mirror of
https://github.com/aljazceru/Auto-GPT.git
synced 2026-02-07 07:14:33 +01:00
Merge pull request #1320 from Tymec/master
Add ability to use local embeddings model
This commit is contained in:
@@ -52,6 +52,8 @@ SMART_TOKEN_LIMIT=8000
|
||||
|
||||
# MEMORY_BACKEND - Memory backend type (Default: local)
|
||||
MEMORY_BACKEND=local
|
||||
# MEMORY_EMBEDDER - Embeddings model to use (Default: ada)
|
||||
MEMORY_EMBEDDER=ada
|
||||
|
||||
### PINECONE
|
||||
# PINECONE_API_KEY - Pinecone API Key (Example: my-pinecone-api-key)
|
||||
|
||||
@@ -85,7 +85,9 @@ class Config(metaclass=Singleton):
|
||||
self.memory_index = os.getenv("MEMORY_INDEX", "auto-gpt")
|
||||
# Note that indexes must be created on db 0 in redis, this is not configurable.
|
||||
|
||||
self.memory_backend = os.getenv("MEMORY_BACKEND", "local")
|
||||
self.memory_backend = os.getenv("MEMORY_BACKEND", 'local')
|
||||
self.memory_embedder = os.getenv("MEMORY_EMBEDDER", 'ada')
|
||||
|
||||
# Initialize the OpenAI API client
|
||||
openai.api_key = self.openai_api_key
|
||||
|
||||
|
||||
@@ -1,24 +1,50 @@
|
||||
"""Base class for memory providers."""
|
||||
import abc
|
||||
|
||||
import openai
|
||||
|
||||
from autogpt.config import AbstractSingleton, Config
|
||||
|
||||
|
||||
# try to import sentence transformers, if it fails, default to ada
|
||||
try:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
except ImportError:
|
||||
SentenceTransformer = None
|
||||
if cfg.memory_embedder == "sbert":
|
||||
print("Error: Sentence Transformers is not installed. Please install sentence_transformers"
|
||||
" to use sBERT as an embedder. Defaulting to Ada.")
|
||||
cfg.memory_embedder = "ada"
|
||||
|
||||
|
||||
cfg = Config()
|
||||
# Dimension of embeddings encoded by embedders
|
||||
EMBED_DIM = {
|
||||
"ada": 1536,
|
||||
"sbert": 768
|
||||
}.get(cfg.memory_embedder, 1536)
|
||||
|
||||
|
||||
def get_ada_embedding(text):
|
||||
def get_embedding(text):
|
||||
text = text.replace("\n", " ")
|
||||
if cfg.use_azure:
|
||||
return openai.Embedding.create(
|
||||
input=[text],
|
||||
engine=cfg.get_azure_deployment_id_for_model("text-embedding-ada-002"),
|
||||
)["data"][0]["embedding"]
|
||||
|
||||
# Use the embedder specified in the config
|
||||
if cfg.memory_embedder == "sbert":
|
||||
# sBERT model
|
||||
embedding = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", device="cpu").encode(text, show_progress_bar=False)
|
||||
else:
|
||||
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")[
|
||||
"data"
|
||||
][0]["embedding"]
|
||||
# Ada model
|
||||
model = "text-embedding-ada-002"
|
||||
engine = None
|
||||
if cfg.use_azure:
|
||||
engine = cfg.get_azure_deployment_id_for_model(model)
|
||||
model = None
|
||||
|
||||
embedding = openai.Embedding.create(
|
||||
input=[text],
|
||||
model=model,
|
||||
engine=engine,
|
||||
)["data"][0]["embedding"]
|
||||
|
||||
return embedding
|
||||
|
||||
|
||||
class MemoryProviderSingleton(AbstractSingleton):
|
||||
|
||||
@@ -5,9 +5,9 @@ from typing import Any, List, Optional, Tuple
|
||||
import numpy as np
|
||||
import orjson
|
||||
|
||||
from autogpt.memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
from autogpt.memory.base import MemoryProviderSingleton, get_embedding, EMBED_DIM
|
||||
|
||||
|
||||
EMBED_DIM = 1536
|
||||
SAVE_OPTIONS = orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_SERIALIZE_DATACLASS
|
||||
|
||||
|
||||
@@ -70,7 +70,7 @@ class LocalCache(MemoryProviderSingleton):
|
||||
return ""
|
||||
self.data.texts.append(text)
|
||||
|
||||
embedding = get_ada_embedding(text)
|
||||
embedding = get_embedding(text)
|
||||
|
||||
vector = np.array(embedding).astype(np.float32)
|
||||
vector = vector[np.newaxis, :]
|
||||
@@ -118,7 +118,7 @@ class LocalCache(MemoryProviderSingleton):
|
||||
|
||||
Returns: List[str]
|
||||
"""
|
||||
embedding = get_ada_embedding(text)
|
||||
embedding = get_embedding(text)
|
||||
|
||||
scores = np.dot(self.data.embeddings, embedding)
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@ import pinecone
|
||||
from colorama import Fore, Style
|
||||
|
||||
from autogpt.logs import logger
|
||||
from autogpt.memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
from autogpt.memory.base import MemoryProviderSingleton, get_embedding, EMBED_DIM
|
||||
|
||||
|
||||
class PineconeMemory(MemoryProviderSingleton):
|
||||
@@ -10,7 +10,6 @@ class PineconeMemory(MemoryProviderSingleton):
|
||||
pinecone_api_key = cfg.pinecone_api_key
|
||||
pinecone_region = cfg.pinecone_region
|
||||
pinecone.init(api_key=pinecone_api_key, environment=pinecone_region)
|
||||
dimension = 1536
|
||||
metric = "cosine"
|
||||
pod_type = "p1"
|
||||
table_name = "auto-gpt"
|
||||
@@ -37,13 +36,11 @@ class PineconeMemory(MemoryProviderSingleton):
|
||||
exit(1)
|
||||
|
||||
if table_name not in pinecone.list_indexes():
|
||||
pinecone.create_index(
|
||||
table_name, dimension=dimension, metric=metric, pod_type=pod_type
|
||||
)
|
||||
pinecone.create_index(table_name, dimension=EMBED_DIM, metric=metric, pod_type=pod_type)
|
||||
self.index = pinecone.Index(table_name)
|
||||
|
||||
def add(self, data):
|
||||
vector = get_ada_embedding(data)
|
||||
vector = get_embedding(data)
