Files
turso/core/incremental/operator.rs
2025-08-25 17:48:17 +03:00

2136 lines
74 KiB
Rust

#![allow(dead_code)]
// Operator DAG for DBSP-style incremental computation
// Based on Feldera DBSP design but adapted for Turso's architecture
use crate::incremental::expr_compiler::CompiledExpression;
use crate::incremental::hashable_row::HashableRow;
use crate::types::Text;
use crate::{Connection, Database, SymbolTable, Value};
use std::collections::{HashMap, HashSet};
use std::fmt::{self, Debug, Display};
use std::sync::Arc;
use std::sync::Mutex;
use turso_sqlite3_parser::ast::*;
/// Tracks computation counts to verify incremental behavior (for tests now), and in the future
/// should be used to provide statistics.
#[derive(Debug, Default, Clone)]
pub struct ComputationTracker {
pub filter_evaluations: usize,
pub project_operations: usize,
pub join_lookups: usize,
pub aggregation_updates: usize,
pub full_scans: usize,
}
impl ComputationTracker {
pub fn new() -> Self {
Self::default()
}
pub fn record_filter(&mut self) {
self.filter_evaluations += 1;
}
pub fn record_project(&mut self) {
self.project_operations += 1;
}
pub fn record_join_lookup(&mut self) {
self.join_lookups += 1;
}
pub fn record_aggregation(&mut self) {
self.aggregation_updates += 1;
}
pub fn record_full_scan(&mut self) {
self.full_scans += 1;
}
pub fn total_computations(&self) -> usize {
self.filter_evaluations
+ self.project_operations
+ self.join_lookups
+ self.aggregation_updates
}
}
/// A delta represents ordered changes to data
#[derive(Debug, Clone, Default)]
pub struct Delta {
/// Ordered list of changes: (row, weight) where weight is +1 for insert, -1 for delete
/// It is crucial that this is ordered. Imagine the case of an update, which becomes a delete +
/// insert. If this is not ordered, it would be applied in arbitrary order and break the view.
pub changes: Vec<(HashableRow, isize)>,
}
impl Delta {
pub fn new() -> Self {
Self {
changes: Vec::new(),
}
}
pub fn insert(&mut self, row_key: i64, values: Vec<Value>) {
let row = HashableRow::new(row_key, values);
self.changes.push((row, 1));
}
pub fn delete(&mut self, row_key: i64, values: Vec<Value>) {
let row = HashableRow::new(row_key, values);
self.changes.push((row, -1));
}
pub fn is_empty(&self) -> bool {
self.changes.is_empty()
}
pub fn len(&self) -> usize {
self.changes.len()
}
/// Merge another delta into this one
/// This preserves the order of operations - no consolidation is done
/// to maintain the full history of changes
pub fn merge(&mut self, other: &Delta) {
// Simply append all changes from other, preserving order
self.changes.extend(other.changes.iter().cloned());
}
/// Consolidate changes by combining entries with the same HashableRow
pub fn consolidate(&mut self) {
if self.changes.is_empty() {
return;
}
// Use a HashMap to accumulate weights
let mut consolidated: HashMap<HashableRow, isize> = HashMap::new();
for (row, weight) in self.changes.drain(..) {
*consolidated.entry(row).or_insert(0) += weight;
}
// Convert back to vec, filtering out zero weights
self.changes = consolidated
.into_iter()
.filter(|(_, weight)| *weight != 0)
.collect();
}
}
#[cfg(test)]
mod hashable_row_tests {
use super::*;
#[test]
fn test_hashable_row_delta_operations() {
let mut delta = Delta::new();
// Test INSERT
delta.insert(1, vec![Value::Integer(1), Value::Integer(100)]);
assert_eq!(delta.len(), 1);
// Test UPDATE (DELETE + INSERT) - order matters!
delta.delete(1, vec![Value::Integer(1), Value::Integer(100)]);
delta.insert(1, vec![Value::Integer(1), Value::Integer(200)]);
assert_eq!(delta.len(), 3); // Should have 3 operations before consolidation
// Verify order is preserved
let ops: Vec<_> = delta.changes.iter().collect();
assert_eq!(ops[0].1, 1); // First insert
assert_eq!(ops[1].1, -1); // Delete
assert_eq!(ops[2].1, 1); // Second insert
// Test consolidation
delta.consolidate();
// After consolidation, the first insert and delete should cancel out
// leaving only the second insert
assert_eq!(delta.len(), 1);
let final_row = &delta.changes[0];
assert_eq!(final_row.0.rowid, 1);
assert_eq!(
final_row.0.values,
vec![Value::Integer(1), Value::Integer(200)]
);
assert_eq!(final_row.1, 1);
}
#[test]
fn test_duplicate_row_consolidation() {
let mut delta = Delta::new();
// Insert same row twice
delta.insert(2, vec![Value::Integer(2), Value::Integer(300)]);
delta.insert(2, vec![Value::Integer(2), Value::Integer(300)]);
assert_eq!(delta.len(), 2);
delta.consolidate();
assert_eq!(delta.len(), 1);
// Weight should be 2 (sum of both inserts)
let final_row = &delta.changes[0];
assert_eq!(final_row.0.rowid, 2);
assert_eq!(final_row.1, 2);
}
}
/// Represents an operator in the dataflow graph
#[derive(Debug, Clone)]
pub enum QueryOperator {
/// Table scan - source of data
TableScan {
table_name: String,
column_names: Vec<String>,
},
/// Filter rows based on predicate
Filter {
predicate: FilterPredicate,
input: usize, // Index of input operator
},
/// Project columns (select specific columns)
Project {
columns: Vec<ProjectColumn>,
input: usize,
},
/// Join two inputs
Join {
join_type: JoinType,
on_column: String,
left_input: usize,
right_input: usize,
},
/// Aggregate
Aggregate {
group_by: Vec<String>,
aggregates: Vec<AggregateFunction>,
input: usize,
},
}
#[derive(Debug, Clone)]
pub enum FilterPredicate {
/// Column = value
Equals { column: String, value: Value },
/// Column != value
NotEquals { column: String, value: Value },
/// Column > value
GreaterThan { column: String, value: Value },
/// Column >= value
GreaterThanOrEqual { column: String, value: Value },
/// Column < value
LessThan { column: String, value: Value },
/// Column <= value
LessThanOrEqual { column: String, value: Value },
/// Logical AND of two predicates
And(Box<FilterPredicate>, Box<FilterPredicate>),
/// Logical OR of two predicates
Or(Box<FilterPredicate>, Box<FilterPredicate>),
/// No predicate (accept all rows)
None,
}
impl FilterPredicate {
/// Parse a SQL AST expression into a FilterPredicate
/// This centralizes all SQL-to-predicate parsing logic
pub fn from_sql_expr(expr: &turso_parser::ast::Expr) -> crate::Result<Self> {
use turso_parser::ast::*;
let Expr::Binary(lhs, op, rhs) = expr else {
return Err(crate::LimboError::ParseError(
"Unsupported WHERE clause for incremental views: not a binary expression"
.to_string(),
));
};
// Handle AND/OR logical operators
match op {
Operator::And => {
let left = Self::from_sql_expr(lhs)?;
let right = Self::from_sql_expr(rhs)?;
return Ok(FilterPredicate::And(Box::new(left), Box::new(right)));
}
Operator::Or => {
let left = Self::from_sql_expr(lhs)?;
let right = Self::from_sql_expr(rhs)?;
return Ok(FilterPredicate::Or(Box::new(left), Box::new(right)));
