Files
turso/core/vector/operations/distance_cos.rs
Nikita Sivukhin 7e727d07af fix bugs add tests
2025-10-09 23:23:16 +04:00

173 lines
5.1 KiB
Rust

use crate::{
vector::vector_types::{Vector, VectorSparse, VectorType},
LimboError, Result,
};
pub fn vector_distance_cos(v1: &Vector, v2: &Vector) -> Result<f64> {
if v1.dims != v2.dims {
return Err(LimboError::ConversionError(
"Vectors must have the same dimensions".to_string(),
));
}
if v1.vector_type != v2.vector_type {
return Err(LimboError::ConversionError(
"Vectors must be of the same type".to_string(),
));
}
match v1.vector_type {
VectorType::Float32Dense => Ok(vector_f32_distance_cos(
v1.as_f32_slice(),
v2.as_f32_slice(),
)),
VectorType::Float64Dense => Ok(vector_f64_distance_cos(
v1.as_f64_slice(),
v2.as_f64_slice(),
)),
VectorType::Float32Sparse => Ok(vector_f32_sparse_distance_cos(
v1.as_f32_sparse(),
v2.as_f32_sparse(),
)),
}
}
fn vector_f32_distance_cos(v1: &[f32], v2: &[f32]) -> f64 {
let (mut dot, mut norm1, mut norm2) = (0.0, 0.0, 0.0);
let dims = v1.len();
for i in 0..dims {
let e1 = v1[i];
let e2 = v2[i];
dot += e1 * e2;
norm1 += e1 * e1;
norm2 += e2 * e2;
}
// Check for zero norms to avoid division by zero
if norm1 == 0.0 || norm2 == 0.0 {
return f64::NAN;
}
1.0 - (dot / (norm1 * norm2).sqrt()) as f64
}
fn vector_f64_distance_cos(v1: &[f64], v2: &[f64]) -> f64 {
let (mut dot, mut norm1, mut norm2) = (0.0, 0.0, 0.0);
let dims = v1.len();
for i in 0..dims {
let e1 = v1[i];
let e2 = v2[i];
dot += e1 * e2;
norm1 += e1 * e1;
norm2 += e2 * e2;
}
// Check for zero norms
if norm1 == 0.0 || norm2 == 0.0 {
return f64::NAN;
}
1.0 - (dot / (norm1 * norm2).sqrt())
}
fn vector_f32_sparse_distance_cos(v1: VectorSparse<f32>, v2: VectorSparse<f32>) -> f64 {
let mut v1_pos = 0;
let mut v2_pos = 0;
let (mut dot, mut norm1, mut norm2) = (0.0, 0.0, 0.0);
while v1_pos < v1.idx.len() && v2_pos < v2.idx.len() {
let e1 = v1.values[v1_pos];
let e2 = v2.values[v2_pos];
if v1.idx[v1_pos] == v2.idx[v2_pos] {
dot += e1 * e2;
norm1 += e1 * e1;
norm2 += e2 * e2;
v1_pos += 1;
v2_pos += 1;
} else if v1.idx[v1_pos] < v2.idx[v2_pos] {
norm1 += e1 * e1;
v1_pos += 1;
} else {
norm2 += e2 * e2;
v2_pos += 1;
}
}
while v1_pos < v1.idx.len() {
norm1 += v1.values[v1_pos] * v1.values[v1_pos];
v1_pos += 1;
}
while v2_pos < v2.idx.len() {
norm2 += v2.values[v2_pos] * v2.values[v2_pos];
v2_pos += 1;
}
// Check for zero norms
if norm1 == 0.0f32 || norm2 == 0.0f32 {
return f64::NAN;
}
(1.0f32 - (dot / (norm1 * norm2).sqrt())) as f64
}
#[cfg(test)]
mod tests {
use crate::vector::{
operations::convert::vector_convert, vector_types::tests::ArbitraryVector,
};
use super::*;
use quickcheck_macros::quickcheck;
#[test]
fn test_vector_distance_cos_f32() {
assert!(vector_f32_distance_cos(&[], &[]).is_nan());
assert!(vector_f32_distance_cos(&[1.0, 2.0], &[0.0, 0.0]).is_nan());
assert_eq!(vector_f32_distance_cos(&[1.0, 2.0], &[1.0, 2.0]), 0.0);
assert_eq!(vector_f32_distance_cos(&[1.0, 2.0], &[-1.0, -2.0]), 2.0);
assert_eq!(vector_f32_distance_cos(&[1.0, 2.0], &[-2.0, 1.0]), 1.0);
}
#[test]
fn test_vector_distance_cos_f64() {
assert!(vector_f64_distance_cos(&[], &[]).is_nan());
assert!(vector_f64_distance_cos(&[1.0, 2.0], &[0.0, 0.0]).is_nan());
assert_eq!(vector_f64_distance_cos(&[1.0, 2.0], &[1.0, 2.0]), 0.0);
assert_eq!(vector_f64_distance_cos(&[1.0, 2.0], &[-1.0, -2.0]), 2.0);
assert_eq!(vector_f64_distance_cos(&[1.0, 2.0], &[-2.0, 1.0]), 1.0);
}
#[test]
fn test_vector_distance_cos_f32_sparse() {
assert!(
(vector_f32_sparse_distance_cos(
VectorSparse {
idx: &[0, 1],
values: &[1.0, 2.0]
},
VectorSparse {
idx: &[1, 2],
values: &[1.0, 3.0]
},
) - vector_f32_distance_cos(&[1.0, 2.0, 0.0], &[0.0, 1.0, 3.0]))
.abs()
< 1e-7
);
}
#[quickcheck]
fn prop_vector_distance_cos_dense_vs_sparse(
v1: ArbitraryVector<100>,
v2: ArbitraryVector<100>,
) -> bool {
let v1 = vector_convert(v1.into(), VectorType::Float32Dense).unwrap();
let v2 = vector_convert(v2.into(), VectorType::Float32Dense).unwrap();
let d1 = vector_distance_cos(&v1, &v2).unwrap();
let sparse1 = vector_convert(v1, VectorType::Float32Sparse).unwrap();
let sparse2 = vector_convert(v2, VectorType::Float32Sparse).unwrap();
let d2 = vector_f32_sparse_distance_cos(sparse1.as_f32_sparse(), sparse2.as_f32_sparse());
(d1.is_nan() && d2.is_nan()) || (d1 - d2).abs() < 1e-6
}
}