Files
turso/core/vdbe/mod.rs
Pekka Enberg f57d2b32af core: Clean up B-Tree creation code
Move page allocation to pager so that we don't need to instantiate a
cursor to create a B-Tree.
2025-03-04 18:38:06 +02:00

4929 lines
208 KiB
Rust

//! The virtual database engine (VDBE).
//!
//! The VDBE is a register-based virtual machine that execute bytecode
//! instructions that represent SQL statements. When an application prepares
//! an SQL statement, the statement is compiled into a sequence of bytecode
//! instructions that perform the needed operations, such as reading or
//! writing to a b-tree, sorting, or aggregating data.
//!
//! The instruction set of the VDBE is similar to SQLite's instruction set,
//! but with the exception that bytecodes that perform I/O operations are
//! return execution back to the caller instead of blocking. This is because
//! Limbo is designed for applications that need high concurrency such as
//! serverless runtimes. In addition, asynchronous I/O makes storage
//! disaggregation easier.
//!
//! You can find a full list of SQLite opcodes at:
//!
//! https://www.sqlite.org/opcode.html
pub mod builder;
pub mod explain;
pub mod insn;
pub mod likeop;
pub mod sorter;
use crate::error::{LimboError, SQLITE_CONSTRAINT_PRIMARYKEY};
use crate::ext::ExtValue;
use crate::function::{AggFunc, ExtFunc, FuncCtx, MathFunc, MathFuncArity, ScalarFunc, VectorFunc};
use crate::functions::datetime::{
exec_date, exec_datetime_full, exec_julianday, exec_strftime, exec_time, exec_unixepoch,
};
use crate::functions::printf::exec_printf;
use crate::info;
use crate::pseudo::PseudoCursor;
use crate::result::LimboResult;
use crate::schema::{affinity, Affinity};
use crate::storage::sqlite3_ondisk::DatabaseHeader;
use crate::storage::wal::CheckpointResult;
use crate::storage::{btree::BTreeCursor, pager::Pager};
use crate::translate::plan::{ResultSetColumn, TableReference};
use crate::types::{
AggContext, Cursor, CursorResult, ExternalAggState, OwnedValue, Record, SeekKey, SeekOp,
};
use crate::util::{
cast_real_to_integer, cast_text_to_integer, cast_text_to_numeric, cast_text_to_real,
checked_cast_text_to_numeric, parse_schema_rows, RoundToPrecision,
};
use crate::vdbe::builder::CursorType;
use crate::vdbe::insn::Insn;
use crate::vector::{vector32, vector64, vector_distance_cos, vector_extract};
#[cfg(feature = "json")]
use crate::{
function::JsonFunc, json::get_json, json::is_json_valid, json::json_array,
json::json_array_length, json::json_arrow_extract, json::json_arrow_shift_extract,
json::json_error_position, json::json_extract, json::json_object, json::json_patch,
json::json_quote, json::json_remove, json::json_set, json::json_type,
};
use crate::{resolve_ext_path, Connection, Result, TransactionState, DATABASE_VERSION};
use insn::{
exec_add, exec_and, exec_bit_and, exec_bit_not, exec_bit_or, exec_boolean_not, exec_concat,
exec_divide, exec_multiply, exec_or, exec_remainder, exec_shift_left, exec_shift_right,
exec_subtract, Cookie,
};
use likeop::{construct_like_escape_arg, exec_glob, exec_like_with_escape};
use rand::distributions::{Distribution, Uniform};
use rand::{thread_rng, Rng};
use regex::{Regex, RegexBuilder};
use sorter::Sorter;
use std::borrow::BorrowMut;
use std::cell::{Cell, RefCell};
use std::collections::HashMap;
use std::ffi::c_void;
use std::num::NonZero;
use std::rc::{Rc, Weak};
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
/// Represents a target for a jump instruction.
/// Stores 32-bit ints to keep the enum word-sized.
pub enum BranchOffset {
/// A label is a named location in the program.
/// If there are references to it, it must always be resolved to an Offset
/// via program.resolve_label().
Label(u32),
/// An offset is a direct index into the instruction list.
Offset(InsnReference),
/// A placeholder is a temporary value to satisfy the compiler.
/// It must be set later.
Placeholder,
}
impl BranchOffset {
/// Returns true if the branch offset is a label.
pub fn is_label(&self) -> bool {
matches!(self, BranchOffset::Label(_))
}
/// Returns true if the branch offset is an offset.
pub fn is_offset(&self) -> bool {
matches!(self, BranchOffset::Offset(_))
}
/// Returns the offset value. Panics if the branch offset is a label or placeholder.
pub fn to_offset_int(&self) -> InsnReference {
match self {
BranchOffset::Label(v) => unreachable!("Unresolved label: {}", v),
BranchOffset::Offset(v) => *v,
BranchOffset::Placeholder => unreachable!("Unresolved placeholder"),
}
}
/// Returns the label value. Panics if the branch offset is an offset or placeholder.
pub fn to_label_value(&self) -> u32 {
match self {
BranchOffset::Label(v) => *v,
BranchOffset::Offset(_) => unreachable!("Offset cannot be converted to label value"),
BranchOffset::Placeholder => unreachable!("Unresolved placeholder"),
}
}
/// Returns the branch offset as a signed integer.
/// Used in explain output, where we don't want to panic in case we have an unresolved
/// label or placeholder.
pub fn to_debug_int(&self) -> i32 {
match self {
BranchOffset::Label(v) => *v as i32,
BranchOffset::Offset(v) => *v as i32,
BranchOffset::Placeholder => i32::MAX,
}
}
/// Adds an integer value to the branch offset.
/// Returns a new branch offset.
/// Panics if the branch offset is a label or placeholder.
pub fn add<N: Into<u32>>(self, n: N) -> BranchOffset {
BranchOffset::Offset(self.to_offset_int() + n.into())
}
}
pub type CursorID = usize;
pub type PageIdx = usize;
// Index of insn in list of insns
type InsnReference = u32;
#[derive(Debug)]
pub enum StepResult {
Done,
IO,
Row,
Interrupt,
Busy,
}
/// If there is I/O, the instruction is restarted.
/// Evaluate a Result<CursorResult<T>>, if IO return Ok(StepResult::IO).
macro_rules! return_if_io {
($expr:expr) => {
match $expr? {
CursorResult::Ok(v) => v,
CursorResult::IO => return Ok(StepResult::IO),
}
};
}
struct RegexCache {
like: HashMap<String, Regex>,
glob: HashMap<String, Regex>,
}
impl RegexCache {
fn new() -> Self {
Self {
like: HashMap::new(),
glob: HashMap::new(),
}
}
}
struct Bitfield<const N: usize>([u64; N]);
impl<const N: usize> Bitfield<N> {
fn new() -> Self {
Self([0; N])
}
fn set(&mut self, bit: usize) {
assert!(bit < N * 64, "bit out of bounds");
self.0[bit / 64] |= 1 << (bit % 64);
}
fn unset(&mut self, bit: usize) {
assert!(bit < N * 64, "bit out of bounds");
self.0[bit / 64] &= !(1 << (bit % 64));
}
fn get(&self, bit: usize) -> bool {
assert!(bit < N * 64, "bit out of bounds");
(self.0[bit / 64] & (1 << (bit % 64))) != 0
}
}
pub struct VTabOpaqueCursor(*const c_void);
impl VTabOpaqueCursor {
pub fn new(cursor: *const c_void) -> Result<Self> {
if cursor.is_null() {
return Err(LimboError::InternalError(
"VTabOpaqueCursor: cursor is null".into(),
));
}
Ok(Self(cursor))
}
pub fn as_ptr(&self) -> *const c_void {
self.0
}
}
/// The program state describes the environment in which the program executes.
