Files
turso/core/translate/result_row.rs
2025-08-26 19:56:12 +05:30

339 lines
12 KiB
Rust

use turso_sqlite3_parser::ast::{Expr, Literal, Operator, UnaryOperator};
use crate::{
error::SQLITE_CONSTRAINT,
vdbe::{
builder::ProgramBuilder,
insn::{CmpInsFlags, IdxInsertFlags, InsertFlags, Insn},
BranchOffset,
},
Result,
};
use super::{
emitter::{LimitCtx, Resolver},
expr::translate_expr,
plan::{Distinctness, QueryDestination, SelectPlan},
};
/// Emits the bytecode for:
/// - all result columns
/// - result row (or if a subquery, yields to the parent query)
/// - limit
#[allow(clippy::too_many_arguments)]
pub fn emit_select_result(
program: &mut ProgramBuilder,
resolver: &Resolver,
plan: &SelectPlan,
label_on_limit_reached: Option<BranchOffset>,
offset_jump_to: Option<BranchOffset>,
reg_nonagg_emit_once_flag: Option<usize>,
reg_offset: Option<usize>,
reg_result_cols_start: usize,
limit_ctx: Option<LimitCtx>,
) -> Result<()> {
if let (Some(jump_to), Some(_)) = (offset_jump_to, label_on_limit_reached) {
emit_offset(program, plan, jump_to, reg_offset);
}
let start_reg = reg_result_cols_start;
for (i, rc) in plan.result_columns.iter().enumerate().filter(|(_, rc)| {
// For aggregate queries, we handle columns differently; example: select id, first_name, sum(age) from users limit 1;
// 1. Columns with aggregates (e.g., sum(age)) are computed in each iteration of aggregation
// 2. Non-aggregate columns (e.g., id, first_name) are only computed once in the first iteration
// This filter ensures we only emit expressions for non aggregate columns once,
// preserving previously calculated values while updating aggregate results
// For all other queries where reg_nonagg_emit_once_flag is none we do nothing.
reg_nonagg_emit_once_flag.is_some() && rc.contains_aggregates
|| reg_nonagg_emit_once_flag.is_none()
}) {
let reg = start_reg + i;
translate_expr(
program,
Some(&plan.table_references),
&rc.expr,
reg,
resolver,
)?;
}
// Handle SELECT DISTINCT deduplication
if let Distinctness::Distinct { ctx } = &plan.distinctness {
let distinct_ctx = ctx.as_ref().expect("distinct context must exist");
let num_regs = plan.result_columns.len();
distinct_ctx.emit_deduplication_insns(program, num_regs, start_reg);
}
emit_result_row_and_limit(program, plan, start_reg, limit_ctx, label_on_limit_reached)?;
Ok(())
}
/// Emits the bytecode for:
/// - result row (or if a subquery, yields to the parent query)
/// - limit
pub fn emit_result_row_and_limit(
program: &mut ProgramBuilder,
plan: &SelectPlan,
result_columns_start_reg: usize,
limit_ctx: Option<LimitCtx>,
label_on_limit_reached: Option<BranchOffset>,
) -> Result<()> {
match &plan.query_destination {
QueryDestination::ResultRows => {
program.emit_insn(Insn::ResultRow {
start_reg: result_columns_start_reg,
count: plan.result_columns.len(),
});
}
QueryDestination::EphemeralIndex {
cursor_id: index_cursor_id,
index: dedupe_index,
is_delete,
} => {
if *is_delete {
program.emit_insn(Insn::IdxDelete {
start_reg: result_columns_start_reg,
num_regs: plan.result_columns.len(),
cursor_id: *index_cursor_id,
raise_error_if_no_matching_entry: false,
});
} else {
let record_reg = program.alloc_register();
program.emit_insn(Insn::MakeRecord {
start_reg: result_columns_start_reg,
count: plan.result_columns.len(),
dest_reg: record_reg,
index_name: Some(dedupe_index.name.clone()),
});
program.emit_insn(Insn::IdxInsert {
cursor_id: *index_cursor_id,
record_reg,
unpacked_start: None,
unpacked_count: None,
flags: IdxInsertFlags::new().no_op_duplicate(),
});
}
}
QueryDestination::EphemeralTable {
cursor_id: table_cursor_id,
table,
} => {
let record_reg = program.alloc_register();
if plan.result_columns.len() > 1 {
program.emit_insn(Insn::MakeRecord {
start_reg: result_columns_start_reg,
count: plan.result_columns.len() - 1,
dest_reg: record_reg,
index_name: Some(table.name.clone()),
});
}
program.emit_insn(Insn::Insert {
cursor: *table_cursor_id,
key_reg: result_columns_start_reg + (plan.result_columns.len() - 1), // Rowid reg is the last register
record_reg,
// since we are not doing an Insn::NewRowid or an Insn::NotExists here, we need to seek to ensure the insertion happens in the correct place.
flag: InsertFlags::new().require_seek(),
table_name: table.name.clone(),
});
}
QueryDestination::CoroutineYield { yield_reg, .. } => {
program.emit_insn(Insn::Yield {
yield_reg: *yield_reg,
end_offset: BranchOffset::Offset(0),
});
}
}
if plan.limit.is_some() {
if label_on_limit_reached.is_none() {
// There are cases where LIMIT is ignored, e.g. aggregation without a GROUP BY clause.
