mirror of
https://github.com/aljazceru/vibeline.git
synced 2026-01-14 12:04:30 +01:00
46 lines
1.4 KiB
Python
Executable File
46 lines
1.4 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import os
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
def read_transcript(transcript_file: Path) -> str:
|
|
"""Read the content of a transcript file."""
|
|
with open(transcript_file, 'r', encoding='utf-8') as f:
|
|
return f.read()
|
|
|
|
def process_transcript(transcript_text: str) -> str:
|
|
"""Process a transcript using LLaMA to generate a summary."""
|
|
# TODO: Implement LLaMA processing
|
|
pass
|
|
|
|
def save_summary(summary: str, output_file: Path) -> None:
|
|
"""Save the summary to a file."""
|
|
with open(output_file, 'w', encoding='utf-8') as f:
|
|
f.write(summary)
|
|
|
|
def main():
|
|
transcript_dir = Path("VoiceMemos/transcripts")
|
|
summary_dir = Path("VoiceMemos/summaries")
|
|
|
|
# Create summaries directory if it doesn't exist
|
|
summary_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
# Process all transcript files
|
|
for transcript_file in transcript_dir.glob("*.txt"):
|
|
print(f"Processing {transcript_file.name}...")
|
|
|
|
# Read transcript
|
|
transcript_text = read_transcript(transcript_file)
|
|
|
|
# Generate summary
|
|
summary = process_transcript(transcript_text)
|
|
|
|
# Save summary
|
|
summary_file = summary_dir / f"{transcript_file.stem}_summary.txt"
|
|
save_summary(summary, summary_file)
|
|
|
|
print(f"Summary saved to {summary_file}")
|
|
|
|
if __name__ == "__main__":
|
|
main() |