pub struct ProgramState {
pub pc: InsnReference,
cursors: RefCell<Vec<Option<Cursor>>>,
registers: Vec<OwnedValue>,
pub(crate) result_row: Option<Record>,
last_compare: Option<std::cmp::Ordering>,
deferred_seek: Option<(CursorID, CursorID)>,
ended_coroutine: Bitfield<4>, // flag to indicate that a coroutine has ended (key is the yield register. currently we assume that the yield register is always between 0-255, YOLO)
regex_cache: RegexCache,
interrupted: bool,
parameters: HashMap<NonZero<usize>, OwnedValue>,
}
impl ProgramState {
pub fn new(max_registers: usize, max_cursors: usize) -> Self {
let cursors: RefCell<Vec<Option<Cursor>>> =
RefCell::new((0..max_cursors).map(|_| None).collect());
let registers = vec![OwnedValue::Null; max_registers];
Self {
pc: 0,
cursors,
registers,
result_row: None,
last_compare: None,
deferred_seek: None,
ended_coroutine: Bitfield::new(),
regex_cache: RegexCache::new(),
interrupted: false,
parameters: HashMap::new(),
}
}
pub fn column_count(&self) -> usize {
self.registers.len()
}
pub fn column(&self, i: usize) -> Option<String> {
Some(format!("{:?}", self.registers[i]))
}
pub fn interrupt(&mut self) {
self.interrupted = true;
}
pub fn is_interrupted(&self) -> bool {
self.interrupted
}
pub fn bind_at(&mut self, index: NonZero<usize>, value: OwnedValue) {
self.parameters.insert(index, value);
}
pub fn get_parameter(&self, index: NonZero<usize>) -> Option<&OwnedValue> {
self.parameters.get(&index)
}
pub fn reset(&mut self) {
self.pc = 0;
self.cursors.borrow_mut().iter_mut().for_each(|c| *c = None);
self.registers
.iter_mut()
.for_each(|r| *r = OwnedValue::Null);
self.last_compare = None;
self.deferred_seek = None;
self.ended_coroutine.0 = [0; 4];
self.regex_cache.like.clear();
self.interrupted = false;
self.parameters.clear();
}
pub fn get_cursor<'a>(&'a self, cursor_id: CursorID) -> std::cell::RefMut<'a, Cursor> {
let cursors = self.cursors.borrow_mut();
std::cell::RefMut::map(cursors, |c| {
c.get_mut(cursor_id)
.expect("cursor id out of bounds")
.as_mut()
.expect("cursor not allocated")
})
}
}
macro_rules! must_be_btree_cursor {
($cursor_id:expr, $cursor_ref:expr, $state:expr, $insn_name:expr) => {{
let (_, cursor_type) = $cursor_ref.get($cursor_id).unwrap();
let cursor = match cursor_type {
CursorType::BTreeTable(_) => $state.get_cursor($cursor_id),
CursorType::BTreeIndex(_) => $state.get_cursor($cursor_id),
CursorType::Pseudo(_) => panic!("{} on pseudo cursor", $insn_name),
CursorType::Sorter => panic!("{} on sorter cursor", $insn_name),
CursorType::VirtualTable(_) => panic!("{} on virtual table cursor", $insn_name),
};
cursor
}};
}
#[derive(Debug)]
pub struct Program {
pub max_registers: usize,
pub insns: Vec<Insn>,
pub cursor_ref: Vec<(Option<String>, CursorType)>,
pub database_header: Rc<RefCell<DatabaseHeader>>,
pub comments: Option<HashMap<InsnReference, &'static str>>,
pub parameters: crate::parameters::Parameters,
pub connection: Weak<Connection>,
pub n_change: Cell<i64>,
pub change_cnt_on: bool,
pub result_columns: Vec<ResultSetColumn>,
pub table_references: Vec<TableReference>,
}
impl Program {
pub fn explain(&self) {
println!("addr opcode p1 p2 p3 p4 p5 comment");
println!("---- ----------------- ---- ---- ---- ------------- -- -------");
let mut indent_count: usize = 0;
let indent = " ";
let mut prev_insn: Option<&Insn> = None;
for (addr, insn) in self.insns.iter().enumerate() {
indent_count = get_indent_count(indent_count, insn, prev_insn);
print_insn(
self,
addr as InsnReference,
insn,
indent.repeat(indent_count),
);
prev_insn = Some(insn);
}
}
pub fn step(&self, state: &mut ProgramState, pager: Rc<Pager>) -> Result<StepResult> {
loop {
if state.is_interrupted() {
return Ok(StepResult::Interrupt);
}
let insn = &self.insns[state.pc as usize];
trace_insn(self, state.pc as InsnReference, insn);
match insn {
Insn::Init { target_pc } => {
assert!(target_pc.is_offset());
state.pc = target_pc.to_offset_int();
}
Insn::Add { lhs, rhs, dest } => {
state.registers[*dest] =
exec_add(&state.registers[*lhs], &state.registers[*rhs]);
state.pc += 1;
}
Insn::Subtract { lhs, rhs, dest } => {
state.registers[*dest] =
exec_subtract(&state.registers[*lhs], &state.registers[*rhs]);
state.pc += 1;
}
Insn::Multiply { lhs, rhs, dest } => {
state.registers[*dest] =
exec_multiply(&state.registers[*lhs], &state.registers[*rhs]);
state.pc += 1;
}
Insn::Divide { lhs, rhs, dest } => {
state.registers[*dest] =
exec_divide(&state.registers[*lhs], &state.registers[*rhs]);
state.pc += 1;
}
Insn::Remainder { lhs, rhs, dest } => {
state.registers[*dest] =
exec_remainder(&state.registers[*lhs], &state.registers[*rhs]);
state.pc += 1;
}
Insn::BitAnd { lhs, rhs, dest } => {
state.registers[*dest] =
exec_bit_and(&state.registers[*lhs], &state.registers[*rhs]);
state.pc += 1;
}
Insn::BitOr { lhs, rhs, dest } => {
state.registers[*dest] =
exec_bit_or(&state.registers[*lhs], &state.registers[*rhs]);
state.pc += 1;
}
Insn::BitNot { reg, dest } => {
state.registers[*dest] = exec_bit_not(&state.registers[*reg]);
state.pc += 1;
}
Insn::Checkpoint {
database: _,
checkpoint_mode: _,
dest,
} => {
let result = self.connection.upgrade().unwrap().checkpoint();
match result {
Ok(CheckpointResult {
num_wal_frames: num_wal_pages,
num_checkpointed_frames: num_checkpointed_pages,
}) => {
// https://sqlite.org/pragma.html#pragma_wal_checkpoint
// 1st col: 1 (checkpoint SQLITE_BUSY) or 0 (not busy).
state.registers[*dest] = OwnedValue::Integer(0);
// 2nd col: # modified pages written to wal file
state.registers[*dest + 1] = OwnedValue::Integer(num_wal_pages as i64);
// 3rd col: # pages moved to db after checkpoint
state.registers[*dest + 2] =
OwnedValue::Integer(num_checkpointed_pages as i64);
}
Err(_err) => state.registers[*dest] = OwnedValue::Integer(1),
}
state.pc += 1;
}
Insn::Null { dest, dest_end } => {
if let Some(dest_end) = dest_end {
for i in *dest..=*dest_end {
state.registers[i] = OwnedValue::Null;
}
} else {
state.registers[*dest] = OwnedValue::Null;
}
state.pc += 1;
}
Insn::NullRow { cursor_id } => {
{
let mut cursor =
must_be_btree_cursor!(*cursor_id, self.cursor_ref, state, "NullRow");
let cursor = cursor.as_btree_mut();
cursor.set_null_flag(true);
}
state.pc += 1;
}
Insn::Compare {
start_reg_a,
start_reg_b,
count,
} => {
let start_reg_a = *start_reg_a;
let start_reg_b = *start_reg_b;
let count = *count;
if start_reg_a + count > start_reg_b {
return Err(LimboError::InternalError(
"Compare registers overlap".to_string(),
));
}
let mut cmp = None;
for i in 0..count {
let a = &state.registers[start_reg_a + i];
let b = &state.registers[start_reg_b + i];
cmp = Some(a.cmp(b));
if cmp != Some(std::cmp::Ordering::Equal) {
break;
}
}
state.last_compare = cmp;
state.pc += 1;
}
Insn::Jump {
target_pc_lt,
target_pc_eq,
target_pc_gt,
} => {
assert!(target_pc_lt.is_offset());
assert!(target_pc_eq.is_offset());
assert!(target_pc_gt.is_offset());
let cmp = state.last_compare.take();
if cmp.is_none() {
return Err(LimboError::InternalError(
"Jump without compare".to_string(),
));
}
let target_pc = match cmp.unwrap() {
std::cmp::Ordering::Less => *target_pc_lt,
std::cmp::Ordering::Equal => *target_pc_eq,
std::cmp::Ordering::Greater => *target_pc_gt,
};
state.pc = target_pc.to_offset_int();
}
Insn::Move {
source_reg,
dest_reg,
count,
} => {
let source_reg = *source_reg;
let dest_reg = *dest_reg;
let count = *count;
for i in 0..count {
state.registers[dest_reg + i] = std::mem::replace(
&mut state.registers[source_reg + i],
OwnedValue::Null,
);
}
state.pc += 1;
}
Insn::IfPos {
reg,
target_pc,
decrement_by,
} => {
assert!(target_pc.is_offset());
let reg = *reg;
let target_pc = *target_pc;
match &state.registers[reg] {
OwnedValue::Integer(n) if *n > 0 => {
state.pc = target_pc.to_offset_int();
state.registers[reg] = OwnedValue::Integer(*n - *decrement_by as i64);
}
OwnedValue::Integer(_) => {
state.pc += 1;
}
_ => {
return Err(LimboError::InternalError(
"IfPos: the value in the register is not an integer".into(),
));
}
}
}
Insn::NotNull { reg, target_pc } => {
assert!(target_pc.is_offset());
let reg = *reg;
let target_pc = *target_pc;
match &state.registers[reg] {
OwnedValue::Null => {
state.pc += 1;
}
_ => {
state.pc = target_pc.to_offset_int();
}
}
}
Insn::Eq {
lhs,
rhs,
target_pc,
flags,
} => {
assert!(target_pc.is_offset());
let lhs = *lhs;
let rhs = *rhs;
let target_pc = *target_pc;
let cond = state.registers[lhs] == state.registers[rhs];
let nulleq = flags.has_nulleq();
let jump_if_null = flags.has_jump_if_null();
match (&state.registers[lhs], &state.registers[rhs]) {
(_, OwnedValue::Null) | (OwnedValue::Null, _) => {
if (nulleq && cond) || (!nulleq && jump_if_null) {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
_ => {
if state.registers[lhs] == state.registers[rhs] {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
}
}
Insn::Ne {
lhs,
rhs,
target_pc,
flags,
} => {
assert!(target_pc.is_offset());
let lhs = *lhs;
let rhs = *rhs;
let target_pc = *target_pc;
let cond = state.registers[lhs] != state.registers[rhs];
let nulleq = flags.has_nulleq();
let jump_if_null = flags.has_jump_if_null();
