to refine your approach.")
prompt_generator.add_performance_evaluation("Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.")
# Generate the prompt string
prompt_string = prompt_generator.generate_prompt_string()
return prompt_string

129
scripts/promptgenerator.py Normal file
View File

@@ -0,0 +1,129 @@
import json
class PromptGenerator:
"""
A class for generating custom prompt strings based on constraints, commands, resources, and performance evaluations.
"""
def __init__(self):
"""
Initialize the PromptGenerator object with empty lists of constraints, commands, resources, and performance evaluations.
"""
self.constraints = []
self.commands = []
self.resources = []
self.performance_evaluation = []
self.response_format = {
"thoughts": {
"text": "thought",
"reasoning": "reasoning",
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
"criticism": "constructive self-criticism",
"speak": "thoughts summary to say to user"
},
"command": {
"name": "command name",
"args": {
"arg name": "value"
}
}
}
def add_constraint(self, constraint):
"""
Add a constraint to the constraints list.
Args:
constraint (str): The constraint to be added.
"""
self.constraints.append(constraint)
def add_command(self, command_label, command_name, args=None):
"""
Add a command to the commands list with a label, name, and optional arguments.
Args:
command_label (str): The label of the command.
command_name (str): The name of the command.
args (dict, optional): A dictionary containing argument names and their values. Defaults to None.
"""
if args is None:
args = {}
command_args = {arg_key: arg_value for arg_key,
arg_value in args.items()}
command = {
"label": command_label,
"name": command_name,
"args": command_args,
}
self.commands.append(command)
def _generate_command_string(self, command):
"""
Generate a formatted string representation of a command.
Args:
command (dict): A dictionary containing command information.
Returns:
str: The formatted command string.
"""
args_string = ', '.join(
f'"{key}": "{value}"' for key, value in command['args'].items())
return f'{command["label"]}: "{command["name"]}", args: {args_string}'
def add_resource(self, resource):
"""
Add a resource to the resources list.
Args:
resource (str): The resource to be added.
"""
self.resources.append(resource)
def add_performance_evaluation(self, evaluation):
"""
Add a performance evaluation item to the performance_evaluation list.
Args:
evaluation (str): The evaluation item to be added.
"""
self.performance_evaluation.append(evaluation)
def _generate_numbered_list(self, items, item_type='list'):
"""
Generate a numbered list from given items based on the item_type.
Args:
items (list): A list of items to be numbered.
item_type (str, optional): The type of items in the list. Defaults to 'list'.
Returns:
str: The formatted numbered list.
"""
if item_type == 'command':
return "\n".join(f"{i+1}. {self._generate_command_string(item)}" for i, item in enumerate(items))
else:
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
def generate_prompt_string(self):
"""
Generate a prompt string based on the constraints, commands, resources, and performance evaluations.
Returns:
str: The generated prompt string.
"""
formatted_response_format = json.dumps(self.response_format, indent=4)
prompt_string = (
f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n"
f"Commands:\n{self._generate_numbered_list(self.commands, item_type='command')}\n\n"
f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n"
f"Performance Evaluation:\n{self._generate_numbered_list(self.performance_evaluation)}\n\n"
f"You should only respond in JSON format as described below \nResponse Format: \n{formatted_response_format} \nEnsure the response can be parsed by Python json.loads"
)
return prompt_string

View File

@@ -0,0 +1,101 @@
# Import the required libraries for unit testing
import unittest
import sys
import os
# Add the path to the "scripts" directory to import the PromptGenerator module
sys.path.append(os.path.abspath("../scripts"))
from promptgenerator import PromptGenerator
# Create a test class for the PromptGenerator, subclassed from unittest.TestCase
class promptgenerator_tests(unittest.TestCase):
# Set up the initial state for each test method by creating an instance of PromptGenerator
def setUp(self):
self.generator = PromptGenerator()
# Test whether the add_constraint() method adds a constraint to the generator's constraints list
def test_add_constraint(self):
constraint = "Constraint1"
self.generator.add_constraint(constraint)
self.assertIn(constraint, self.generator.constraints)
# Test whether the add_command() method adds a command to the generator's commands list
def test_add_command(self):
command_label = "Command Label"
command_name = "command_name"
args = {"arg1": "value1", "arg2": "value2"}
self.generator.add_command(command_label, command_name, args)
command = {
"label": command_label,
"name": command_name,
"args": args,
}
self.assertIn(command, self.generator.commands)
# Test whether the add_resource() method adds a resource to the generator's resources list
def test_add_resource(self):
resource = "Resource1"
self.generator.add_resource(resource)
self.assertIn(resource, self.generator.resources)
# Test whether the add_performance_evaluation() method adds an evaluation to the generator's performance_evaluation list
def test_add_performance_evaluation(self):
evaluation = "Evaluation1"
self.generator.add_performance_evaluation(evaluation)
self.assertIn(evaluation, self.generator.performance_evaluation)
# Test whether the generate_prompt_string() method generates a prompt string with all the added constraints, commands, resources and evaluations
def test_generate_prompt_string(self):
constraints = ["Constraint1", "Constraint2"]
commands = [
{
"label": "Command1",
"name": "command_name1",
"args": {"arg1": "value1"},
},
{
"label": "Command2",
"name": "command_name2",
"args": {},
},
]
resources = ["Resource1", "Resource2"]
evaluations = ["Evaluation1", "Evaluation2"]
# Add all the constraints, commands, resources, and evaluations to the generator
for constraint in constraints:
self.generator.add_constraint(constraint)
for command in commands:
self.generator.add_command(
command["label"], command["name"], command["args"])
for resource in resources:
self.generator.add_resource(resource)
for evaluation in evaluations:
self.generator.add_performance_evaluation(evaluation)
# Generate the prompt string and verify its correctness
prompt_string = self.generator.generate_prompt_string()
self.assertIsNotNone(prompt_string)
for constraint in constraints:
self.assertIn(constraint, prompt_string)
for command in commands:
self.assertIn(command["name"], prompt_string)
# Check for each key-value pair in the command args dictionary
for key, value in command["args"].items():
self.assertIn(f'"{key}": "{value}"', prompt_string)
for resource in resources:
self.assertIn(resource, prompt_string)
for evaluation in evaluations:
self.assertIn(evaluation, prompt_string)
self.assertIn("constraints", prompt_string.lower())
self.assertIn("commands", prompt_string.lower())
self.assertIn("resources", prompt_string.lower())
self.assertIn("performance evaluation", prompt_string.lower())
# Run the tests when this script is executed
if __name__ == '__main__':
unittest.main()