Files
turso/simulator/model/interactions.rs

904 lines
28 KiB
Rust

use std::{
fmt::{Debug, Display},
marker::PhantomData,
num::NonZeroUsize,
ops::{Deref, DerefMut, Range},
panic::RefUnwindSafe,
rc::Rc,
sync::Arc,
};
use indexmap::IndexSet;
use itertools::Itertools;
use serde::{Deserialize, Serialize};
use sql_generation::model::table::SimValue;
use turso_core::{Connection, Result, StepResult};
use crate::{
generation::Shadow,
model::{
Query, ResultSet,
metrics::InteractionStats,
property::{Property, PropertyDiscriminants},
},
runner::env::{ShadowTablesMut, SimConnection, SimulationType, SimulatorEnv},
};
#[derive(Debug, Clone)]
pub(crate) struct InteractionPlan {
plan: Vec<Interaction>,
stats: InteractionStats,
// In the future, this should probably be a stack of interactions
// so we can have nested properties
last_interactions: Option<Interactions>,
pub mvcc: bool,
/// Counts [Interactions]. Should not count transactions statements, just so we can generate more meaningful interactions per run
/// This field is only necessary and valid when generating interactions. For static iteration, we do not care about this field
len_properties: usize,
next_interaction_id: NonZeroUsize,
}
impl InteractionPlan {
pub(crate) fn new(mvcc: bool) -> Self {
Self {
plan: Vec::new(),
stats: InteractionStats::default(),
last_interactions: None,
mvcc,
len_properties: 0,
next_interaction_id: NonZeroUsize::new(1).unwrap(),
}
}
/// Count of interactions
#[inline]
pub fn len(&self) -> usize {
self.plan.len()
}
/// Count of properties
#[inline]
pub fn len_properties(&self) -> usize {
self.len_properties
}
pub fn next_property_id(&mut self) -> NonZeroUsize {
let id = self.next_interaction_id;
self.next_interaction_id = self
.next_interaction_id
.checked_add(1)
.expect("Generated too many interactions, that overflowed ID generation");
id
}
pub fn last_interactions(&self) -> Option<&Interactions> {
self.last_interactions.as_ref()
}
pub fn push_interactions(&mut self, interactions: Interactions) {
if !interactions.ignore() {
self.len_properties += 1;
}
self.last_interactions = Some(interactions);
}
pub fn push(&mut self, interaction: Interaction) {
self.plan.push(interaction);
}
/// Finds the range of interactions that are contained between the start and end spans for a given ID.
pub fn find_interactions_range(&self, id: NonZeroUsize) -> Range<usize> {
let interactions = self.interactions_list();
let idx = interactions
.binary_search_by_key(&id, |interaction| interaction.id())
.map_err(|_| format!("Interaction containing id `{id}` should be present"))
.unwrap();
let interaction = &interactions[idx];
let backward = || -> usize {
interactions
.iter()
.enumerate()
.rev()
.skip(interactions.len() - idx)
.find(|(_, interaction)| interaction.id() != id)
.map(|(idx, _)| idx.saturating_add(1))
.unwrap_or(idx)
};
let forward = || -> usize {
interactions
.iter()
.enumerate()
.skip(idx + 1)
.find(|(_, interaction)| interaction.id() != id)
.map(|(idx, _)| idx.saturating_sub(1))
.unwrap_or(idx)
};
let range = if interaction.property_meta.is_some() {
// go backward and find the interaction that is not the same id
let start_idx = backward();
// go forward and find the interaction that is not the same id
let end_idx = forward();
start_idx..end_idx + 1
} else {
idx..idx + 1
};
assert!(!range.is_empty());
range
}
/// Truncates up to a particular interaction
pub fn truncate(&mut self, len: usize) {
self.plan.truncate(len);
}
/// Used to remove a particular [Interactions]
pub fn remove_property(&mut self, id: NonZeroUsize) {
let range = self.find_interactions_range(id);
// Consume the drain iterator just to be sure