}
_ => {}
}
// Handle comparison operators
let Expr::Id(column_name) = &**lhs else {
return Err(crate::LimboError::ParseError(
"Unsupported WHERE clause for incremental views: left-hand-side is not a column reference".to_string(),
));
};
let column = column_name.as_str().to_string();
// Parse the right-hand side value
let value = match &**rhs {
Expr::Literal(Literal::String(s)) => {
// Strip quotes from string literals
let cleaned = s.trim_matches('\'').trim_matches('"');
Value::Text(Text::new(cleaned))
}
Expr::Literal(Literal::Numeric(n)) => {
// Try to parse as integer first, then float
if let Ok(i) = n.parse::<i64>() {
Value::Integer(i)
} else if let Ok(f) = n.parse::<f64>() {
Value::Float(f)
} else {
return Err(crate::LimboError::ParseError(
"Unsupported WHERE clause for incremental views: right-hand-side is not a numeric literal".to_string(),
));
}
}
Expr::Literal(Literal::Null) => Value::Null,
Expr::Literal(Literal::Blob(_)) => {
// Blob comparison not yet supported
return Err(crate::LimboError::ParseError(
"Unsupported WHERE clause for incremental views: comparison with blob literals is not supported".to_string(),
));
}
other => {
// Complex expressions not yet supported
return Err(crate::LimboError::ParseError(
format!("Unsupported WHERE clause for incremental views: comparison with {other:?} is not supported"),
));
}
};
// Create the appropriate predicate based on operator
match op {
Operator::Equals => Ok(FilterPredicate::Equals { column, value }),
Operator::NotEquals => Ok(FilterPredicate::NotEquals { column, value }),
Operator::Greater => Ok(FilterPredicate::GreaterThan { column, value }),
Operator::GreaterEquals => Ok(FilterPredicate::GreaterThanOrEqual { column, value }),
Operator::Less => Ok(FilterPredicate::LessThan { column, value }),
Operator::LessEquals => Ok(FilterPredicate::LessThanOrEqual { column, value }),
other => Err(crate::LimboError::ParseError(
format!("Unsupported WHERE clause for incremental views: comparison operator {other:?} is not supported"),
)),
}
}
/// Parse a WHERE clause from a SELECT statement
pub fn from_select(select: &turso_parser::ast::Select) -> crate::Result<Self> {
use turso_parser::ast::*;
if let OneSelect::Select {
ref where_clause, ..
} = select.body.select
{
if let Some(where_clause) = where_clause {
Self::from_sql_expr(where_clause)
} else {
Ok(FilterPredicate::None)
}
} else {
Err(crate::LimboError::ParseError(
"Unsupported WHERE clause for incremental views: not a single SELECT statement"
.to_string(),
))
}
}
}
#[derive(Debug, Clone)]
pub struct ProjectColumn {
/// The original SQL expression (for debugging/fallback)
pub expr: turso_sqlite3_parser::ast::Expr,
/// Optional alias for the column
pub alias: Option<String>,
/// Compiled expression (handles both trivial columns and complex expressions)
pub compiled: CompiledExpression,
}
#[derive(Debug, Clone)]
pub enum JoinType {
Inner,
Left,
Right,
}
#[derive(Debug, Clone)]
pub enum AggregateFunction {
Count,
Sum(String),
Avg(String),
Min(String),
Max(String),
}
impl Display for AggregateFunction {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
AggregateFunction::Count => write!(f, "COUNT(*)"),
AggregateFunction::Sum(col) => write!(f, "SUM({col})"),
AggregateFunction::Avg(col) => write!(f, "AVG({col})"),
AggregateFunction::Min(col) => write!(f, "MIN({col})"),
AggregateFunction::Max(col) => write!(f, "MAX({col})"),
}
}
}
impl AggregateFunction {
/// Get the default output column name for this aggregate function
#[inline]
pub fn default_output_name(&self) -> String {
self.to_string()
}
/// Create an AggregateFunction from a SQL function and its arguments
/// Returns None if the function is not a supported aggregate
pub fn from_sql_function(
func: &crate::function::Func,
input_column: Option<String>,
) -> Option<Self> {
use crate::function::{AggFunc, Func};
match func {
Func::Agg(agg_func) => {
match agg_func {
AggFunc::Count | AggFunc::Count0 => Some(AggregateFunction::Count),
AggFunc::Sum => input_column.map(AggregateFunction::Sum),
AggFunc::Avg => input_column.map(AggregateFunction::Avg),
AggFunc::Min => input_column.map(AggregateFunction::Min),
AggFunc::Max => input_column.map(AggregateFunction::Max),
_ => None, // Other aggregate functions not yet supported in DBSP
}
}
_ => None, // Not an aggregate function
}
}
}
/// Operator DAG (Directed Acyclic Graph)
/// Base trait for incremental operators
pub trait IncrementalOperator: Debug {
/// Initialize with base data
fn initialize(&mut self, data: Delta);
/// Process a delta (incremental update)
fn process_delta(&mut self, delta: Delta) -> Delta;
/// Get current accumulated state
fn get_current_state(&self) -> Delta;
/// Set computation tracker
fn set_tracker(&mut self, tracker: Arc<Mutex<ComputationTracker>>);
}
/// Filter operator - filters rows based on predicate
#[derive(Debug)]
pub struct FilterOperator {
predicate: FilterPredicate,
current_state: Delta,
column_names: Vec<String>,
tracker: Option<Arc<Mutex<ComputationTracker>>>,
}
impl FilterOperator {
pub fn new(predicate: FilterPredicate, column_names: Vec<String>) -> Self {
Self {
predicate,
current_state: Delta::new(),
column_names,
tracker: None,
}
}
/// Get the predicate for this filter
pub fn predicate(&self) -> &FilterPredicate {
&self.predicate
}
pub fn evaluate_predicate(&self, values: &[Value]) -> bool {
match &self.predicate {
FilterPredicate::None => true,
FilterPredicate::Equals { column, value } => {
if let Some(idx) = self.column_names.iter().position(|c| c == column) {
if let Some(v) = values.get(idx) {
return v == value;
}
}
false
}
FilterPredicate::NotEquals { column, value } => {
if let Some(idx) = self.column_names.iter().position(|c| c == column) {
if let Some(v) = values.get(idx) {
return v != value;
}
}
false
}
FilterPredicate::GreaterThan { column, value } => {
if let Some(idx) = self.column_names.iter().position(|c| c == column) {
if let Some(v) = values.get(idx) {
// Compare based on value types
match (v, value) {
(Value::Integer(a), Value::Integer(b)) => return a > b,
(Value::Float(a), Value::Float(b)) => return a > b,
(Value::Text(a), Value::Text(b)) => return a.as_str() > b.as_str(),
_ => {}
}
}
}
false
}
FilterPredicate::GreaterThanOrEqual { column, value } => {
if let Some(idx) = self.column_names.iter().position(|c| c == column) {
if let Some(v) = values.get(idx) {
match (v, value) {
(Value::Integer(a), Value::Integer(b)) => return a >= b,
(Value::Float(a), Value::Float(b)) => return a >= b,
(Value::Text(a), Value::Text(b)) => return a.as_str() >= b.as_str(),
_ => {}
}
}
}
false
}
FilterPredicate::LessThan { column, value } => {
if let Some(idx) = self.column_names.iter().position(|c| c == column) {