match (&state.registers[lhs], &state.registers[rhs]) {
(_, OwnedValue::Null) | (OwnedValue::Null, _) => {
if (nulleq && cond) || (!nulleq && jump_if_null) {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
_ => {
if state.registers[lhs] != state.registers[rhs] {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
}
}
Insn::Lt {
lhs,
rhs,
target_pc,
flags,
} => {
assert!(target_pc.is_offset());
let lhs = *lhs;
let rhs = *rhs;
let target_pc = *target_pc;
let jump_if_null = flags.has_jump_if_null();
match (&state.registers[lhs], &state.registers[rhs]) {
(_, OwnedValue::Null) | (OwnedValue::Null, _) => {
if jump_if_null {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
_ => {
if state.registers[lhs] < state.registers[rhs] {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
}
}
Insn::Le {
lhs,
rhs,
target_pc,
flags,
} => {
assert!(target_pc.is_offset());
let lhs = *lhs;
let rhs = *rhs;
let target_pc = *target_pc;
let jump_if_null = flags.has_jump_if_null();
match (&state.registers[lhs], &state.registers[rhs]) {
(_, OwnedValue::Null) | (OwnedValue::Null, _) => {
if jump_if_null {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
_ => {
if state.registers[lhs] <= state.registers[rhs] {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
}
}
Insn::Gt {
lhs,
rhs,
target_pc,
flags,
} => {
assert!(target_pc.is_offset());
let lhs = *lhs;
let rhs = *rhs;
let target_pc = *target_pc;
let jump_if_null = flags.has_jump_if_null();
match (&state.registers[lhs], &state.registers[rhs]) {
(_, OwnedValue::Null) | (OwnedValue::Null, _) => {
if jump_if_null {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
_ => {
if state.registers[lhs] > state.registers[rhs] {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
}
}
Insn::Ge {
lhs,
rhs,
target_pc,
flags,
} => {
assert!(target_pc.is_offset());
let lhs = *lhs;
let rhs = *rhs;
let target_pc = *target_pc;
let jump_if_null = flags.has_jump_if_null();
match (&state.registers[lhs], &state.registers[rhs]) {
(_, OwnedValue::Null) | (OwnedValue::Null, _) => {
if jump_if_null {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
_ => {
if state.registers[lhs] >= state.registers[rhs] {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
}
}
Insn::If {
reg,
target_pc,
jump_if_null,
} => {
assert!(target_pc.is_offset());
if exec_if(&state.registers[*reg], *jump_if_null, false) {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
Insn::IfNot {
reg,
target_pc,
jump_if_null,
} => {
assert!(target_pc.is_offset());
if exec_if(&state.registers[*reg], *jump_if_null, true) {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
Insn::OpenReadAsync {
cursor_id,
root_page,
} => {
let (_, cursor_type) = self.cursor_ref.get(*cursor_id).unwrap();
let cursor = BTreeCursor::new(pager.clone(), *root_page);
let mut cursors = state.cursors.borrow_mut();
match cursor_type {
CursorType::BTreeTable(_) => {
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_btree(cursor));
}
CursorType::BTreeIndex(_) => {
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_btree(cursor));
}
CursorType::Pseudo(_) => {
panic!("OpenReadAsync on pseudo cursor");
}
CursorType::Sorter => {
panic!("OpenReadAsync on sorter cursor");
}
CursorType::VirtualTable(_) => {
panic!("OpenReadAsync on virtual table cursor, use Insn::VOpenAsync instead");
}
}
state.pc += 1;
}
Insn::OpenReadAwait => {
state.pc += 1;
}
Insn::VOpenAsync { cursor_id } => {
let (_, cursor_type) = self.cursor_ref.get(*cursor_id).unwrap();
let CursorType::VirtualTable(virtual_table) = cursor_type else {
panic!("VOpenAsync on non-virtual table cursor");
};
let cursor = virtual_table.open()?;
state
.cursors
.borrow_mut()
.insert(*cursor_id, Some(Cursor::Virtual(cursor)));
state.pc += 1;
}
Insn::VCreate {
module_name,
table_name,
args_reg,
} => {
let module_name = state.registers[*module_name].to_string();
let table_name = state.registers[*table_name].to_string();
let args = if let Some(args_reg) = args_reg {
if let OwnedValue::Record(rec) = &state.registers[*args_reg] {
rec.get_values().iter().map(|v| v.to_ffi()).collect()
} else {
return Err(LimboError::InternalError(
"VCreate: args_reg is not a record".to_string(),
));
}
} else {
vec![]
};
let Some(conn) = self.connection.upgrade() else {
return Err(crate::LimboError::ExtensionError(
"Failed to upgrade Connection".to_string(),
));
};
let table = crate::VirtualTable::from_args(
Some(&table_name),
&module_name,
args,
&conn.db.syms.borrow(),
limbo_ext::VTabKind::VirtualTable,
None,
)?;
{
conn.db
.syms
.as_ref()
.borrow_mut()
.vtabs
.insert(table_name, table.clone());
}
state.pc += 1;
}
Insn::VOpenAwait => {
state.pc += 1;
}
Insn::VFilter {
cursor_id,
pc_if_empty,
arg_count,
args_reg,
} => {
let (_, cursor_type) = self.cursor_ref.get(*cursor_id).unwrap();
let CursorType::VirtualTable(virtual_table) = cursor_type else {
panic!("VFilter on non-virtual table cursor");
};
let has_rows = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_virtual_mut();
let mut args = Vec::new();
for i in 0..*arg_count {
args.push(state.registers[args_reg + i].clone());
}
virtual_table.filter(cursor, *arg_count, args)?
};
if !has_rows {
state.pc = pc_if_empty.to_offset_int();
} else {
state.pc += 1;
}
}
Insn::VColumn {
cursor_id,
column,
dest,
} => {
let (_, cursor_type) = self.cursor_ref.get(*cursor_id).unwrap();
let CursorType::VirtualTable(virtual_table) = cursor_type else {
panic!("VColumn on non-virtual table cursor");
};
let value = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_virtual_mut();
virtual_table.column(cursor, *column)?
};
state.registers[*dest] = value;
state.pc += 1;
}
Insn::VUpdate {
cursor_id,
arg_count,
start_reg,
conflict_action,
..
} => {
let (_, cursor_type) = self.cursor_ref.get(*cursor_id).unwrap();
let CursorType::VirtualTable(virtual_table) = cursor_type else {
panic!("VUpdate on non-virtual table cursor");
};
if *arg_count < 2 {
return Err(LimboError::InternalError(
"VUpdate: arg_count must be at least 2 (rowid and insert_rowid)"
.to_string(),
));
}
let mut argv = Vec::with_capacity(*arg_count);
for i in 0..*arg_count {
if let Some(value) = state.registers.get(*start_reg + i) {
argv.push(value.clone());
} else {
return Err(LimboError::InternalError(format!(
"VUpdate: register out of bounds at {}",
*start_reg + i
)));
}
}
let result = virtual_table.update(&argv);
match result {
Ok(Some(new_rowid)) => {
if *conflict_action == 5 {
// ResolveType::Replace
if let Some(conn) = self.connection.upgrade() {
conn.update_last_rowid(new_rowid as u64);
}
}
state.pc += 1;
}
Ok(None) => {
// no-op or successful update without rowid return
state.pc += 1;
}
Err(e) => {
// virtual table update failed
return Err(LimboError::ExtensionError(format!(
"Virtual table update failed: {}",
e
)));
}
}
}
Insn::VNext {
cursor_id,
pc_if_next,
} => {
let (_, cursor_type) = self.cursor_ref.get(*cursor_id).unwrap();
let CursorType::VirtualTable(virtual_table) = cursor_type else {
panic!("VNextAsync on non-virtual table cursor");
};
let has_more = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_virtual_mut();
virtual_table.next(cursor)?
};
if has_more {
state.pc = pc_if_next.to_offset_int();
} else {
state.pc += 1;
}
}
Insn::OpenPseudo {
cursor_id,
content_reg: _,
num_fields: _,
} => {
{
let mut cursors = state.cursors.borrow_mut();
let cursor = PseudoCursor::new();
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_pseudo(cursor));
}
state.pc += 1;
}
Insn::RewindAsync { cursor_id } => {
{
let mut cursor = must_be_btree_cursor!(
*cursor_id,
self.cursor_ref,
state,
"RewindAsync"
);
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.rewind());
}
state.pc += 1;
}
Insn::LastAsync { cursor_id } => {
{
let mut cursor =
must_be_btree_cursor!(*cursor_id, self.cursor_ref, state, "LastAsync");
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.last());
}
state.pc += 1;
}
Insn::LastAwait {
cursor_id,
pc_if_empty,
} => {
assert!(pc_if_empty.is_offset());
let is_empty = {
let mut cursor =
must_be_btree_cursor!(*cursor_id, self.cursor_ref, state, "LastAwait");
let cursor = cursor.as_btree_mut();
cursor.wait_for_completion()?;
cursor.is_empty()
};
if is_empty {
state.pc = pc_if_empty.to_offset_int();
} else {
state.pc += 1;
}
}
Insn::RewindAwait {
cursor_id,
pc_if_empty,
} => {
assert!(pc_if_empty.is_offset());
let is_empty = {
let mut cursor = must_be_btree_cursor!(
*cursor_id,
self.cursor_ref,
state,
"RewindAwait"
);
let cursor = cursor.as_btree_mut();
cursor.wait_for_completion()?;
cursor.is_empty()
};
if is_empty {
state.pc = pc_if_empty.to_offset_int();
} else {
state.pc += 1;
}
}
Insn::Column {
cursor_id,
column,
dest,
} => {
if let Some((index_cursor_id, table_cursor_id)) = state.deferred_seek.take() {
let deferred_seek = {
let rowid = {
let mut index_cursor = state.get_cursor(index_cursor_id);
let index_cursor = index_cursor.as_btree_mut();
let rowid = index_cursor.rowid()?;
rowid
};
let mut table_cursor = state.get_cursor(table_cursor_id);
let table_cursor = table_cursor.as_btree_mut();
match table_cursor
.seek(SeekKey::TableRowId(rowid.unwrap()), SeekOp::EQ)?