|
||||
# no metadata here. We may wish to change that long term.
|
||||
self.index.upsert([(str(self.vec_num), vector, {"raw_text": data})])
|
||||
_text = f"Inserting data into memory at index: {self.vec_num}:\n data: {data}"
|
||||
@@ -63,10 +60,8 @@ class PineconeMemory(MemoryProviderSingleton):
|
||||
:param data: The data to compare to.
|
||||
:param num_relevant: The number of relevant data to return. Defaults to 5
|
||||
"""
|
||||
query_embedding = get_ada_embedding(data)
|
||||
results = self.index.query(
|
||||
query_embedding, top_k=num_relevant, include_metadata=True
|
||||
)
|
||||
query_embedding = get_embedding(data)
|
||||
results = self.index.query(query_embedding, top_k=num_relevant, include_metadata=True)
|
||||
sorted_results = sorted(results.matches, key=lambda x: x.score)
|
||||
return [str(item["metadata"]["raw_text"]) for item in sorted_results]
|
||||
|
||||
|
||||
@@ -9,14 +9,18 @@ from redis.commands.search.indexDefinition import IndexDefinition, IndexType
|
||||
from redis.commands.search.query import Query
|
||||
|
||||
from autogpt.logs import logger
|
||||
from autogpt.memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
from autogpt.memory.base import MemoryProviderSingleton, get_embedding, EMBED_DIM
|
||||
|
||||
SCHEMA = [
|
||||
TextField("data"),
|
||||
VectorField(
|
||||
"embedding",
|
||||
"HNSW",
|
||||
{"TYPE": "FLOAT32", "DIM": 1536, "DISTANCE_METRIC": "COSINE"},
|
||||
{
|
||||
"TYPE": "FLOAT32",
|
||||
"DIM": EMBED_DIM,
|
||||
"DISTANCE_METRIC": "COSINE"
|
||||
}
|
||||
),
|
||||
]
|
||||
|
||||
@@ -34,7 +38,6 @@ class RedisMemory(MemoryProviderSingleton):
|
||||
redis_host = cfg.redis_host
|
||||
redis_port = cfg.redis_port
|
||||
redis_password = cfg.redis_password
|
||||
self.dimension = 1536
|
||||
self.redis = redis.Redis(
|
||||
host=redis_host,
|
||||
port=redis_port,
|
||||
@@ -85,7 +88,7 @@ class RedisMemory(MemoryProviderSingleton):
|
||||
"""
|
||||
if "Command Error:" in data:
|
||||
return ""
|
||||
vector = get_ada_embedding(data)
|
||||
vector = get_embedding(data)
|
||||
vector = np.array(vector).astype(np.float32).tobytes()
|
||||
data_dict = {b"data": data, "embedding": vector}
|
||||
pipe = self.redis.pipeline()
|
||||
@@ -127,7 +130,7 @@ class RedisMemory(MemoryProviderSingleton):
|
||||
|
||||
Returns: A list of the most relevant data.
|
||||
"""
|
||||
query_embedding = get_ada_embedding(data)
|
||||
query_embedding = get_embedding(data)
|
||||
base_query = f"*=>[KNN {num_relevant} @embedding $vector AS vector_score]"
|
||||
query = (
|
||||
Query(base_query)
|
||||
|
||||
@@ -20,6 +20,7 @@ selenium
|
||||
webdriver-manager
|
||||
coverage
|
||||
flake8
|
||||
sentence_transformers
|
||||
numpy
|
||||
pre-commit
|
||||
black
|
||||
|
||||
26
tests/embedder_test.py
Normal file
26
tests/embedder_test.py
Normal file
@@ -0,0 +1,26 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.memory.base import get_embedding
|
||||
|
||||
# Required, because the get_embedding function uses it
|
||||
cfg = Config()
|
||||
|
||||
|
||||
class TestMemoryEmbedder(unittest.TestCase):
|
||||
def test_ada(self):
|
||||
cfg.memory_embedder = "ada"
|
||||
text = "Sample text"
|
||||
result = get_embedding(text)
|
||||
self.assertEqual(len(result), 1536)
|
||||
|
||||
def test_sbert(self):
|
||||
cfg.memory_embedder = "sbert"
|
||||
text = "Sample text"
|
||||
result = get_embedding(text)
|
||||
self.assertEqual(len(result), 768)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Reference in New Issue
Block a user