if let Some(v) = values.get(idx) {
match (v, value) {
(Value::Integer(a), Value::Integer(b)) => return a < b,
(Value::Float(a), Value::Float(b)) => return a < b,
(Value::Text(a), Value::Text(b)) => return a.as_str() < b.as_str(),
_ => {}
}
}
}
false
}
FilterPredicate::LessThanOrEqual { column, value } => {
if let Some(idx) = self.column_names.iter().position(|c| c == column) {
if let Some(v) = values.get(idx) {
match (v, value) {
(Value::Integer(a), Value::Integer(b)) => return a <= b,
(Value::Float(a), Value::Float(b)) => return a <= b,
(Value::Text(a), Value::Text(b)) => return a.as_str() <= b.as_str(),
_ => {}
}
}
}
false
}
FilterPredicate::And(left, right) => {
// Temporarily create sub-filters to evaluate
let left_filter = FilterOperator::new((**left).clone(), self.column_names.clone());
let right_filter =
FilterOperator::new((**right).clone(), self.column_names.clone());
left_filter.evaluate_predicate(values) && right_filter.evaluate_predicate(values)
}
FilterPredicate::Or(left, right) => {
let left_filter = FilterOperator::new((**left).clone(), self.column_names.clone());
let right_filter =
FilterOperator::new((**right).clone(), self.column_names.clone());
left_filter.evaluate_predicate(values) || right_filter.evaluate_predicate(values)
}
}
}
}
impl IncrementalOperator for FilterOperator {
fn initialize(&mut self, data: Delta) {
// Process initial data through filter
for (row, weight) in data.changes {
if let Some(tracker) = &self.tracker {
tracker.lock().unwrap().record_filter();
}
if self.evaluate_predicate(&row.values) {
self.current_state.changes.push((row, weight));
}
}
}
fn process_delta(&mut self, delta: Delta) -> Delta {
let mut output_delta = Delta::new();
// Process only the delta, not the entire state
for (row, weight) in delta.changes {
if let Some(tracker) = &self.tracker {
tracker.lock().unwrap().record_filter();
}
if self.evaluate_predicate(&row.values) {
output_delta.changes.push((row.clone(), weight));
// Update our state
self.current_state.changes.push((row, weight));
}
}
output_delta
}
fn get_current_state(&self) -> Delta {
self.current_state.clone()
}
fn set_tracker(&mut self, tracker: Arc<Mutex<ComputationTracker>>) {
self.tracker = Some(tracker);
}
}
/// Project operator - selects/transforms columns
#[derive(Clone)]
pub struct ProjectOperator {
columns: Vec<ProjectColumn>,
input_column_names: Vec<String>,
output_column_names: Vec<String>,
current_state: Delta,
tracker: Option<Arc<Mutex<ComputationTracker>>>,
// Internal in-memory connection for expression evaluation
// Programs are very dependent on having a connection, so give it one.
//
// We could in theory pass the current connection, but there are a host of problems with that.
// For example: during a write transaction, where views are usually updated, we have autocommit
// on. When the program we are executing calls Halt, it will try to commit the current
// transaction, which is absolutely incorrect.
//
// There are other ways to solve this, but a read-only connection to an empty in-memory
// database gives us the closest environment we need to execute expressions.
internal_conn: Arc<Connection>,
}
impl std::fmt::Debug for ProjectOperator {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ProjectOperator")
.field("columns", &self.columns)
.field("input_column_names", &self.input_column_names)
.field("output_column_names", &self.output_column_names)
.field("current_state", &self.current_state)
.field("tracker", &self.tracker)
.finish_non_exhaustive()
}
}
impl ProjectOperator {
/// Create a new ProjectOperator from a SELECT statement, extracting projection columns
pub fn from_select(
select: &turso_sqlite3_parser::ast::Select,
input_column_names: Vec<String>,
schema: &crate::schema::Schema,
) -> crate::Result<Self> {
use turso_sqlite3_parser::ast::*;
// Set up internal connection for expression evaluation
let io = Arc::new(crate::MemoryIO::new());
let db = Database::open_file(
io, ":memory:", false, // no MVCC needed for expression evaluation
false, // no indexes needed
)?;
let internal_conn = db.connect()?;
// Set to read-only mode and disable auto-commit since we're only evaluating expressions
internal_conn.query_only.set(true);
internal_conn.auto_commit.set(false);
let temp_syms = SymbolTable::new();
// Extract columns from SELECT statement
let columns = if let OneSelect::Select(ref select_stmt) = &*select.body.select {
let mut columns = Vec::new();
for result_col in &select_stmt.columns {
match result_col {
ResultColumn::Expr(expr, alias) => {
let alias_str = if let Some(As::As(alias_name)) = alias {
Some(alias_name.as_str().to_string())
} else {
None
};
// Try to compile the expression (handles both columns and complex expressions)
let compiled = CompiledExpression::compile(
expr,
&input_column_names,
schema,
&temp_syms,
internal_conn.clone(),
)?;
columns.push(ProjectColumn {
expr: expr.clone(),
alias: alias_str,
compiled,
});
}
ResultColumn::Star => {
// Select all columns - create trivial column references
for name in &input_column_names {
// Create an Id expression for the column
let expr = Expr::Id(Name::Ident(name.clone()));
let compiled = CompiledExpression::compile(
&expr,
&input_column_names,
schema,
&temp_syms,
internal_conn.clone(),
)?;
columns.push(ProjectColumn {
expr,
alias: None,
compiled,
});
}
}
x => {
return Err(crate::LimboError::ParseError(format!(
"Unsupported {x:?} clause when compiling project operator",
)));
}
}
}
if columns.is_empty() {
return Err(crate::LimboError::ParseError(
"No columns found when compiling project operator".to_string(),
));
}
columns
} else {
return Err(crate::LimboError::ParseError(
"Expression is not a valid SELECT expression".to_string(),
));
};
// Generate output column names based on aliases or expressions
let output_column_names = columns
.iter()
.map(|c| {
c.alias.clone().unwrap_or_else(|| match &c.expr {
Expr::Id(name) => name.as_str().to_string(),
Expr::Qualified(table, column) => {
format!("{}.{}", table.as_str(), column.as_str())
}
Expr::DoublyQualified(db, table, column) => {
format!("{}.{}.{}", db.as_str(), table.as_str(), column.as_str())
}
_ => c.expr.to_string(),
})
})
.collect();
Ok(Self {
columns,
input_column_names,
output_column_names,
current_state: Delta::new(),
tracker: None,
internal_conn,
})
}
/// Get the columns for this projection
pub fn columns(&self) -> &[ProjectColumn] {
&self.columns
}
fn project_values(&self, values: &[Value]) -> Vec<Value> {
let mut output = Vec::new();
for col in &self.columns {
// Use the internal connection's pager for expression evaluation
let internal_pager = self.internal_conn.pager.borrow().clone();