{
CursorResult::Ok(_) => None,
CursorResult::IO => Some((index_cursor_id, table_cursor_id)),
}
};
if let Some(deferred_seek) = deferred_seek {
state.deferred_seek = Some(deferred_seek);
return Ok(StepResult::IO);
}
}
let (_, cursor_type) = self.cursor_ref.get(*cursor_id).unwrap();
match cursor_type {
CursorType::BTreeTable(_) | CursorType::BTreeIndex(_) => {
let value = {
let mut cursor = must_be_btree_cursor!(
*cursor_id,
self.cursor_ref,
state,
"Column"
);
let cursor = cursor.as_btree_mut();
let record = cursor.record();
if let Some(record) = record.as_ref() {
if cursor.get_null_flag() {
OwnedValue::Null
} else {
record.get_value(*column).clone()
}
} else {
OwnedValue::Null
}
};
state.registers[*dest] = value;
}
CursorType::Sorter => {
let record = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_sorter_mut();
cursor.record().map(|r| r.clone())
};
if let Some(record) = record {
state.registers[*dest] = record.get_value(*column).clone();
} else {
state.registers[*dest] = OwnedValue::Null;
}
}
CursorType::Pseudo(_) => {
let value = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_pseudo_mut();
if let Some(record) = cursor.record() {
record.get_value(*column).clone()
} else {
OwnedValue::Null
}
};
state.registers[*dest] = value;
}
CursorType::VirtualTable(_) => {
panic!(
"Insn::Column on virtual table cursor, use Insn::VColumn instead"
);
}
}
state.pc += 1;
}
Insn::MakeRecord {
start_reg,
count,
dest_reg,
} => {
let record = make_owned_record(&state.registers, start_reg, count);
state.registers[*dest_reg] = OwnedValue::Record(record);
state.pc += 1;
}
Insn::ResultRow { start_reg, count } => {
let record = make_owned_record(&state.registers, start_reg, count);
state.result_row = Some(record);
state.pc += 1;
return Ok(StepResult::Row);
}
Insn::NextAsync { cursor_id } => {
{
let mut cursor =
must_be_btree_cursor!(*cursor_id, self.cursor_ref, state, "NextAsync");
let cursor = cursor.as_btree_mut();
cursor.set_null_flag(false);
return_if_io!(cursor.next());
}
state.pc += 1;
}
Insn::PrevAsync { cursor_id } => {
{
let mut cursor =
must_be_btree_cursor!(*cursor_id, self.cursor_ref, state, "PrevAsync");
let cursor = cursor.as_btree_mut();
cursor.set_null_flag(false);
return_if_io!(cursor.prev());
}
state.pc += 1;
}
Insn::PrevAwait {
cursor_id,
pc_if_next,
} => {
assert!(pc_if_next.is_offset());
let is_empty = {
let mut cursor =
must_be_btree_cursor!(*cursor_id, self.cursor_ref, state, "PrevAwait");
let cursor = cursor.as_btree_mut();
cursor.wait_for_completion()?;
cursor.is_empty()
};
if !is_empty {
state.pc = pc_if_next.to_offset_int();
} else {
state.pc += 1;
}
}
Insn::NextAwait {
cursor_id,
pc_if_next,
} => {
assert!(pc_if_next.is_offset());
let is_empty = {
let mut cursor =
must_be_btree_cursor!(*cursor_id, self.cursor_ref, state, "NextAwait");
let cursor = cursor.as_btree_mut();
cursor.wait_for_completion()?;
cursor.is_empty()
};
if !is_empty {
state.pc = pc_if_next.to_offset_int();
} else {
state.pc += 1;
}
}
Insn::Halt {
err_code,
description,
} => {
match *err_code {
0 => {}
SQLITE_CONSTRAINT_PRIMARYKEY => {
return Err(LimboError::Constraint(format!(
"UNIQUE constraint failed: {} (19)",
description
)));
}
_ => {
return Err(LimboError::Constraint(format!(
"undocumented halt error code {}",
description
)));
}
}
return self.halt(pager);
}
Insn::Transaction { write } => {
let connection = self.connection.upgrade().unwrap();
let current_state = connection.transaction_state.borrow().clone();
let (new_transaction_state, updated) = match (&current_state, write) {
(TransactionState::Write, true) => (TransactionState::Write, false),
(TransactionState::Write, false) => (TransactionState::Write, false),
(TransactionState::Read, true) => (TransactionState::Write, true),
(TransactionState::Read, false) => (TransactionState::Read, false),
(TransactionState::None, true) => (TransactionState::Write, true),
(TransactionState::None, false) => (TransactionState::Read, true),
};
if updated && matches!(current_state, TransactionState::None) {
if let LimboResult::Busy = pager.begin_read_tx()? {
tracing::trace!("begin_read_tx busy");
return Ok(StepResult::Busy);
}
}
if updated && matches!(new_transaction_state, TransactionState::Write) {
if let LimboResult::Busy = pager.begin_write_tx()? {
tracing::trace!("begin_write_tx busy");
return Ok(StepResult::Busy);
}
}
if updated {
connection
.transaction_state
.replace(new_transaction_state.clone());
}
state.pc += 1;
}
Insn::AutoCommit {
auto_commit,
rollback,
} => {
let conn = self.connection.upgrade().unwrap();
if *auto_commit != *conn.auto_commit.borrow() {
if *rollback {
todo!("Rollback is not implemented");
} else {
conn.auto_commit.replace(*auto_commit);
}
} else if !*auto_commit {
return Err(LimboError::TxError(
"cannot start a transaction within a transaction".to_string(),
));
} else if *rollback {
return Err(LimboError::TxError(
"cannot rollback - no transaction is active".to_string(),
));
} else {
return Err(LimboError::TxError(
"cannot commit - no transaction is active".to_string(),
));
}
return self.halt(pager);
}
Insn::Goto { target_pc } => {
assert!(target_pc.is_offset());
state.pc = target_pc.to_offset_int();
}
Insn::Gosub {
target_pc,
return_reg,
} => {
assert!(target_pc.is_offset());
state.registers[*return_reg] = OwnedValue::Integer((state.pc + 1) as i64);
state.pc = target_pc.to_offset_int();
}
Insn::Return { return_reg } => {
if let OwnedValue::Integer(pc) = state.registers[*return_reg] {
let pc: u32 = pc
.try_into()
.unwrap_or_else(|_| panic!("Return register is negative: {}", pc));
state.pc = pc;
} else {
return Err(LimboError::InternalError(
"Return register is not an integer".to_string(),
));
}
}
Insn::Integer { value, dest } => {
state.registers[*dest] = OwnedValue::Integer(*value);
state.pc += 1;
}
Insn::Real { value, dest } => {
state.registers[*dest] = OwnedValue::Float(*value);
state.pc += 1;
}
Insn::RealAffinity { register } => {
if let OwnedValue::Integer(i) = &state.registers[*register] {
state.registers[*register] = OwnedValue::Float(*i as f64);
};
state.pc += 1;
}
Insn::String8 { value, dest } => {
state.registers[*dest] = OwnedValue::build_text(value);
state.pc += 1;
}
Insn::Blob { value, dest } => {
state.registers[*dest] = OwnedValue::Blob(Rc::new(value.clone()));
state.pc += 1;
}
Insn::RowId { cursor_id, dest } => {
if let Some((index_cursor_id, table_cursor_id)) = state.deferred_seek.take() {
let deferred_seek = {
let rowid = {
let mut index_cursor = state.get_cursor(index_cursor_id);
let index_cursor = index_cursor.as_btree_mut();
let rowid = index_cursor.rowid()?;
rowid
};
let mut table_cursor = state.get_cursor(table_cursor_id);
let table_cursor = table_cursor.as_btree_mut();
let deferred_seek = match table_cursor
.seek(SeekKey::TableRowId(rowid.unwrap()), SeekOp::EQ)?