for _interaction in self.plan.drain(range) {}
}
pub fn retain_mut<F>(&mut self, f: F)
where
F: FnMut(&mut Interaction) -> bool,
{
self.plan.retain_mut(f);
}
#[inline]
pub fn interactions_list(&self) -> &[Interaction] {
&self.plan
}
pub fn iter_properties(
&self,
) -> IterProperty<
std::iter::Peekable<std::iter::Enumerate<std::slice::Iter<'_, Interaction>>>,
Forward,
> {
IterProperty {
iter: self.interactions_list().iter().enumerate().peekable(),
_direction: PhantomData,
}
}
pub fn rev_iter_properties(
&self,
) -> IterProperty<
std::iter::Peekable<
std::iter::Enumerate<std::iter::Rev<std::slice::Iter<'_, Interaction>>>,
>,
Backward,
> {
IterProperty {
iter: self.interactions_list().iter().rev().enumerate().peekable(),
_direction: PhantomData,
}
}
pub fn stats(&self) -> &InteractionStats {
&self.stats
}
pub fn stats_mut(&mut self) -> &mut InteractionStats {
&mut self.stats
}
pub fn static_iterator(&self) -> impl InteractionPlanIterator {
PlanIterator {
iter: self.interactions_list().to_vec().into_iter(),
}
}
}
pub struct Forward;
pub struct Backward;
pub struct IterProperty<I, Dir> {
iter: I,
_direction: PhantomData<Dir>,
}
impl<'a, I> IterProperty<I, Forward>
where
I: Iterator<Item = (usize, &'a Interaction)> + itertools::PeekingNext + std::fmt::Debug,
{
pub fn next_property(&mut self) -> Option<impl Iterator<Item = (usize, &'a Interaction)>> {
let (idx, interaction) = self.iter.next()?;
let id = interaction.id();
// get interactions with a particular property
let first = std::iter::once((idx, interaction));
let property_interactions = first.chain(
self.iter
.peeking_take_while(move |(_idx, interaction)| interaction.id() == id),
);
Some(property_interactions)
}
}
impl<'a, I> IterProperty<I, Backward>
where
I: Iterator<Item = (usize, &'a Interaction)>
+ DoubleEndedIterator
+ itertools::PeekingNext
+ std::fmt::Debug,
{
pub fn next_property(&mut self) -> Option<impl Iterator<Item = (usize, &'a Interaction)>> {
let (idx, interaction) = self.iter.next()?;
let id = interaction.id();
// get interactions with a particular id
let first = std::iter::once((idx, interaction));
let property_interactions = self
.iter
.peeking_take_while(move |(_idx, interaction)| interaction.id() == id)
.chain(first);
Some(property_interactions.into_iter())
}
}
pub trait InteractionPlanIterator {
fn next(&mut self, env: &mut SimulatorEnv) -> Option<Interaction>;
}
impl<T: InteractionPlanIterator> InteractionPlanIterator for &mut T {
#[inline]
fn next(&mut self, env: &mut SimulatorEnv) -> Option<Interaction> {
T::next(self, env)
}
}
pub struct PlanIterator<I: Iterator<Item = Interaction>> {
iter: I,
}
impl<I> InteractionPlanIterator for PlanIterator<I>
where
I: Iterator<Item = Interaction>,
{
#[inline]
fn next(&mut self, _env: &mut SimulatorEnv) -> Option<Interaction> {
self.iter.next()
}
}
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct InteractionPlanState {
pub interaction_pointer: usize,
}
#[derive(Debug, Default, Clone)]
pub struct ConnectionState {
pub stack: Vec<ResultSet>,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Interactions {
pub connection_index: usize,
pub interactions: InteractionsType,
}
impl Interactions {
pub fn new(connection_index: usize, interactions: InteractionsType) -> Self {
Self {
connection_index,
interactions,
}
}
/// Whether the interaction needs to check the database tables
pub fn check_tables(&self) -> bool {
match &self.interactions {
InteractionsType::Property(property) => property.check_tables(),
InteractionsType::Query(..) | InteractionsType::Fault(..) => false,
}
}
/// Interactions that are not counted/ignored in the InteractionPlan.