// Execute the compiled expression (handles both columns and complex expressions)
let result = col
.compiled
.execute(values, internal_pager)
.expect("Failed to execute compiled expression for the Project operator");
output.push(result);
}
output
}
fn evaluate_expression(&self, expr: &turso_parser::ast::Expr, values: &[Value]) -> Value {
use turso_parser::ast::*;
match expr {
Expr::Id(name) => {
if let Some(idx) = self
.input_column_names
.iter()
.position(|c| c == name.as_str())
{
if let Some(v) = values.get(idx) {
return v.clone();
}
}
Value::Null
}
Expr::Literal(lit) => {
match lit {
Literal::Numeric(n) => {
if let Ok(i) = n.parse::<i64>() {
Value::Integer(i)
} else if let Ok(f) = n.parse::<f64>() {
Value::Float(f)
} else {
Value::Null
}
}
Literal::String(s) => {
let cleaned = s.trim_matches('\'').trim_matches('"');
Value::Text(Text::new(cleaned))
}
Literal::Null => Value::Null,
Literal::Blob(_)
| Literal::Keyword(_)
| Literal::CurrentDate
| Literal::CurrentTime
| Literal::CurrentTimestamp => Value::Null, // Not supported yet
}
}
Expr::Binary(left, op, right) => {
let left_val = self.evaluate_expression(left, values);
let right_val = self.evaluate_expression(right, values);
match op {
Operator::Add => match (&left_val, &right_val) {
(Value::Integer(a), Value::Integer(b)) => Value::Integer(a + b),
(Value::Float(a), Value::Float(b)) => Value::Float(a + b),
(Value::Integer(a), Value::Float(b)) => Value::Float(*a as f64 + b),
(Value::Float(a), Value::Integer(b)) => Value::Float(a + *b as f64),
_ => Value::Null,
},
Operator::Subtract => match (&left_val, &right_val) {
(Value::Integer(a), Value::Integer(b)) => Value::Integer(a - b),
(Value::Float(a), Value::Float(b)) => Value::Float(a - b),
(Value::Integer(a), Value::Float(b)) => Value::Float(*a as f64 - b),
(Value::Float(a), Value::Integer(b)) => Value::Float(a - *b as f64),
_ => Value::Null,
},
Operator::Multiply => match (&left_val, &right_val) {
(Value::Integer(a), Value::Integer(b)) => Value::Integer(a * b),
(Value::Float(a), Value::Float(b)) => Value::Float(a * b),
(Value::Integer(a), Value::Float(b)) => Value::Float(*a as f64 * b),
(Value::Float(a), Value::Integer(b)) => Value::Float(a * *b as f64),
_ => Value::Null,
},
Operator::Divide => match (&left_val, &right_val) {
(Value::Integer(a), Value::Integer(b)) => {
if *b != 0 {
Value::Integer(a / b)
} else {
Value::Null
}
}
(Value::Float(a), Value::Float(b)) => {
if *b != 0.0 {
Value::Float(a / b)
} else {
Value::Null
}
}
(Value::Integer(a), Value::Float(b)) => {
if *b != 0.0 {
Value::Float(*a as f64 / b)
} else {
Value::Null
}
}
(Value::Float(a), Value::Integer(b)) => {
if *b != 0 {
Value::Float(a / *b as f64)
} else {
Value::Null
}
}
_ => Value::Null,
},
_ => Value::Null, // Other operators not supported yet
}
}
Expr::FunctionCall { name, args, .. } => {
match name.as_str().to_lowercase().as_str() {
"hex" => {
if args.len() == 1 {
let arg_val = self.evaluate_expression(&args[0], values);
match arg_val {
Value::Integer(i) => Value::Text(Text::new(&format!("{i:X}"))),
_ => Value::Null,
}
} else {
Value::Null
}
}
_ => Value::Null, // Other functions not supported yet
}
}
Expr::Parenthesized(inner) => {
assert!(
inner.len() <= 1,
"Parenthesized expressions with multiple elements are not supported"
);
if !inner.is_empty() {
self.evaluate_expression(&inner[0], values)
} else {
Value::Null
}
}
_ => Value::Null, // Other expression types not supported yet
}
}
}
impl IncrementalOperator for ProjectOperator {
fn initialize(&mut self, data: Delta) {
for (row, weight) in &data.changes {
if let Some(tracker) = &self.tracker {
tracker.lock().unwrap().record_project();
}
let projected = self.project_values(&row.values);
let projected_row = HashableRow::new(row.rowid, projected);
self.current_state.changes.push((projected_row, *weight));
}
}
fn process_delta(&mut self, delta: Delta) -> Delta {
let mut output_delta = Delta::new();
for (row, weight) in &delta.changes {
if let Some(tracker) = &self.tracker {
tracker.lock().unwrap().record_project();
}
let projected = self.project_values(&row.values);
let projected_row = HashableRow::new(row.rowid, projected);
output_delta.changes.push((projected_row.clone(), *weight));
self.current_state.changes.push((projected_row, *weight));
}
output_delta
}
fn get_current_state(&self) -> Delta {
self.current_state.clone()
}
fn set_tracker(&mut self, tracker: Arc<Mutex<ComputationTracker>>) {
self.tracker = Some(tracker);
}
}
/// Join operator - performs incremental joins using DBSP formula
/// ∂(A ⋈ B) = A ⋈ ∂B + ∂A ⋈ B + ∂A ⋈ ∂B
#[derive(Debug)]
pub struct JoinOperator {
join_type: JoinType,
pub left_on_column: String,
pub right_on_column: String,
left_column_names: Vec<String>,
right_column_names: Vec<String>,
// Current accumulated state for both sides
left_state: Delta,
right_state: Delta,
// Index for efficient lookups: column_value_as_string -> vec of row_keys
// We use String representation of values since Value doesn't implement Hash
left_index: HashMap<String, Vec<i64>>,
right_index: HashMap<String, Vec<i64>>,
// Result state
current_state: Delta,
tracker: Option<Arc<Mutex<ComputationTracker>>>,
// For generating unique keys for join results
next_result_key: i64,
}
impl JoinOperator {
pub fn new(
join_type: JoinType,
left_on_column: String,
right_on_column: String,
left_column_names: Vec<String>,
right_column_names: Vec<String>,
) -> Self {
Self {
join_type,
left_on_column,
right_on_column,
left_column_names,
right_column_names,
left_state: Delta::new(),
right_state: Delta::new(),
left_index: HashMap::new(),
right_index: HashMap::new(),
current_state: Delta::new(),
tracker: None,
next_result_key: 0,
}
}
pub fn set_tracker(&mut self, tracker: Arc<Mutex<ComputationTracker>>) {
self.tracker = Some(tracker);
}
/// Build index for a side of the join
fn build_index(
state: &Delta,
column_names: &[String],
on_column: &str,
) -> HashMap<String, Vec<i64>> {
let mut index = HashMap::new();
// Find the column index
let col_idx = column_names.iter().position(|c| c == on_column);
if col_idx.is_none() {
return index;
}
let col_idx = col_idx.unwrap();
// Build the index
for (row, weight) in &state.changes {
// Include rows with positive weight in the index
if *weight > 0 {
if let Some(key_value) = row.values.get(col_idx) {
// Convert value to string for indexing
let key_str = format!("{key_value:?}");
index
.entry(key_str)
.or_insert_with(Vec::new)
.push(row.rowid);
}
}
}
index
}
/// Join two deltas
fn join_deltas(&self, left_delta: &Delta, right_delta: &Delta, next_key: &mut i64) -> Delta {
let mut result = Delta::new();
// Find column indices
let left_col_idx = self
.left_column_names
.iter()
.position(|c| c == &self.left_on_column)
.unwrap_or(0);