{
CursorResult::Ok(_) => None,
CursorResult::IO => Some((index_cursor_id, table_cursor_id)),
};
deferred_seek
};
if let Some(deferred_seek) = deferred_seek {
state.deferred_seek = Some(deferred_seek);
return Ok(StepResult::IO);
}
}
let mut cursors = state.cursors.borrow_mut();
if let Some(Cursor::BTree(btree_cursor)) = cursors.get_mut(*cursor_id).unwrap()
{
if let Some(ref rowid) = btree_cursor.rowid()? {
state.registers[*dest] = OwnedValue::Integer(*rowid as i64);
} else {
state.registers[*dest] = OwnedValue::Null;
}
} else if let Some(Cursor::Virtual(virtual_cursor)) =
cursors.get_mut(*cursor_id).unwrap()
{
let (_, cursor_type) = self.cursor_ref.get(*cursor_id).unwrap();
let CursorType::VirtualTable(virtual_table) = cursor_type else {
panic!("VUpdate on non-virtual table cursor");
};
let rowid = virtual_table.rowid(virtual_cursor);
if rowid != 0 {
state.registers[*dest] = OwnedValue::Integer(rowid);
} else {
state.registers[*dest] = OwnedValue::Null;
}
} else {
return Err(LimboError::InternalError(
"RowId: cursor is not a table or virtual cursor".to_string(),
));
}
state.pc += 1;
}
Insn::SeekRowid {
cursor_id,
src_reg,
target_pc,
} => {
assert!(target_pc.is_offset());
let pc = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let rowid = match &state.registers[*src_reg] {
OwnedValue::Integer(rowid) => Some(*rowid as u64),
OwnedValue::Null => None,
other => {
return Err(LimboError::InternalError(
format!("SeekRowid: the value in the register is not an integer or NULL: {}", other)
));
}
};
match rowid {
Some(rowid) => {
let found = return_if_io!(
cursor.seek(SeekKey::TableRowId(rowid), SeekOp::EQ)
);
if !found {
target_pc.to_offset_int()
} else {
state.pc + 1
}
}
None => target_pc.to_offset_int(),
}
};
state.pc = pc;
}
Insn::DeferredSeek {
index_cursor_id,
table_cursor_id,
} => {
state.deferred_seek = Some((*index_cursor_id, *table_cursor_id));
state.pc += 1;
}
Insn::SeekGE {
cursor_id,
start_reg,
num_regs,
target_pc,
is_index,
} => {
assert!(target_pc.is_offset());
if *is_index {
let found = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let record_from_regs: Record =
make_owned_record(&state.registers, start_reg, num_regs);
let found = return_if_io!(
cursor.seek(SeekKey::IndexKey(&record_from_regs), SeekOp::GE)
);
found
};
if !found {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
} else {
let pc = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let rowid = match &state.registers[*start_reg] {
OwnedValue::Null => {
// All integer values are greater than null so we just rewind the cursor
return_if_io!(cursor.rewind());
None
}
OwnedValue::Integer(rowid) => Some(*rowid as u64),
_ => {
return Err(LimboError::InternalError(
"SeekGE: the value in the register is not an integer"
.into(),
));
}
};
match rowid {
Some(rowid) => {
let found = return_if_io!(
cursor.seek(SeekKey::TableRowId(rowid), SeekOp::GE)
);
if !found {
target_pc.to_offset_int()
} else {
state.pc + 1
}
}
None => state.pc + 1,
}
};
state.pc = pc;
}
}
Insn::SeekGT {
cursor_id,
start_reg,
num_regs,
target_pc,
is_index,
} => {
assert!(target_pc.is_offset());
if *is_index {
let found = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let record_from_regs: Record =
make_owned_record(&state.registers, start_reg, num_regs);
let found = return_if_io!(
cursor.seek(SeekKey::IndexKey(&record_from_regs), SeekOp::GT)
);
found
};
if !found {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
} else {
let pc = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let rowid = match &state.registers[*start_reg] {
OwnedValue::Null => {
// All integer values are greater than null so we just rewind the cursor
return_if_io!(cursor.rewind());
None
}
OwnedValue::Integer(rowid) => Some(*rowid as u64),
_ => {
return Err(LimboError::InternalError(
"SeekGT: the value in the register is not an integer"
.into(),
));
}
};
let found = match rowid {
Some(rowid) => {
let found = return_if_io!(
cursor.seek(SeekKey::TableRowId(rowid), SeekOp::GT)
);
if !found {
target_pc.to_offset_int()
} else {
state.pc + 1
}
}
None => state.pc + 1,
};
found
};
state.pc = pc;
}
}
Insn::IdxGE {
cursor_id,
start_reg,
num_regs,
target_pc,
} => {
assert!(target_pc.is_offset());
let pc = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let record_from_regs: Record =
make_owned_record(&state.registers, start_reg, num_regs);
let pc = if let Some(ref idx_record) = *cursor.record() {
// Compare against the same number of values
if idx_record.get_values()[..record_from_regs.len()]
>= record_from_regs.get_values()[..]
{
target_pc.to_offset_int()
} else {
state.pc + 1
}
} else {
target_pc.to_offset_int()
};
pc
};
state.pc = pc;
}
Insn::IdxLE {
cursor_id,
start_reg,
num_regs,
target_pc,
} => {
assert!(target_pc.is_offset());
let pc = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let record_from_regs: Record =
make_owned_record(&state.registers, start_reg, num_regs);
let pc = if let Some(ref idx_record) = *cursor.record() {
// Compare against the same number of values
if idx_record.get_values()[..record_from_regs.len()]
<= record_from_regs.get_values()[..]
{
target_pc.to_offset_int()
} else {
state.pc + 1
}
} else {
target_pc.to_offset_int()
};
pc
};
state.pc = pc;
}
Insn::IdxGT {
cursor_id,
start_reg,
num_regs,
target_pc,
} => {
assert!(target_pc.is_offset());
let pc = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let record_from_regs: Record =
make_owned_record(&state.registers, start_reg, num_regs);
let pc = if let Some(ref idx_record) = *cursor.record() {
// Compare against the same number of values
if idx_record.get_values()[..record_from_regs.len()]
> record_from_regs.get_values()[..]
{
target_pc.to_offset_int()
} else {
state.pc + 1
}
} else {
target_pc.to_offset_int()
};
pc
};
state.pc = pc;
}
Insn::IdxLT {
cursor_id,
start_reg,
num_regs,
target_pc,
} => {
assert!(target_pc.is_offset());
let pc = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let record_from_regs: Record =
make_owned_record(&state.registers, start_reg, num_regs);
let pc = if let Some(ref idx_record) = *cursor.record() {
// Compare against the same number of values
if idx_record.get_values()[..record_from_regs.len()]
< record_from_regs.get_values()[..]
{
target_pc.to_offset_int()
} else {
state.pc + 1
}
} else {
target_pc.to_offset_int()
};
pc
};
state.pc = pc;
}
Insn::DecrJumpZero { reg, target_pc } => {
assert!(target_pc.is_offset());
match state.registers[*reg] {
OwnedValue::Integer(n) => {
let n = n - 1;
if n == 0 {
state.pc = target_pc.to_offset_int();
} else {
state.registers[*reg] = OwnedValue::Integer(n);
state.pc += 1;
}
}
_ => unreachable!("DecrJumpZero on non-integer register"),
}
}
Insn::AggStep {
acc_reg,
col,
delimiter,
func,
} => {
if let OwnedValue::Null = &state.registers[*acc_reg] {
state.registers[*acc_reg] = match func {
AggFunc::Avg => OwnedValue::Agg(Box::new(AggContext::Avg(
OwnedValue::Float(0.0),
OwnedValue::Integer(0),
))),
AggFunc::Sum => {
OwnedValue::Agg(Box::new(AggContext::Sum(OwnedValue::Null)))
}
AggFunc::Total => {
// The result of total() is always a floating point value.
// No overflow error is ever raised if any prior input was a floating point value.
// Total() never throws an integer overflow.
