Files
vibeline/summarize_transcripts.py

101 lines
3.3 KiB
Python
Executable File

#!/usr/bin/env python3
import os
import sys
from pathlib import Path
import ollama
import time
def read_transcript(transcript_file: Path) -> str:
"""Read the content of a transcript file."""
with open(transcript_file, 'r', encoding='utf-8') as f:
return f.read()
def load_prompt_template(transcript_text: str) -> str:
"""Load the appropriate prompt template based on transcript content."""
prompt_dir = Path("prompts")
# Check if transcript contains app-related content
if "idea" in transcript_text.lower() and "app" in transcript_text.lower():
prompt_file = prompt_dir / "idea_app.md"
else:
prompt_file = prompt_dir / "default.md"
with open(prompt_file, 'r', encoding='utf-8') as f:
return f.read()
def process_transcript(transcript_text: str) -> str:
"""Process a transcript using LLaMA to generate a summary."""
# Load the appropriate prompt template
prompt_template = load_prompt_template(transcript_text)
# Format the prompt with the transcript
prompt = prompt_template.format(transcript=transcript_text)
# Use Ollama to generate the summary
response = ollama.chat(model='llama2', messages=[
{
'role': 'user',
'content': prompt
}
])
# Debug print
print("Response structure:", response)
# Extract the content from the response
return response['message']['content'].strip()
def save_summary(summary: str, output_file: Path) -> None:
"""Save the summary to a file."""
with open(output_file, 'w', encoding='utf-8') as f:
f.write(summary)
def main():
transcript_dir = Path("VoiceMemos/transcripts")
summary_dir = Path("VoiceMemos/summaries")
# Create summaries directory if it doesn't exist
summary_dir.mkdir(parents=True, exist_ok=True)
# Get list of all transcript files
transcript_files = list(transcript_dir.glob("*.txt"))
total_files = len(transcript_files)
print(f"Found {total_files} transcript(s) to process")
# Process all transcript files
for idx, transcript_file in enumerate(transcript_files, 1):
print(f"\nProcessing {transcript_file.name} ({idx}/{total_files})...")
# Skip if summary already exists
summary_file = summary_dir / f"{transcript_file.stem}_summary.txt"
if summary_file.exists():
print(" Summary already exists, skipping...")
continue
try:
# Read transcript
transcript_text = read_transcript(transcript_file)
print(f" Read transcript ({len(transcript_text)} characters)")
# Generate summary
summary = process_transcript(transcript_text)
# Save summary
save_summary(summary, summary_file)
print(f" Summary saved to {summary_file}")
# Add a small delay between files to avoid overloading
if idx < total_files:
time.sleep(1)
except Exception as e:
print(f" Failed to process {transcript_file.name}")
print(f" Error: {str(e)}")
continue
print("\nDone! All transcripts processed.")
if __name__ == "__main__":
main()