let right_col_idx = self
.right_column_names
.iter()
.position(|c| c == &self.right_on_column)
.unwrap_or(0);
// For each row in left_delta
for (left_row, left_weight) in &left_delta.changes {
// Process both inserts and deletes
let left_join_value = left_row.values.get(left_col_idx);
if left_join_value.is_none() {
continue;
}
let left_join_value = left_join_value.unwrap();
// Look up matching rows in right_delta
for (right_row, right_weight) in &right_delta.changes {
// Process both inserts and deletes
let right_join_value = right_row.values.get(right_col_idx);
if right_join_value.is_none() {
continue;
}
let right_join_value = right_join_value.unwrap();
// Check if values match
if left_join_value == right_join_value {
// Record the join lookup
if let Some(tracker) = &self.tracker {
tracker.lock().unwrap().record_join_lookup();
}
// Create joined row
let mut joined_values = left_row.values.clone();
joined_values.extend(right_row.values.clone());
// Generate a unique key for the result
let result_key = *next_key;
*next_key += 1;
let joined_row = HashableRow::new(result_key, joined_values);
result
.changes
.push((joined_row, left_weight * right_weight));
}
}
}
result
}
/// Join a delta with the full state using the index
fn join_delta_with_state(
&self,
delta: &Delta,
state: &Delta,
delta_on_left: bool,
next_key: &mut i64,
) -> Delta {
let mut result = Delta::new();
let (delta_col_idx, state_col_names) = if delta_on_left {
(
self.left_column_names
.iter()
.position(|c| c == &self.left_on_column)
.unwrap_or(0),
&self.right_column_names,
)
} else {
(
self.right_column_names
.iter()
.position(|c| c == &self.right_on_column)
.unwrap_or(0),
&self.left_column_names,
)
};
// Use index for efficient lookup
let state_index = Self::build_index(
state,
state_col_names,
if delta_on_left {
&self.right_on_column
} else {
&self.left_on_column
},
);
for (delta_row, delta_weight) in &delta.changes {
// Process both inserts and deletes
let delta_join_value = delta_row.values.get(delta_col_idx);
if delta_join_value.is_none() {
continue;
}
let delta_join_value = delta_join_value.unwrap();
// Use index to find matching rows
let delta_key_str = format!("{delta_join_value:?}");
if let Some(matching_keys) = state_index.get(&delta_key_str) {
for state_key in matching_keys {
// Look up in the state - find the row with this rowid
let state_row_opt = state
.changes
.iter()
.find(|(row, weight)| row.rowid == *state_key && *weight > 0);
if let Some((state_row, state_weight)) = state_row_opt {
// Record the join lookup
if let Some(tracker) = &self.tracker {
tracker.lock().unwrap().record_join_lookup();
}
// Create joined row
let joined_values = if delta_on_left {
let mut v = delta_row.values.clone();
v.extend(state_row.values.clone());
v
} else {
let mut v = state_row.values.clone();
v.extend(delta_row.values.clone());
v
};
let result_key = *next_key;
*next_key += 1;
let joined_row = HashableRow::new(result_key, joined_values);
result
.changes
.push((joined_row, delta_weight * state_weight));
}
}
}
}
result
}
/// Initialize both sides of the join
pub fn initialize_both(&mut self, left_data: Delta, right_data: Delta) {
self.left_state = left_data.clone();
self.right_state = right_data.clone();
// Build indices
self.left_index = Self::build_index(
&self.left_state,
&self.left_column_names,
&self.left_on_column,
);
self.right_index = Self::build_index(
&self.right_state,
&self.right_column_names,
&self.right_on_column,
);
// Perform initial join
let mut next_key = self.next_result_key;
self.current_state = self.join_deltas(&self.left_state, &self.right_state, &mut next_key);
self.next_result_key = next_key;
}
/// Process deltas for both sides using DBSP formula
/// ∂(A ⋈ B) = A ⋈ ∂B + ∂A ⋈ B + ∂A ⋈ ∂B
pub fn process_both_deltas(&mut self, left_delta: Delta, right_delta: Delta) -> Delta {
let mut result = Delta::new();
let mut next_key = self.next_result_key;
// A ⋈ ∂B (existing left with new right)
let a_join_db =
self.join_delta_with_state(&right_delta, &self.left_state, false, &mut next_key);
result.merge(&a_join_db);
// ∂A ⋈ B (new left with existing right)
let da_join_b =
self.join_delta_with_state(&left_delta, &self.right_state, true, &mut next_key);
result.merge(&da_join_b);
// ∂A ⋈ ∂B (new left with new right)
let da_join_db = self.join_deltas(&left_delta, &right_delta, &mut next_key);
result.merge(&da_join_db);
// Update the next key counter
self.next_result_key = next_key;
// Update state
self.left_state.merge(&left_delta);
self.right_state.merge(&right_delta);
self.current_state.merge(&result);
// Rebuild indices if needed
self.left_index = Self::build_index(
&self.left_state,
&self.left_column_names,
&self.left_on_column,
);
self.right_index = Self::build_index(
&self.right_state,
&self.right_column_names,
&self.right_on_column,
);
result
}
pub fn get_current_state(&self) -> &Delta {
&self.current_state
}
/// Process a delta from the left table only
pub fn process_left_delta(&mut self, left_delta: Delta) -> Delta {
let empty_delta = Delta::new();
self.process_both_deltas(left_delta, empty_delta)
}
/// Process a delta from the right table only
pub fn process_right_delta(&mut self, right_delta: Delta) -> Delta {
let empty_delta = Delta::new();
self.process_both_deltas(empty_delta, right_delta)
}
}
/// Aggregate operator - performs incremental aggregation with GROUP BY
/// Maintains running totals/counts that are updated incrementally
#[derive(Debug, Clone)]
pub struct AggregateOperator {
// GROUP BY columns
group_by: Vec<String>,
// Aggregate functions to compute
aggregates: Vec<AggregateFunction>,
// Column names from input
pub input_column_names: Vec<String>,
// Aggregation state: group_key_str -> aggregate values
// For each group, we store the aggregate results
// We use String representation of group keys since Value doesn't implement Hash
group_states: HashMap<String, AggregateState>,
// Map to keep track of actual group key values for output
group_key_values: HashMap<String, Vec<Value>>,
// Current output state as a Delta
current_state: Delta,
tracker: Option<Arc<Mutex<ComputationTracker>>>,
}
/// State for a single group's aggregates
#[derive(Debug, Clone)]
struct AggregateState {
// For COUNT: just the count
count: i64,
// For SUM: column_name -> sum value
sums: HashMap<String, f64>,
// For AVG: column_name -> (sum, count) for computing average
avgs: HashMap<String, (f64, i64)>,
// For MIN: column_name -> min value
mins: HashMap<String, Value>,
// For MAX: column_name -> max value
maxs: HashMap<String, Value>,
}
impl AggregateState {
fn new() -> Self {
Self {
count: 0,
sums: HashMap::new(),
avgs: HashMap::new(),
mins: HashMap::new(),
maxs: HashMap::new(),
}
}