OwnedValue::Agg(Box::new(AggContext::Sum(OwnedValue::Float(0.0))))
}
AggFunc::Count | AggFunc::Count0 => {
OwnedValue::Agg(Box::new(AggContext::Count(OwnedValue::Integer(0))))
}
AggFunc::Max => {
let col = state.registers[*col].clone();
match col {
OwnedValue::Integer(_) => {
OwnedValue::Agg(Box::new(AggContext::Max(None)))
}
OwnedValue::Float(_) => {
OwnedValue::Agg(Box::new(AggContext::Max(None)))
}
OwnedValue::Text(_) => {
OwnedValue::Agg(Box::new(AggContext::Max(None)))
}
_ => {
unreachable!();
}
}
}
AggFunc::Min => {
let col = state.registers[*col].clone();
match col {
OwnedValue::Integer(_) => {
OwnedValue::Agg(Box::new(AggContext::Min(None)))
}
OwnedValue::Float(_) => {
OwnedValue::Agg(Box::new(AggContext::Min(None)))
}
OwnedValue::Text(_) => {
OwnedValue::Agg(Box::new(AggContext::Min(None)))
}
_ => {
unreachable!();
}
}
}
AggFunc::GroupConcat | AggFunc::StringAgg => OwnedValue::Agg(Box::new(
AggContext::GroupConcat(OwnedValue::build_text("")),
)),
AggFunc::External(func) => match func.as_ref() {
ExtFunc::Aggregate {
init,
step,
finalize,
argc,
} => OwnedValue::Agg(Box::new(AggContext::External(
ExternalAggState {
state: unsafe { (init)() },
argc: *argc,
step_fn: *step,
finalize_fn: *finalize,
finalized_value: None,
},
))),
_ => unreachable!("scalar function called in aggregate context"),
},
};
}
match func {
AggFunc::Avg => {
let col = state.registers[*col].clone();
let OwnedValue::Agg(agg) = state.registers[*acc_reg].borrow_mut()
else {
unreachable!();
};
let AggContext::Avg(acc, count) = agg.borrow_mut() else {
unreachable!();
};
*acc += col;
*count += 1;
}
AggFunc::Sum | AggFunc::Total => {
let col = state.registers[*col].clone();
let OwnedValue::Agg(agg) = state.registers[*acc_reg].borrow_mut()
else {
unreachable!();
};
let AggContext::Sum(acc) = agg.borrow_mut() else {
unreachable!();
};
*acc += col;
}
AggFunc::Count | AggFunc::Count0 => {
let col = state.registers[*col].clone();
if matches!(&state.registers[*acc_reg], OwnedValue::Null) {
state.registers[*acc_reg] = OwnedValue::Agg(Box::new(
AggContext::Count(OwnedValue::Integer(0)),
));
}
let OwnedValue::Agg(agg) = state.registers[*acc_reg].borrow_mut()
else {
unreachable!();
};
let AggContext::Count(count) = agg.borrow_mut() else {
unreachable!();
};
if (matches!(func, AggFunc::Count) && matches!(col, OwnedValue::Null))
== false
{
*count += 1;
};
}
AggFunc::Max => {
let col = state.registers[*col].clone();
let OwnedValue::Agg(agg) = state.registers[*acc_reg].borrow_mut()
else {
unreachable!();
};
let AggContext::Max(acc) = agg.borrow_mut() else {
unreachable!();
};
match (acc.as_mut(), col) {
(None, value) => {
*acc = Some(value);
}
(
Some(OwnedValue::Integer(ref mut current_max)),
OwnedValue::Integer(value),
) => {
if value > *current_max {
*current_max = value;
}
}
(
Some(OwnedValue::Float(ref mut current_max)),
OwnedValue::Float(value),
) => {
if value > *current_max {
*current_max = value;
}
}
(
Some(OwnedValue::Text(ref mut current_max)),
OwnedValue::Text(value),
) => {
if value.value > current_max.value {
*current_max = value;
}
}
_ => {
eprintln!("Unexpected types in max aggregation");
}
}
}
AggFunc::Min => {
let col = state.registers[*col].clone();
let OwnedValue::Agg(agg) = state.registers[*acc_reg].borrow_mut()
else {
unreachable!();
};
let AggContext::Min(acc) = agg.borrow_mut() else {
unreachable!();
};
match (acc.as_mut(), col) {
(None, value) => {
*acc.borrow_mut() = Some(value);
}
(
Some(OwnedValue::Integer(ref mut current_min)),
OwnedValue::Integer(value),
) => {
if value < *current_min {
*current_min = value;
}
}
(
Some(OwnedValue::Float(ref mut current_min)),
OwnedValue::Float(value),
) => {
if value < *current_min {
*current_min = value;
}
}
(
Some(OwnedValue::Text(ref mut current_min)),
OwnedValue::Text(text),
) => {
if text.value < current_min.value {
*current_min = text;
}
}
_ => {
eprintln!("Unexpected types in min aggregation");
}
}
}
AggFunc::GroupConcat | AggFunc::StringAgg => {
let col = state.registers[*col].clone();
let delimiter = state.registers[*delimiter].clone();
let OwnedValue::Agg(agg) = state.registers[*acc_reg].borrow_mut()
else {
unreachable!();
};
let AggContext::GroupConcat(acc) = agg.borrow_mut() else {
unreachable!();
};
if acc.to_string().is_empty() {
*acc = col;
} else {
*acc += delimiter;
*acc += col;
}
}
AggFunc::External(_) => {
let (step_fn, state_ptr, argc) = {
let OwnedValue::Agg(agg) = &state.registers[*acc_reg] else {
unreachable!();
};
let AggContext::External(agg_state) = agg.as_ref() else {
unreachable!();
};
(agg_state.step_fn, agg_state.state, agg_state.argc)
};
if argc == 0 {
unsafe { step_fn(state_ptr, 0, std::ptr::null()) };
} else {
let register_slice = &state.registers[*col..*col + argc];
let mut ext_values: Vec<ExtValue> = Vec::with_capacity(argc);
for ov in register_slice.iter() {
ext_values.push(ov.to_ffi());
}
let argv_ptr = ext_values.as_ptr();
unsafe { step_fn(state_ptr, argc as i32, argv_ptr) };
for ext_value in ext_values {
unsafe { ext_value.__free_internal_type() };
}
}
}
};
state.pc += 1;
}
Insn::AggFinal { register, func } => {
match state.registers[*register].borrow_mut() {
OwnedValue::Agg(agg) => match func {
AggFunc::Avg => {
let AggContext::Avg(acc, count) = agg.borrow_mut() else {
unreachable!();
};
*acc /= count.clone();
state.registers[*register] = acc.clone();
}
AggFunc::Sum | AggFunc::Total => {
let AggContext::Sum(acc) = agg.borrow_mut() else {
unreachable!();
};
let value = match acc {
OwnedValue::Integer(i) => OwnedValue::Integer(*i),
OwnedValue::Float(f) => OwnedValue::Float(*f),
_ => OwnedValue::Float(0.0),
};
state.registers[*register] = value;
}
AggFunc::Count | AggFunc::Count0 => {
let AggContext::Count(count) = agg.borrow_mut() else {
unreachable!();
};
state.registers[*register] = count.clone();
}
AggFunc::Max => {
let AggContext::Max(acc) = agg.borrow_mut() else {
unreachable!();
};
match acc {
Some(value) => state.registers[*register] = value.clone(),
None => state.registers[*register] = OwnedValue::Null,
}
}
AggFunc::Min => {
let AggContext::Min(acc) = agg.borrow_mut() else {
unreachable!();
};
match acc {
Some(value) => state.registers[*register] = value.clone(),
None => state.registers[*register] = OwnedValue::Null,
}
}
AggFunc::GroupConcat | AggFunc::StringAgg => {
let AggContext::GroupConcat(acc) = agg.borrow_mut() else {
unreachable!();
};
state.registers[*register] = acc.clone();
}
AggFunc::External(_) => {
agg.compute_external()?;
let AggContext::External(agg_state) = agg.borrow_mut() else {
unreachable!();
};
match &agg_state.finalized_value {
Some(value) => state.registers[*register] = value.clone(),
None => state.registers[*register] = OwnedValue::Null,
}
}
},
OwnedValue::Null => {
// when the set is empty
match func {
AggFunc::Total => {
state.registers[*register] = OwnedValue::Float(0.0);
}
AggFunc::Count | AggFunc::Count0 => {
state.registers[*register] = OwnedValue::Integer(0);
}
_ => {}
}
}
_ => {
unreachable!();
}
};
state.pc += 1;
}
Insn::SorterOpen {
cursor_id,
columns: _,
order,
} => {
let order = order
.get_values()
.iter()
.map(|v| match v {
OwnedValue::Integer(i) => *i == 0,
_ => unreachable!(),
})
.collect();
let cursor = Sorter::new(order);
let mut cursors = state.cursors.borrow_mut();
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_sorter(cursor));
state.pc += 1;
}
Insn::SorterData {
cursor_id,
dest_reg,
pseudo_cursor,
} => {
let record = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_sorter_mut();
cursor.record().map(|r| r.clone())
};
let record = match record {
Some(record) => record,
None => {
state.pc += 1;
continue;
}
};
state.registers[*dest_reg] = OwnedValue::Record(record.clone());
{
let mut pseudo_cursor = state.get_cursor(*pseudo_cursor);
pseudo_cursor.as_pseudo_mut().insert(record);
}
state.pc += 1;
}
Insn::SorterInsert {
cursor_id,
record_reg,
} => {
{
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_sorter_mut();
let record = match &state.registers[*record_reg] {
OwnedValue::Record(record) => record,
_ => unreachable!("SorterInsert on non-record register"),
};
cursor.insert(record);
}
state.pc += 1;
}
Insn::SorterSort {
cursor_id,
pc_if_empty,
} => {
let is_empty = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_sorter_mut();
let is_empty = cursor.is_empty();
if !is_empty {
cursor.sort();
}
is_empty
};
if is_empty {
state.pc = pc_if_empty.to_offset_int();
} else {
state.pc += 1;
}
}
Insn::SorterNext {
cursor_id,
pc_if_next,
} => {
assert!(pc_if_next.is_offset());
let has_more = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_sorter_mut();
cursor.next();
cursor.has_more()
};
if has_more {
state.pc = pc_if_next.to_offset_int();
} else {
state.pc += 1;
}
}
Insn::Function {
constant_mask,
func,
start_reg,
dest,
} => {
let arg_count = func.arg_count;
match &func.func {
#[cfg(feature = "json")]
crate::function::Func::Json(json_func) => match json_func {
JsonFunc::Json => {
let json_value = &state.registers[*start_reg];
let json_str = get_json(json_value, None);
match json_str {
Ok(json) => state.registers[*dest] = json,
Err(e) => return Err(e),
}
}
JsonFunc::JsonArray | JsonFunc::JsonObject => {
let reg_values =
&state.registers[*start_reg..*start_reg + arg_count];
let json_func = match json_func {
JsonFunc::JsonArray => json_array,
JsonFunc::JsonObject => json_object,
_ => unreachable!(),
};
let json_result = json_func(reg_values);
match json_result {
Ok(json) => state.registers[*dest] = json,
Err(e) => return Err(e),
}
}
JsonFunc::JsonExtract => {
let result = match arg_count {
0 => json_extract(&OwnedValue::Null, &[]),
_ => {
let val = &state.registers[*start_reg];
let reg_values = &state.registers
[*start_reg + 1..*start_reg + arg_count];
json_extract(val, reg_values)
}
};
match result {
Ok(json) => state.registers[*dest] = json,
Err(e) => return Err(e),
}
}
JsonFunc::JsonArrowExtract | JsonFunc::JsonArrowShiftExtract => {
assert_eq!(arg_count, 2);
let json = &state.registers[*start_reg];
let path = &state.registers[*start_reg + 1];
let json_func = match json_func {
JsonFunc::JsonArrowExtract => json_arrow_extract,
JsonFunc::JsonArrowShiftExtract => json_arrow_shift_extract,
_ => unreachable!(),
};
let json_str = json_func(json, path);
match json_str {
Ok(json) => state.registers[*dest] = json,
Err(e) => return Err(e),
}
}
JsonFunc::JsonArrayLength | JsonFunc::JsonType => {
let json_value = &state.registers[*start_reg];
let path_value = if arg_count > 1 {
Some(&state.registers[*start_reg + 1])
} else {
None
};
let func_result = match json_func {
JsonFunc::JsonArrayLength => {
json_array_length(json_value, path_value)
}
JsonFunc::JsonType => json_type(json_value, path_value),
_ => unreachable!(),
};
match func_result {
Ok(result) => state.registers[*dest] = result,
Err(e) => return Err(e),
}
}
JsonFunc::JsonErrorPosition => {
let json_value = &state.registers[*start_reg];
match json_error_position(json_value) {
Ok(pos) => state.registers[*dest] = pos,
Err(e) => return Err(e),
}
}
JsonFunc::JsonValid => {
let json_value = &state.registers[*start_reg];
state.registers[*dest] = is_json_valid(json_value)?;
}
JsonFunc::JsonPatch => {
assert_eq!(arg_count, 2);
assert!(*start_reg + 1 < state.registers.len());
let target = &state.registers[*start_reg];
let patch = &state.registers[*start_reg + 1];
state.registers[*dest] = json_patch(target, patch)?;
}
JsonFunc::JsonRemove => {
state.registers[*dest] = json_remove(
&state.registers[*start_reg..*start_reg + arg_count],
)?;
}
JsonFunc::JsonPretty => {
let json_value = &state.registers[*start_reg];
let indent = if arg_count > 1 {
Some(&state.registers[*start_reg + 1])
} else {
None
};
// Blob should be converted to Ascii in a lossy way
// However, Rust strings uses utf-8
// so the behavior at the moment is slightly different
// To the way blobs are parsed here in SQLite.