// We already early return on LIMIT 0, so we can just return here since the n of rows
// is always 1 here.
return Ok(());
}
let limit_ctx = limit_ctx.expect("limit_ctx must be Some if plan.limit is Some");
program.emit_insn(Insn::DecrJumpZero {
reg: limit_ctx.reg_limit,
target_pc: label_on_limit_reached.unwrap(),
});
}
Ok(())
}
pub fn emit_offset(
program: &mut ProgramBuilder,
plan: &SelectPlan,
jump_to: BranchOffset,
reg_offset: Option<usize>,
) {
let Some(offset_expr) = &plan.offset else {
return;
};
if let Some(val) = try_fold_expr_to_i64(offset_expr) {
if val > 0 {
program.add_comment(program.offset(), "OFFSET const");
program.emit_insn(Insn::IfPos {
reg: reg_offset.expect("reg_offset must be Some"),
target_pc: jump_to,
decrement_by: 1,
});
}
return;
}
let r = reg_offset.expect("reg_offset must be Some");
program.add_comment(program.offset(), "OFFSET expr");
let label_zero = program.allocate_label();
build_limit_offset_expr(program, r, offset_expr);
program.emit_insn(Insn::MustBeInt { reg: r });
program.emit_insn(Insn::IfNeg {
reg: r,
target_pc: label_zero,
});
program.emit_insn(Insn::IsNull {
reg: r,
target_pc: label_zero,
});
program.emit_insn(Insn::IfPos {
reg: r,
target_pc: jump_to,
decrement_by: 1,
});
program.preassign_label_to_next_insn(label_zero);
program.emit_insn(Insn::Integer { value: 0, dest: r });
}
pub fn build_limit_offset_expr(program: &mut ProgramBuilder, r: usize, expr: &Expr) {
match expr {
Expr::Literal(Literal::Numeric(n)) => {
let value = n.parse::<i64>().unwrap_or_else(|_| {
program.emit_insn(Insn::Halt {
err_code: SQLITE_CONSTRAINT,
description: "invalid numeric literal".into(),
});
0
});
program.emit_int(value, r);
}
Expr::Unary(UnaryOperator::Negative, inner) => {
let inner_reg = program.alloc_register();
build_limit_offset_expr(program, inner_reg, inner);
let neg_one_reg = program.alloc_register();
program.emit_int(-1, neg_one_reg);
program.emit_insn(Insn::Multiply {
lhs: inner_reg,
rhs: neg_one_reg,
dest: r,
});
}
Expr::Unary(UnaryOperator::Positive, inner) => {
let inner_reg = program.alloc_register();
build_limit_offset_expr(program, inner_reg, inner);
program.emit_insn(Insn::Copy {
src_reg: inner_reg,
dst_reg: r,
extra_amount: 0,
});
}
Expr::Binary(left, op, right) => {
let left_reg = program.alloc_register();
let right_reg = program.alloc_register();
build_limit_offset_expr(program, left_reg, left);
build_limit_offset_expr(program, right_reg, right);
match op {
Operator::Add => {
program.emit_insn(Insn::Add {
lhs: left_reg,
rhs: right_reg,
dest: r,
});
}
Operator::Subtract => {
program.emit_insn(Insn::Subtract {
lhs: left_reg,
rhs: right_reg,
dest: r,
});
}
Operator::Multiply => {
program.emit_insn(Insn::Multiply {
lhs: left_reg,
rhs: right_reg,
dest: r,
});
}
Operator::Divide => {
let zero_reg = program.alloc_register();
program.emit_int(0, zero_reg);
let ok_pc = program.allocate_label();
program.emit_insn(Insn::Ne {
lhs: right_reg,
rhs: zero_reg,
target_pc: ok_pc,
flags: CmpInsFlags::default().jump_if_null(),
collation: None,
});
program.emit_insn(Insn::Halt {
err_code: SQLITE_CONSTRAINT,
description: "divide by zero".into(),
});
program.resolve_label(ok_pc, program.offset());
program.emit_insn(Insn::Divide {
lhs: left_reg,
rhs: right_reg,
dest: r,
});
}
_ => {
program.emit_insn(Insn::Halt {
err_code: SQLITE_CONSTRAINT,
description: "unsupported operator in offset expr".into(),
});
}
}
}
_ => {
program.emit_insn(Insn::Halt {
err_code: SQLITE_CONSTRAINT,
description: "non-integer expression in offset".into(),
});
}
}
}
pub fn try_fold_expr_to_i64(expr: &Expr) -> Option<i64> {
match expr {
Expr::Literal(Literal::Numeric(n)) => n.parse::<i64>().ok(),
Expr::Unary(UnaryOperator::Negative, inner) => try_fold_expr_to_i64(inner).map(|v| -v),
Expr::Unary(UnaryOperator::Positive, inner) => try_fold_expr_to_i64(inner),
Expr::Binary(left, op, right) => {
let l = try_fold_expr_to_i64(left)?;
let r = try_fold_expr_to_i64(right)?;
match op {
Operator::Add => Some(l.saturating_add(r)),
Operator::Subtract => Some(l.saturating_sub(r)),
Operator::Multiply => Some(l.saturating_mul(r)),
Operator::Divide if r != 0 => Some(l.saturating_div(r)),
_ => None,
}
}
_ => None,
}
}