/// Apply a delta to this aggregate state
fn apply_delta(
&mut self,
values: &[Value],
weight: isize,
aggregates: &[AggregateFunction],
column_names: &[String],
) {
// Update COUNT
self.count += weight as i64;
// Update other aggregates
for agg in aggregates {
match agg {
AggregateFunction::Count => {
// Already handled above
}
AggregateFunction::Sum(col_name) => {
if let Some(idx) = column_names.iter().position(|c| c == col_name) {
if let Some(val) = values.get(idx) {
let num_val = match val {
Value::Integer(i) => *i as f64,
Value::Float(f) => *f,
_ => 0.0,
};
*self.sums.entry(col_name.clone()).or_insert(0.0) +=
num_val * weight as f64;
}
}
}
AggregateFunction::Avg(col_name) => {
if let Some(idx) = column_names.iter().position(|c| c == col_name) {
if let Some(val) = values.get(idx) {
let num_val = match val {
Value::Integer(i) => *i as f64,
Value::Float(f) => *f,
_ => 0.0,
};
let (sum, count) =
self.avgs.entry(col_name.clone()).or_insert((0.0, 0));
*sum += num_val * weight as f64;
*count += weight as i64;
}
}
}
AggregateFunction::Min(col_name) => {
// MIN/MAX are more complex for incremental updates
// For now, we'll need to recompute from the full state
// This is a limitation we can improve later
if weight > 0 {
// Only update on insert
if let Some(idx) = column_names.iter().position(|c| c == col_name) {
if let Some(val) = values.get(idx) {
self.mins
.entry(col_name.clone())
.and_modify(|existing| {
if val < existing {
*existing = val.clone();
}
})
.or_insert_with(|| val.clone());
}
}
}
}
AggregateFunction::Max(col_name) => {
if weight > 0 {
// Only update on insert
if let Some(idx) = column_names.iter().position(|c| c == col_name) {
if let Some(val) = values.get(idx) {
self.maxs
.entry(col_name.clone())
.and_modify(|existing| {
if val > existing {
*existing = val.clone();
}
})
.or_insert_with(|| val.clone());
}
}
}
}
}
}
}
/// Convert aggregate state to output values
fn to_values(&self, aggregates: &[AggregateFunction]) -> Vec<Value> {
let mut result = Vec::new();
for agg in aggregates {
match agg {
AggregateFunction::Count => {
result.push(Value::Integer(self.count));
}
AggregateFunction::Sum(col_name) => {
let sum = self.sums.get(col_name).copied().unwrap_or(0.0);
// Return as integer if it's a whole number, otherwise as float
if sum.fract() == 0.0 {
result.push(Value::Integer(sum as i64));
} else {
result.push(Value::Float(sum));
}
}
AggregateFunction::Avg(col_name) => {
if let Some((sum, count)) = self.avgs.get(col_name) {
if *count > 0 {
result.push(Value::Float(sum / *count as f64));
} else {
result.push(Value::Null);
}
} else {
result.push(Value::Null);
}
}
AggregateFunction::Min(col_name) => {
result.push(self.mins.get(col_name).cloned().unwrap_or(Value::Null));
}
AggregateFunction::Max(col_name) => {
result.push(self.maxs.get(col_name).cloned().unwrap_or(Value::Null));
}
}
}
result
}
}
impl AggregateOperator {
pub fn new(
group_by: Vec<String>,
aggregates: Vec<AggregateFunction>,
input_column_names: Vec<String>,
) -> Self {
Self {
group_by,
aggregates,
input_column_names,
group_states: HashMap::new(),
group_key_values: HashMap::new(),
current_state: Delta::new(),
tracker: None,
}
}
pub fn set_tracker(&mut self, tracker: Arc<Mutex<ComputationTracker>>) {
self.tracker = Some(tracker);
}
/// Extract group key values from a row
fn extract_group_key(&self, values: &[Value]) -> Vec<Value> {
let mut key = Vec::new();
for group_col in &self.group_by {
if let Some(idx) = self.input_column_names.iter().position(|c| c == group_col) {
if let Some(val) = values.get(idx) {
key.push(val.clone());
} else {
key.push(Value::Null);
}
} else {
key.push(Value::Null);
}
}
key
}
/// Convert group key to string for indexing (since Value doesn't implement Hash)
fn group_key_to_string(key: &[Value]) -> String {
key.iter()
.map(|v| format!("{v:?}"))
.collect::<Vec<_>>()
.join(",")
}
/// Process a delta and update aggregate state incrementally
pub fn process_delta(&mut self, delta: Delta) -> Delta {
let mut output_delta = Delta::new();
// Track which groups were modified
let mut modified_groups = HashSet::new();
// Process each change in the delta
for (row, weight) in &delta.changes {
if let Some(tracker) = &self.tracker {
tracker.lock().unwrap().record_aggregation();
}
// Extract group key
let group_key = self.extract_group_key(&row.values);
let group_key_str = Self::group_key_to_string(&group_key);
modified_groups.insert(group_key_str.clone());
// Store the actual group key values
self.group_key_values
.insert(group_key_str.clone(), group_key.clone());
// Get or create aggregate state for this group
let state = self
.group_states
.entry(group_key_str.clone())
.or_insert_with(AggregateState::new);
// Apply the delta to the aggregate state
state.apply_delta(
&row.values,
*weight,
&self.aggregates,
&self.input_column_names,
);
}
// Generate output delta for modified groups
for group_key_str in modified_groups {
// Get the actual group key values
let group_key = self
.group_key_values
.get(&group_key_str)
.cloned()
.unwrap_or_default();
if let Some(state) = self.group_states.get(&group_key_str) {
// Build output row: group_by columns + aggregate values
let mut output_values = group_key.clone();
output_values.extend(state.to_values(&self.aggregates));
// Generate a unique key for this group
// We use a hash of the group key to ensure consistency
let result_key = group_key_str
.bytes()
.fold(0i64, |acc, b| acc.wrapping_mul(31).wrapping_add(b as i64));
// Check if group should be removed (count is 0)
if state.count > 0 {
// Add to output delta with positive weight
let output_row = HashableRow::new(result_key, output_values.clone());
output_delta.changes.push((output_row.clone(), 1));
// Update current state
self.current_state.changes.push((output_row, 1));
} else {
// Add to output delta with negative weight (deletion)
let output_row = HashableRow::new(result_key, output_values);
output_delta.changes.push((output_row.clone(), -1));
// Mark for removal in current state
self.current_state.changes.push((output_row, -1));
self.group_states.remove(&group_key_str);
self.group_key_values.remove(&group_key_str);
}
}
}
// Consolidate current state to handle removals
self.current_state.consolidate();
output_delta
}
pub fn get_current_state(&self) -> &Delta {
&self.current_state
}
}
impl IncrementalOperator for AggregateOperator {
fn initialize(&mut self, data: Delta) {
// Process all initial data
self.process_delta(data);
}
fn process_delta(&mut self, delta: Delta) -> Delta {
self.process_delta(delta)
}
fn get_current_state(&self) -> Delta {
self.current_state.clone()
}
fn set_tracker(&mut self, tracker: Arc<Mutex<ComputationTracker>>) {
self.tracker = Some(tracker);