let indent = match indent {
Some(value) => match value {
OwnedValue::Text(text) => text.as_str(),
OwnedValue::Integer(val) => &val.to_string(),
OwnedValue::Float(val) => &val.to_string(),
OwnedValue::Blob(val) => &String::from_utf8_lossy(val),
OwnedValue::Agg(ctx) => match ctx.final_value() {
OwnedValue::Text(text) => text.as_str(),
OwnedValue::Integer(val) => &val.to_string(),
OwnedValue::Float(val) => &val.to_string(),
OwnedValue::Blob(val) => &String::from_utf8_lossy(val),
_ => " ",
},
_ => " ",
},
// If the second argument is omitted or is NULL, then indentation is four spaces per level
None => " ",
};
let json_str = get_json(json_value, Some(indent))?;
state.registers[*dest] = json_str;
}
JsonFunc::JsonSet => {
let reg_values =
&state.registers[*start_reg + 1..*start_reg + arg_count];
let json_result =
json_set(&state.registers[*start_reg], reg_values);
match json_result {
Ok(json) => state.registers[*dest] = json,
Err(e) => return Err(e),
}
}
JsonFunc::JsonQuote => {
let json_value = &state.registers[*start_reg];
match json_quote(json_value) {
Ok(result) => state.registers[*dest] = result,
Err(e) => return Err(e),
}
}
},
crate::function::Func::Scalar(scalar_func) => match scalar_func {
ScalarFunc::Cast => {
assert_eq!(arg_count, 2);
assert!(*start_reg + 1 < state.registers.len());
let reg_value_argument = state.registers[*start_reg].clone();
let OwnedValue::Text(reg_value_type) =
state.registers[*start_reg + 1].clone()
else {
unreachable!("Cast with non-text type");
};
let result =
exec_cast(&reg_value_argument, reg_value_type.as_str());
state.registers[*dest] = result;
}
ScalarFunc::Changes => {
let res = &self.connection.upgrade().unwrap().last_change;
let changes = res.get();
state.registers[*dest] = OwnedValue::Integer(changes);
}
ScalarFunc::Char => {
let reg_values =
state.registers[*start_reg..*start_reg + arg_count].to_vec();
state.registers[*dest] = exec_char(reg_values);
}
ScalarFunc::Coalesce => {}
ScalarFunc::Concat => {
let result = exec_concat_strings(
&state.registers[*start_reg..*start_reg + arg_count],
);
state.registers[*dest] = result;
}
ScalarFunc::ConcatWs => {
let result = exec_concat_ws(
&state.registers[*start_reg..*start_reg + arg_count],
);
state.registers[*dest] = result;
}
ScalarFunc::Glob => {
let pattern = &state.registers[*start_reg];
let text = &state.registers[*start_reg + 1];
let result = match (pattern, text) {
(OwnedValue::Text(pattern), OwnedValue::Text(text)) => {
let cache = if *constant_mask > 0 {
Some(&mut state.regex_cache.glob)
} else {
None
};
OwnedValue::Integer(exec_glob(
cache,
pattern.as_str(),
text.as_str(),
)
as i64)
}
_ => {
unreachable!("Like on non-text registers");
}
};
state.registers[*dest] = result;
}
ScalarFunc::IfNull => {}
ScalarFunc::Iif => {}
ScalarFunc::Instr => {
let reg_value = &state.registers[*start_reg];
let pattern_value = &state.registers[*start_reg + 1];
let result = exec_instr(reg_value, pattern_value);
state.registers[*dest] = result;
}
ScalarFunc::LastInsertRowid => {
if let Some(conn) = self.connection.upgrade() {
state.registers[*dest] =
OwnedValue::Integer(conn.last_insert_rowid() as i64);
} else {
state.registers[*dest] = OwnedValue::Null;
}
}
ScalarFunc::Like => {
let pattern = &state.registers[*start_reg];
let match_expression = &state.registers[*start_reg + 1];
let pattern = match pattern {
OwnedValue::Text(_) => pattern,
_ => &exec_cast(pattern, "TEXT"),
};
let match_expression = match match_expression {
OwnedValue::Text(_) => match_expression,
_ => &exec_cast(match_expression, "TEXT"),
};
let result = match (pattern, match_expression) {
(
OwnedValue::Text(pattern),
OwnedValue::Text(match_expression),
) if arg_count == 3 => {
let escape = match construct_like_escape_arg(
&state.registers[*start_reg + 2],
) {
Ok(x) => x,
Err(e) => return Err(e),
};
OwnedValue::Integer(exec_like_with_escape(
pattern.as_str(),
match_expression.as_str(),
escape,
)
as i64)
}
(
OwnedValue::Text(pattern),
OwnedValue::Text(match_expression),
) => {
let cache = if *constant_mask > 0 {
Some(&mut state.regex_cache.like)
} else {
None
};
OwnedValue::Integer(exec_like(
cache,
pattern.as_str(),
match_expression.as_str(),
)
as i64)
}
(OwnedValue::Null, _) | (_, OwnedValue::Null) => {
OwnedValue::Null
}
_ => {
unreachable!("Like failed");
}
};
state.registers[*dest] = result;
}
ScalarFunc::Abs
| ScalarFunc::Lower
| ScalarFunc::Upper
| ScalarFunc::Length
| ScalarFunc::OctetLength
| ScalarFunc::Typeof
| ScalarFunc::Unicode
| ScalarFunc::Quote
| ScalarFunc::RandomBlob
| ScalarFunc::Sign
| ScalarFunc::Soundex
| ScalarFunc::ZeroBlob => {
let reg_value = state.registers[*start_reg].borrow_mut();
let result = match scalar_func {
ScalarFunc::Sign => exec_sign(reg_value),
ScalarFunc::Abs => Some(exec_abs(reg_value)?),
ScalarFunc::Lower => exec_lower(reg_value),
ScalarFunc::Upper => exec_upper(reg_value),
ScalarFunc::Length => Some(exec_length(reg_value)),
ScalarFunc::OctetLength => Some(exec_octet_length(reg_value)),
ScalarFunc::Typeof => Some(exec_typeof(reg_value)),
ScalarFunc::Unicode => Some(exec_unicode(reg_value)),
ScalarFunc::Quote => Some(exec_quote(reg_value)),
ScalarFunc::RandomBlob => Some(exec_randomblob(reg_value)),
ScalarFunc::ZeroBlob => Some(exec_zeroblob(reg_value)),
ScalarFunc::Soundex => Some(exec_soundex(reg_value)),
_ => unreachable!(),
};
state.registers[*dest] = result.unwrap_or(OwnedValue::Null);
}
ScalarFunc::Hex => {
let reg_value = state.registers[*start_reg].borrow_mut();
let result = exec_hex(reg_value);
state.registers[*dest] = result;
}
ScalarFunc::Unhex => {
let reg_value = state.registers[*start_reg].clone();
let ignored_chars = state.registers.get(*start_reg + 1);
let result = exec_unhex(&reg_value, ignored_chars);
state.registers[*dest] = result;
}
ScalarFunc::Random => {
state.registers[*dest] = exec_random();
}
ScalarFunc::Trim => {
let reg_value = state.registers[*start_reg].clone();
let pattern_value = if func.arg_count == 2 {
state.registers.get(*start_reg + 1).cloned()
} else {
None
};
let result = exec_trim(&reg_value, pattern_value);
state.registers[*dest] = result;
}
ScalarFunc::LTrim => {
let reg_value = state.registers[*start_reg].clone();
let pattern_value = if func.arg_count == 2 {
state.registers.get(*start_reg + 1).cloned()
} else {
None
};
let result = exec_ltrim(&reg_value, pattern_value);
state.registers[*dest] = result;
}
ScalarFunc::RTrim => {
let reg_value = state.registers[*start_reg].clone();
let pattern_value = if func.arg_count == 2 {
state.registers.get(*start_reg + 1).cloned()
} else {
None
};
let result = exec_rtrim(&reg_value, pattern_value);
state.registers[*dest] = result;
}
ScalarFunc::Round => {
let reg_value = state.registers[*start_reg].clone();
assert!(arg_count == 1 || arg_count == 2);
let precision_value = if arg_count > 1 {
Some(state.registers[*start_reg + 1].clone())
} else {
None
};
let result = exec_round(&reg_value, precision_value);
state.registers[*dest] = result;
}
ScalarFunc::Min => {
let reg_values = state.registers
[*start_reg..*start_reg + arg_count]
.iter()
.collect();
state.registers[*dest] = exec_min(reg_values);
}
ScalarFunc::Max => {
let reg_values = state.registers
[*start_reg..*start_reg + arg_count]
.iter()
.collect();
state.registers[*dest] = exec_max(reg_values);