/// Used in InteractionPlan to not count certain interactions to its length, as they are just auxiliary. This allows more
/// meaningful interactions to be generation
fn ignore(&self) -> bool {
self.is_transaction()
|| matches!(
self.interactions,
InteractionsType::Property(Property::AllTableHaveExpectedContent { .. })
)
}
}
impl Deref for Interactions {
type Target = InteractionsType;
fn deref(&self) -> &Self::Target {
&self.interactions
}
}
impl DerefMut for Interactions {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.interactions
}
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum InteractionsType {
Property(Property),
Query(Query),
Fault(Fault),
}
impl InteractionsType {
pub fn is_transaction(&self) -> bool {
match self {
InteractionsType::Query(query) => query.is_transaction(),
_ => false,
}
}
}
impl Display for InteractionPlan {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
const PAD: usize = 4;
let mut indentation_level: usize = 0;
let mut iter = self.iter_properties();
while let Some(property) = iter.next_property() {
let mut property = property.peekable();
let mut start = true;
while let Some((_, interaction)) = property.next() {
if let Some(name) = interaction.property_meta.map(|p| p.property.name())
&& start
{
indentation_level = indentation_level.saturating_add(1);
writeln!(f, "-- begin testing '{name}'")?;
start = false;
}
if indentation_level > 0 {
let padding = " ".repeat(indentation_level * PAD);
f.pad(&padding)?;
}
writeln!(f, "{interaction}")?;
if let Some(name) = interaction.property_meta.map(|p| p.property.name())
&& property.peek().is_none()
{
indentation_level = indentation_level.saturating_sub(1);
writeln!(f, "-- end testing '{name}'")?;
}
}
}
Ok(())
}
}
type AssertionFunc =
dyn Fn(&Vec<ResultSet>, &mut SimulatorEnv) -> Result<Result<(), String>> + RefUnwindSafe;
#[derive(Clone)]
pub struct Assertion {
pub func: Rc<AssertionFunc>,
pub name: String, // For display purposes in the plan
pub tables: Vec<String>, // Tables it depends on
}
impl Debug for Assertion {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Assertion")
.field("name", &self.name)
.finish()
}
}
impl Assertion {
pub fn new<F>(name: String, func: F, tables: Vec<String>) -> Self
where
F: Fn(&Vec<ResultSet>, &mut SimulatorEnv) -> Result<Result<(), String>>
+ 'static
+ RefUnwindSafe,
{
Self {
func: Rc::new(func),
name,
tables,
}
}
pub fn dependencies(&self) -> IndexSet<String> {
IndexSet::from_iter(self.tables.clone())
}
pub fn uses(&self) -> Vec<String> {
self.tables.clone()
}
}
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub enum Fault {
Disconnect,
ReopenDatabase,
}
impl Display for Fault {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Fault::Disconnect => write!(f, "DISCONNECT"),
Fault::ReopenDatabase => write!(f, "REOPEN_DATABASE"),
}
}
}
#[derive(Debug, Clone, Copy)]
pub struct PropertyMetadata {
pub property: PropertyDiscriminants,
// If the query is an extension query
pub extension: bool,
}
impl PropertyMetadata {
pub fn new(property: &Property, extension: bool) -> PropertyMetadata {
Self {
property: property.into(),
extension,
}
}
}
#[derive(Debug, Clone, derive_builder::Builder)]
pub struct Interaction {
pub connection_index: usize,
pub interaction: InteractionType,
#[builder(default)]
pub ignore_error: bool,
#[builder(setter(strip_option), default)]
pub property_meta: Option<PropertyMetadata>,
/// 0 id means the ID was not set
id: NonZeroUsize,
}
impl InteractionBuilder {
pub fn from_interaction(interaction: &Interaction) -> Self {
let mut builder = Self::default();
builder
.connection_index(interaction.connection_index)
.id(interaction.id())
.ignore_error(interaction.ignore_error)
.interaction(interaction.interaction.clone());
if let Some(property_meta) = interaction.property_meta {
builder.property_meta(property_meta);
}
builder
}
pub fn with_interaction(interaction: InteractionType) -> Self {
let mut builder = Self::default();
builder.interaction(interaction);
builder
}
/// Checks to see if the property metadata was already set
pub fn has_property_meta(&self) -> bool {
self.property_meta.is_some()
}
}
impl Deref for Interaction {
type Target = InteractionType;
fn deref(&self) -> &Self::Target {
&self.interaction
}
}
impl DerefMut for Interaction {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.interaction