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::types::Text;
use crate::Value;
use std::sync::{Arc, Mutex};
/// Assert that we're doing incremental work, not full recomputation
fn assert_incremental(tracker: &ComputationTracker, expected_ops: usize, data_size: usize) {
assert!(
tracker.total_computations() <= expected_ops,
"Expected <= {} operations for incremental update, got {}",
expected_ops,
tracker.total_computations()
);
assert!(
tracker.total_computations() < data_size,
"Computation count {} suggests full recomputation (data size: {})",
tracker.total_computations(),
data_size
);
assert_eq!(
tracker.full_scans, 0,
"Incremental computation should not perform full scans"
);
}
// Join tests
#[test]
fn test_join_uses_delta_formula() {
let tracker = Arc::new(Mutex::new(ComputationTracker::new()));
// Create join operator
let mut join = JoinOperator::new(
JoinType::Inner,
"user_id".to_string(),
"user_id".to_string(),
vec!["user_id".to_string(), "email".to_string()],
vec![
"login_id".to_string(),
"user_id".to_string(),
"timestamp".to_string(),
],
);
join.set_tracker(tracker.clone());
// Initial data: emails table
let mut emails = Delta::new();
emails.insert(
1,
vec![
Value::Integer(1),
Value::Text(Text::new("alice@example.com")),
],
);
emails.insert(
2,
vec![Value::Integer(2), Value::Text(Text::new("bob@example.com"))],
);
// Initial data: logins table
let mut logins = Delta::new();
logins.insert(
1,
vec![Value::Integer(1), Value::Integer(1), Value::Integer(1000)],
);
logins.insert(
2,
vec![Value::Integer(2), Value::Integer(1), Value::Integer(2000)],
);
// Initialize join
join.initialize_both(emails.clone(), logins.clone());
// Reset tracker for delta processing
tracker.lock().unwrap().join_lookups = 0;
// Add one login for bob (user_id=2)
let mut delta_logins = Delta::new();
delta_logins.insert(
3,
vec![Value::Integer(3), Value::Integer(2), Value::Integer(3000)],
);
// Process delta - should use incremental formula
let empty_delta = Delta::new();
let output = join.process_both_deltas(empty_delta, delta_logins);
// Should have one join result (bob's new login)
assert_eq!(output.len(), 1);
// Verify we used index lookups, not nested loops
// Should have done 1 lookup (finding bob's email for the new login)
let lookups = tracker.lock().unwrap().join_lookups;
assert_eq!(lookups, 1, "Should use index lookup, not scan all emails");
// Verify incremental behavior - we processed only the delta
let t = tracker.lock().unwrap();
assert_incremental(&t, 1, 3); // 1 operation for 3 total rows
}
#[test]
fn test_join_maintains_index() {
// Create join operator
let mut join = JoinOperator::new(
JoinType::Inner,
"id".to_string(),
"ref_id".to_string(),
vec!["id".to_string(), "name".to_string()],
vec!["ref_id".to_string(), "value".to_string()],
);
// Initial data
let mut left = Delta::new();
left.insert(1, vec![Value::Integer(1), Value::Text(Text::new("A"))]);
left.insert(2, vec![Value::Integer(2), Value::Text(Text::new("B"))]);
let mut right = Delta::new();
right.insert(1, vec![Value::Integer(1), Value::Integer(100)]);
// Initialize - should build index
join.initialize_both(left.clone(), right.clone());
// Verify initial join worked
let state = join.get_current_state();
assert_eq!(state.changes.len(), 1); // One match: id=1
// Add new item to left
let mut delta_left = Delta::new();
delta_left.insert(3, vec![Value::Integer(3), Value::Text(Text::new("C"))]);
// Add matching item to right
let mut delta_right = Delta::new();
delta_right.insert(2, vec![Value::Integer(3), Value::Integer(300)]);
// Process deltas
let output = join.process_both_deltas(delta_left, delta_right);
// Should have new join result
assert_eq!(output.len(), 1);
// Verify the join result has the expected values
assert!(!output.changes.is_empty());
let (result, _weight) = &output.changes[0];
assert_eq!(result.values.len(), 4); // id, name, ref_id, value
}
#[test]
fn test_join_formula_correctness() {
// Test the DBSP formula: ∂(A ⋈ B) = A ⋈ ∂B + ∂A ⋈ B + ∂A ⋈ ∂B
let tracker = Arc::new(Mutex::new(ComputationTracker::new()));
let mut join = JoinOperator::new(
JoinType::Inner,
"x".to_string(),
"x".to_string(),
vec!["x".to_string(), "a".to_string()],
vec!["x".to_string(), "b".to_string()],
);
join.set_tracker(tracker.clone());
// Initial state A
let mut a = Delta::new();
a.insert(1, vec![Value::Integer(1), Value::Text(Text::new("a1"))]);
a.insert(2, vec![Value::Integer(2), Value::Text(Text::new("a2"))]);
// Initial state B
let mut b = Delta::new();
b.insert(1, vec![Value::Integer(1), Value::Text(Text::new("b1"))]);
b.insert(2, vec![Value::Integer(2), Value::Text(Text::new("b2"))]);
join.initialize_both(a.clone(), b.clone());
// Reset tracker
tracker.lock().unwrap().join_lookups = 0;
// Delta for A (add x=3)
let mut delta_a = Delta::new();
delta_a.insert(3, vec![Value::Integer(3), Value::Text(Text::new("a3"))]);
// Delta for B (add x=3 and x=1)
let mut delta_b = Delta::new();
delta_b.insert(3, vec![Value::Integer(3), Value::Text(Text::new("b3"))]);
delta_b.insert(4, vec![Value::Integer(1), Value::Text(Text::new("b1_new"))]);
let output = join.process_both_deltas(delta_a, delta_b);
// Expected results:
// A ⋈ ∂B: (1,a1) ⋈ (1,b1_new) = 1 result
// ∂A ⋈ B: (3,a3) ⋈ nothing = 0 results
// ∂A ⋈ ∂B: (3,a3) ⋈ (3,b3) = 1 result
// Total: 2 results
assert_eq!(output.len(), 2);
// Verify we're doing incremental work
let lookups = tracker.lock().unwrap().join_lookups;
assert!(lookups <= 4, "Should use efficient index lookups");
}
// Aggregation tests
#[test]
fn test_count_increments_not_recounts() {
let tracker = Arc::new(Mutex::new(ComputationTracker::new()));
// Create COUNT(*) GROUP BY category
let mut agg = AggregateOperator::new(
vec!["category".to_string()],
vec![AggregateFunction::Count],
vec![
"item_id".to_string(),
"category".to_string(),
"price".to_string(),
],
);
agg.set_tracker(tracker.clone());
// Initial: 100 items in 10 categories (10 items each)
let mut initial = Delta::new();
for i in 0..100 {
let category = format!("cat_{}", i / 10);
initial.insert(
i,
vec![
Value::Integer(i),
Value::Text(Text::new(&category)),
Value::Integer(i * 10),
],
);
}
agg.initialize(initial);
// Reset tracker for delta processing
tracker.lock().unwrap().aggregation_updates = 0;
// Add one item to category 'cat_0'
let mut delta = Delta::new();
delta.insert(
100,
vec![
Value::Integer(100),
Value::Text(Text::new("cat_0")),
Value::Integer(1000),
],
);
let output = agg.process_delta(delta);
// Should only update one group (cat_0), not recount all groups
assert_eq!(tracker.lock().unwrap().aggregation_updates, 1);
// Output should show cat_0 now has count 11
assert_eq!(output.len(), 1);
assert!(!output.changes.is_empty());
let (change_row, _weight) = &output.changes[0];
assert_eq!(change_row.values[0], Value::Text(Text::new("cat_0")));
assert_eq!(change_row.values[1], Value::Integer(11));
// Verify incremental behavior
let t = tracker.lock().unwrap();
assert_incremental(&t, 1, 101);
}
#[test]
fn test_sum_updates_incrementally() {
let tracker = Arc::new(Mutex::new(ComputationTracker::new()));
// Create SUM(amount) GROUP BY product
let mut agg = AggregateOperator::new(
vec!["product".to_string()],
vec![AggregateFunction::Sum("amount".to_string())],
vec![
"sale_id".to_string(),
"product".to_string(),
"amount".to_string(),
],
);
agg.set_tracker(tracker.clone());
// Initial sales
let mut initial = Delta::new();
initial.insert(
1,
vec![
Value::Integer(1),
Value::Text(Text::new("Widget")),
Value::Integer(100),
],
);
initial.insert(
2,
vec![
Value::Integer(2),
Value::Text(Text::new("Gadget")),
Value::Integer(200),
],
);
initial.insert(
3,
vec![
Value::Integer(3),
Value::Text(Text::new("Widget")),
Value::Integer(150),
],
);
agg.initialize(initial);
// Check initial state: Widget=250, Gadget=200
let state = agg.get_current_state();
let widget_sum = state
.changes
.iter()
.find(|(c, _)| c.values[0] == Value::Text(Text::new("Widget")))
.map(|(c, _)| c)
.unwrap();
assert_eq!(widget_sum.values[1], Value::Integer(250));
// Reset tracker
tracker.lock().unwrap().aggregation_updates = 0;
// Add sale of 50 for Widget
let mut delta = Delta::new();
delta.insert(
4,
vec![
Value::Integer(4),
Value::Text(Text::new("Widget")),
Value::Integer(50),
],
);
let output = agg.process_delta(delta);
// Should only update Widget group
assert_eq!(tracker.lock().unwrap().aggregation_updates, 1);
assert_eq!(output.len(), 1);
// Widget should now be 300 (250 + 50)
assert!(!output.changes.is_empty());
let (change, _weight) = &output.changes[0];
assert_eq!(change.values[0], Value::Text(Text::new("Widget")));
assert_eq!(change.values[1], Value::Integer(300));
}
#[test]
fn test_count_and_sum_together() {
// Test the example from DBSP_ROADMAP: COUNT(*) and SUM(amount) GROUP BY user_id
let mut agg = AggregateOperator::new(
vec!["user_id".to_string()],
vec![
AggregateFunction::Count,
AggregateFunction::Sum("amount".to_string()),
],
vec![
"order_id".to_string(),
"user_id".to_string(),
"amount".to_string(),
],
);
// Initial orders
let mut initial = Delta::new();
initial.insert(
1,
vec![Value::Integer(1), Value::Integer(1), Value::Integer(100)],
);
initial.insert(
2,
vec![Value::Integer(2), Value::Integer(1), Value::Integer(200)],
);
initial.insert(
3,
vec![Value::Integer(3), Value::Integer(2), Value::Integer(150)],
);
agg.initialize(initial);
// Check initial state
// User 1: count=2, sum=300
// User 2: count=1, sum=150
let state = agg.get_current_state();
assert_eq!(state.changes.len(), 2);
let user1 = state
.changes
.iter()
.find(|(c, _)| c.values[0] == Value::Integer(1))
.map(|(c, _)| c)
.unwrap();
assert_eq!(user1.values[1], Value::Integer(2)); // count
assert_eq!(user1.values[2], Value::Integer(300)); // sum
let user2 = state
.changes
.iter()
.find(|(c, _)| c.values[0] == Value::Integer(2))
.map(|(c, _)| c)
.unwrap();
assert_eq!(user2.values[1], Value::Integer(1)); // count
assert_eq!(user2.values[2], Value::Integer(150)); // sum
// Add order for user 1
let mut delta = Delta::new();
delta.insert(
4,
vec![Value::Integer(4), Value::Integer(1), Value::Integer(50)],
);
let output = agg.process_delta(delta);
// Should only update user 1
assert_eq!(output.len(), 1);
assert!(!output.changes.is_empty());
let (change, _weight) = &output.changes[0];
assert_eq!(change.values[0], Value::Integer(1)); // user_id
assert_eq!(change.values[1], Value::Integer(3)); // count: 2 + 1
assert_eq!(change.values[2], Value::Integer(350)); // sum: 300 + 50
}
#[test]
fn test_avg_maintains_sum_and_count() {
// Test AVG aggregation
let mut agg = AggregateOperator::new(
vec!["category".to_string()],
vec![AggregateFunction::Avg("value".to_string())],
vec![
"id".to_string(),
"category".to_string(),
"value".to_string(),
],
);
// Initial data
let mut initial = Delta::new();
initial.insert(
1,
vec![
Value::Integer(1),
Value::Text(Text::new("A")),
Value::Integer(10),
],
);
initial.insert(
2,
vec![
Value::Integer(2),
Value::Text(Text::new("A")),
Value::Integer(20),
],
);
initial.insert(
3,
vec![
Value::Integer(3),
Value::Text(Text::new("B")),
Value::Integer(30),
],
);
agg.initialize(initial);
// Check initial averages
// Category A: avg = (10 + 20) / 2 = 15
// Category B: avg = 30 / 1 = 30
let state = agg.get_current_state();
let cat_a = state
.changes
.iter()
.find(|(c, _)| c.values[0] == Value::Text(Text::new("A")))
.map(|(c, _)| c)
.unwrap();
assert_eq!(cat_a.values[1], Value::Float(15.0));
let cat_b = state
.changes
.iter()
.find(|(c, _)| c.values[0] == Value::Text(Text::new("B")))
.map(|(c, _)| c)
.unwrap();
assert_eq!(cat_b.values[1], Value::Float(30.0));
// Add value to category A
let mut delta = Delta::new();
delta.insert(
4,
vec![
Value::Integer(4),
Value::Text(Text::new("A")),
Value::Integer(30),
],
);
let output = agg.process_delta(delta);
// Category A avg should now be (10 + 20 + 30) / 3 = 20
assert!(!output.changes.is_empty());
let (change, _weight) = &output.changes[0];
assert_eq!(change.values[0], Value::Text(Text::new("A")));
assert_eq!(change.values[1], Value::Float(20.0));
}
#[test]
fn test_delete_updates_aggregates() {
// Test that deletes (negative weights) properly update aggregates
let mut agg = AggregateOperator::new(
vec!["category".to_string()],
vec![
AggregateFunction::Count,
AggregateFunction::Sum("value".to_string()),
],
vec![
"id".to_string(),
"category".to_string(),
"value".to_string(),
],
);
// Initial data
let mut initial = Delta::new();
initial.insert(
1,
vec![
Value::Integer(1),
Value::Text(Text::new("A")),
Value::Integer(100),
],
);
initial.insert(
2,
vec![
Value::Integer(2),
Value::Text(Text::new("A")),
Value::Integer(200),
],
);
agg.initialize(initial);
// Check initial state: count=2, sum=300
let state = agg.get_current_state();
assert!(!state.changes.is_empty());
let (row, _weight) = &state.changes[0];
assert_eq!(row.values[1], Value::Integer(2)); // count
assert_eq!(row.values[2], Value::Integer(300)); // sum
// Delete one row
let mut delta = Delta::new();
delta.delete(
1,
vec![
Value::Integer(1),
Value::Text(Text::new("A")),
Value::Integer(100),
],
);
let output = agg.process_delta(delta);
// Should update to count=1, sum=200
assert!(!output.changes.is_empty());
let (change_row, _weight) = &output.changes[0];
assert_eq!(change_row.values[0], Value::Text(Text::new("A")));
assert_eq!(change_row.values[1], Value::Integer(1)); // count: 2 - 1
assert_eq!(change_row.values[2], Value::Integer(200)); // sum: 300 - 100
}
}