}
}
impl Interaction {
pub fn id(&self) -> NonZeroUsize {
self.id
}
pub fn uses(&self) -> Vec<String> {
match &self.interaction {
InteractionType::Query(query)
| InteractionType::FsyncQuery(query)
| InteractionType::FaultyQuery(query) => query.uses(),
InteractionType::Assertion(assert) | InteractionType::Assumption(assert) => {
assert.uses()
}
_ => vec![],
}
}
}
#[derive(Debug, Clone)]
pub enum InteractionType {
Query(Query),
Assumption(Assertion),
Assertion(Assertion),
Fault(Fault),
/// Will attempt to run any random query. However, when the connection tries to sync it will
/// close all connections and reopen the database and assert that no data was lost
FsyncQuery(Query),
FaultyQuery(Query),
}
// FIXME: add the connection index here later
impl Display for Interaction {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}; -- {}", self.interaction, self.connection_index)
}
}
impl Display for InteractionType {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Query(query) => write!(f, "{query}"),
Self::Assumption(assumption) => write!(f, "-- ASSUME {}", assumption.name),
Self::Assertion(assertion) => {
write!(f, "-- ASSERT {};", assertion.name)
}
Self::Fault(fault) => write!(f, "-- FAULT '{fault}'"),
Self::FsyncQuery(query) => {
writeln!(f, "-- FSYNC QUERY")?;
writeln!(f, "{query};")?;
write!(f, "{query};")
}
Self::FaultyQuery(query) => write!(f, "{query}; -- FAULTY QUERY"),
}
}
}
impl Shadow for InteractionType {
type Result = anyhow::Result<Vec<Vec<SimValue>>>;
fn shadow(&self, env: &mut ShadowTablesMut) -> Self::Result {
match self {
Self::Query(query) => {
if !query.is_transaction() {
env.add_query(query);
}
query.shadow(env)
}
Self::Assumption(_)
| Self::Assertion(_)
| Self::Fault(_)
| Self::FaultyQuery(_)
| Self::FsyncQuery(_) => Ok(vec![]),
}
}
}
impl InteractionType {
pub fn is_ddl(&self) -> bool {
match self {
InteractionType::Query(query)
| InteractionType::FsyncQuery(query)
| InteractionType::FaultyQuery(query) => query.is_ddl(),
_ => false,
}
}
pub(crate) fn execute_query(&self, conn: &mut Arc<Connection>) -> ResultSet {
if let Self::Query(query) = self {
assert!(
!matches!(query, Query::Placeholder),
"simulation cannot have a placeholder Query for execution"
);
let query_str = query.to_string();
let rows = conn.query(&query_str);
if rows.is_err() {
let err = rows.err();
tracing::debug!(
"Error running query '{}': {:?}",
&query_str[0..query_str.len().min(4096)],
err
);
// Do not panic on parse error, because DoubleCreateFailure relies on it
return Err(err.unwrap());
}
let rows = rows?;
assert!(rows.is_some());
let mut rows = rows.unwrap();
let mut out = Vec::new();
while let Ok(row) = rows.step() {
match row {
StepResult::Row => {
let row = rows.row().unwrap();
let mut r = Vec::new();
for v in row.get_values() {
let v = v.into();
r.push(v);
}
out.push(r);
}
StepResult::IO => {
rows.run_once().unwrap();
}
StepResult::Interrupt => {}
StepResult::Done => {
break;
}
StepResult::Busy => {
return Err(turso_core::LimboError::Busy);
}
}
}
Ok(out)
} else {
unreachable!("unexpected: this function should only be called on queries")
}
}
pub(crate) fn execute_assertion(
&self,
stack: &Vec<ResultSet>,
env: &mut SimulatorEnv,
) -> Result<()> {
match self {
Self::Assertion(assertion) => {
let result = assertion.func.as_ref()(stack, env);
match result {
Ok(Ok(())) => Ok(()),
Ok(Err(message)) => Err(turso_core::LimboError::InternalError(format!(
"Assertion '{}' failed: {}",
assertion.name, message
))),
Err(err) => Err(turso_core::LimboError::InternalError(format!(
"Assertion '{}' execution error: {}",
assertion.name, err
))),
}
}
_ => {
unreachable!("unexpected: this function should only be called on assertions")
}
}
}
pub(crate) fn execute_assumption(
&self,
stack: &Vec<ResultSet>,
env: &mut SimulatorEnv,
) -> Result<()> {
match self {
Self::Assumption(assumption) => {
let result = assumption.func.as_ref()(stack, env);
match result {
Ok(Ok(())) => Ok(()),
Ok(Err(message)) => Err(turso_core::LimboError::InternalError(format!(
"Assumption '{}' failed: {}",
assumption.name, message
))),
Err(err) => Err(turso_core::LimboError::InternalError(format!(
"Assumption '{}' execution error: {}",
assumption.name, err
))),
}
}
_ => {
unreachable!("unexpected: this function should only be called on assumptions")
}
}
}
pub(crate) fn execute_fault(&self, env: &mut SimulatorEnv, conn_index: usize) -> Result<()> {
match self {
Self::Fault(fault) => {
match fault {
Fault::Disconnect => {
if env.connections[conn_index].is_connected() {
if env.conn_in_transaction(conn_index) {
env.rollback_conn(conn_index);
}
env.connections[conn_index].disconnect();
} else {
return Err(turso_core::LimboError::InternalError(
"connection already disconnected".into(),
));
}
}
Fault::ReopenDatabase => {
reopen_database(env);
}
}
Ok(())
}
_ => {
unreachable!("unexpected: this function should only be called on faults")
}
}
}
pub(crate) fn execute_fsync_query(
&self,
conn: Arc<Connection>,
env: &mut SimulatorEnv,
) -> ResultSet {
if let Self::FsyncQuery(query) = self {
let query_str = query.to_string();
let rows = conn.query(&query_str);
if rows.is_err() {
let err = rows.err();
tracing::debug!(
"Error running query '{}': {:?}",
&query_str[0..query_str.len().min(4096)],
err
);
return Err(err.unwrap());
}
let mut rows = rows.unwrap().unwrap();
let mut out = Vec::new();
while let Ok(row) = rows.step() {
match row {
StepResult::Row => {
let row = rows.row().unwrap();
let mut r = Vec::new();
for v in row.get_values() {
let v = v.into();
r.push(v);
}
out.push(r);
}
StepResult::IO => {
let syncing = env.io.syncing();
if syncing {
reopen_database(env);
} else {
rows.run_once().unwrap();
}
}
StepResult::Done => {
break;
}
StepResult::Busy => {
return Err(turso_core::LimboError::Busy);
}
StepResult::Interrupt => {}
}
}
Ok(out)
} else {
unreachable!("unexpected: this function should only be called on queries")
}
}
pub(crate) fn execute_faulty_query(
&self,
conn: &Arc<Connection>,
env: &mut SimulatorEnv,
) -> ResultSet {
use rand::Rng;
if let Self::FaultyQuery(query) = self {
let query_str = query.to_string();
let rows = conn.query(&query_str);
if rows.is_err() {
let err = rows.err();
tracing::debug!(
"Error running query '{}': {:?}",
&query_str[0..query_str.len().min(4096)],
err
);
if let Some(turso_core::LimboError::ParseError(e)) = err {
panic!("Unexpected parse error: {e}");
}
return Err(err.unwrap());
}
let mut rows = rows.unwrap().unwrap();
let mut out = Vec::new();
let mut current_prob = 0.05;
let mut incr = 0.001;
loop {
let syncing = env.io.syncing();
let inject_fault = env.rng.random_bool(current_prob);
// TODO: avoid for now injecting faults when syncing
if inject_fault && !syncing {
env.io.inject_fault(true);
}
match rows.step()? {
StepResult::Row => {
let row = rows.row().unwrap();
let mut r = Vec::new();
for v in row.get_values() {
let v = v.into();
r.push(v);
}
out.push(r);
}
StepResult::IO => {
rows.run_once()?;
current_prob += incr;
if current_prob > 1.0 {
current_prob = 1.0;
} else {
incr *= 1.01;
}
}
StepResult::Done => {
break;
}
StepResult::Busy => {
return Err(turso_core::LimboError::Busy);
}
StepResult::Interrupt => {}
}
}
Ok(out)
} else {
unreachable!("unexpected: this function should only be called on queries")
}
}
}
fn reopen_database(env: &mut SimulatorEnv) {
// 1. Close all connections without default checkpoint-on-close behavior
// to expose bugs related to how we handle WAL
let mvcc = env.profile.experimental_mvcc;
let indexes = env.profile.query.gen_opts.indexes;
let num_conns = env.connections.len();
env.connections.clear();
// Clear all open files
// TODO: for correct reporting of faults we should get all the recorded numbers and transfer to the new file
env.io.close_files();
// 2. Re-open database
match env.type_ {
SimulationType::Differential => {
for _ in 0..num_conns {
env.connections.push(SimConnection::SQLiteConnection(
rusqlite::Connection::open(env.get_db_path())
.expect("Failed to open SQLite connection"),
));
}
}
SimulationType::Default | SimulationType::Doublecheck => {
env.db = None;
let db = match turso_core::Database::open_file_with_flags(
env.io.clone(),
env.get_db_path().to_str().expect("path should be 'to_str'"),
turso_core::OpenFlags::default(),
turso_core::DatabaseOpts::new()
.with_mvcc(mvcc)
.with_indexes(indexes)
.with_autovacuum(true),
None,
) {
Ok(db) => db,
Err(e) => {
tracing::error!(
"Failed to open database at {}: {}",
env.get_db_path().display(),
e
);
panic!("Failed to open database: {e}");
}
};
env.db = Some(db);
for _ in 0..num_conns {
env.connections.push(SimConnection::LimboConnection(
env.db.as_ref().expect("db to be Some").connect().unwrap(),
));
}
}
};
}