}
ScalarFunc::Nullif => {
let first_value = &state.registers[*start_reg];
let second_value = &state.registers[*start_reg + 1];
state.registers[*dest] = exec_nullif(first_value, second_value);
}
ScalarFunc::Substr | ScalarFunc::Substring => {
let str_value = &state.registers[*start_reg];
let start_value = &state.registers[*start_reg + 1];
let length_value = if func.arg_count == 3 {
Some(&state.registers[*start_reg + 2])
} else {
None
};
let result = exec_substring(str_value, start_value, length_value);
state.registers[*dest] = result;
}
ScalarFunc::Date => {
let result =
exec_date(&state.registers[*start_reg..*start_reg + arg_count]);
state.registers[*dest] = result;
}
ScalarFunc::Time => {
let result =
exec_time(&state.registers[*start_reg..*start_reg + arg_count]);
state.registers[*dest] = result;
}
ScalarFunc::TotalChanges => {
let res = &self.connection.upgrade().unwrap().total_changes;
let total_changes = res.get();
state.registers[*dest] = OwnedValue::Integer(total_changes);
}
ScalarFunc::DateTime => {
let result = exec_datetime_full(
&state.registers[*start_reg..*start_reg + arg_count],
);
state.registers[*dest] = result;
}
ScalarFunc::JulianDay => {
if *start_reg == 0 {
let julianday: String =
exec_julianday(&OwnedValue::build_text("now"))?;
state.registers[*dest] = OwnedValue::build_text(&julianday);
} else {
let datetime_value = &state.registers[*start_reg];
let julianday = exec_julianday(datetime_value);
match julianday {
Ok(time) => {
state.registers[*dest] = OwnedValue::build_text(&time)
}
Err(e) => {
return Err(LimboError::ParseError(format!(
"Error encountered while parsing datetime value: {}",
e
)));
}
}
}
}
ScalarFunc::UnixEpoch => {
if *start_reg == 0 {
let unixepoch: String =
exec_unixepoch(&OwnedValue::build_text("now"))?;
state.registers[*dest] = OwnedValue::build_text(&unixepoch);
} else {
let datetime_value = &state.registers[*start_reg];
let unixepoch = exec_unixepoch(datetime_value);
match unixepoch {
Ok(time) => {
state.registers[*dest] = OwnedValue::build_text(&time)
}
Err(e) => {
return Err(LimboError::ParseError(format!(
"Error encountered while parsing datetime value: {}",
e
)));
}
}
}
}
ScalarFunc::SqliteVersion => {
let version_integer: i64 =
DATABASE_VERSION.get().unwrap().parse()?;
let version = execute_sqlite_version(version_integer);
state.registers[*dest] = OwnedValue::build_text(&version);
}
ScalarFunc::SqliteSourceId => {
let src_id = format!(
"{} {}",
info::build::BUILT_TIME_SQLITE,
info::build::GIT_COMMIT_HASH.unwrap_or("unknown")
);
state.registers[*dest] = OwnedValue::build_text(&src_id);
}
ScalarFunc::Replace => {
assert_eq!(arg_count, 3);
let source = &state.registers[*start_reg];
let pattern = &state.registers[*start_reg + 1];
let replacement = &state.registers[*start_reg + 2];
state.registers[*dest] = exec_replace(source, pattern, replacement);
}
#[cfg(not(target_family = "wasm"))]
ScalarFunc::LoadExtension => {
let extension = &state.registers[*start_reg];
let ext = resolve_ext_path(&extension.to_string())?;
if let Some(conn) = self.connection.upgrade() {
conn.load_extension(ext)?;
}
}
ScalarFunc::StrfTime => {
let result = exec_strftime(
&state.registers[*start_reg..*start_reg + arg_count],
);
state.registers[*dest] = result;
}
ScalarFunc::Printf => {
let result = exec_printf(
&state.registers[*start_reg..*start_reg + arg_count],
)?;
state.registers[*dest] = result;
}
},
crate::function::Func::Vector(vector_func) => match vector_func {
VectorFunc::Vector => {
let result =
vector32(&state.registers[*start_reg..*start_reg + arg_count])?;
state.registers[*dest] = result;
}
VectorFunc::Vector32 => {
let result =
vector32(&state.registers[*start_reg..*start_reg + arg_count])?;
state.registers[*dest] = result;
}
VectorFunc::Vector64 => {
let result =
vector64(&state.registers[*start_reg..*start_reg + arg_count])?;
state.registers[*dest] = result;
}
VectorFunc::VectorExtract => {
let result = vector_extract(
&state.registers[*start_reg..*start_reg + arg_count],
)?;
state.registers[*dest] = result;
}
VectorFunc::VectorDistanceCos => {
let result = vector_distance_cos(
&state.registers[*start_reg..*start_reg + arg_count],
)?;
state.registers[*dest] = result;
}
},
crate::function::Func::External(f) => match f.func {
ExtFunc::Scalar(f) => {
if arg_count == 0 {
let result_c_value: ExtValue =
unsafe { (f)(0, std::ptr::null()) };
match OwnedValue::from_ffi(result_c_value) {
Ok(result_ov) => {
state.registers[*dest] = result_ov;
}
Err(e) => {
return Err(e);
}
}
} else {
let register_slice =
&state.registers[*start_reg..*start_reg + arg_count];
let mut ext_values: Vec<ExtValue> =
Vec::with_capacity(arg_count);
for ov in register_slice.iter() {
let val = ov.to_ffi();
ext_values.push(val);
}
let argv_ptr = ext_values.as_ptr();
let result_c_value: ExtValue =
unsafe { (f)(arg_count as i32, argv_ptr) };
match OwnedValue::from_ffi(result_c_value) {
Ok(result_ov) => {
state.registers[*dest] = result_ov;
}
Err(e) => {
return Err(e);
}
}
}
}
_ => unreachable!("aggregate called in scalar context"),
},
crate::function::Func::Math(math_func) => match math_func.arity() {
MathFuncArity::Nullary => match math_func {
MathFunc::Pi => {
state.registers[*dest] =
OwnedValue::Float(std::f64::consts::PI);
}
_ => {
unreachable!(
"Unexpected mathematical Nullary function {:?}",
math_func
);
}
},
MathFuncArity::Unary => {
let reg_value = &state.registers[*start_reg];
let result = exec_math_unary(reg_value, math_func);
state.registers[*dest] = result;
}
MathFuncArity::Binary => {
let lhs = &state.registers[*start_reg];
let rhs = &state.registers[*start_reg + 1];
let result = exec_math_binary(lhs, rhs, math_func);
state.registers[*dest] = result;
}
MathFuncArity::UnaryOrBinary => match math_func {
MathFunc::Log => {
let result = match arg_count {
1 => {
let arg = &state.registers[*start_reg];
exec_math_log(arg, None)
}
2 => {
let base = &state.registers[*start_reg];
let arg = &state.registers[*start_reg + 1];
exec_math_log(arg, Some(base))
}
_ => unreachable!(
"{:?} function with unexpected number of arguments",
math_func
),
};
state.registers[*dest] = result;
}
_ => unreachable!(
"Unexpected mathematical UnaryOrBinary function {:?}",
math_func
),
},
},
crate::function::Func::Agg(_) => {
unreachable!("Aggregate functions should not be handled here")
}
}
state.pc += 1;
}
Insn::InitCoroutine {
yield_reg,
jump_on_definition,
start_offset,
} => {
assert!(jump_on_definition.is_offset());
let start_offset = start_offset.to_offset_int();
state.registers[*yield_reg] = OwnedValue::Integer(start_offset as i64);
state.ended_coroutine.unset(*yield_reg);
let jump_on_definition = jump_on_definition.to_offset_int();
state.pc = if jump_on_definition == 0 {
state.pc + 1
} else {
jump_on_definition
};
}
Insn::EndCoroutine { yield_reg } => {
if let OwnedValue::Integer(pc) = state.registers[*yield_reg] {
state.ended_coroutine.set(*yield_reg);
let pc: u32 = pc
.try_into()
.unwrap_or_else(|_| panic!("EndCoroutine: pc overflow: {}", pc));
state.pc = pc - 1; // yield jump is always next to yield. Here we subtract 1 to go back to yield instruction
} else {
unreachable!();
}
}
Insn::Yield {
yield_reg,
end_offset,
} => {
if let OwnedValue::Integer(pc) = state.registers[*yield_reg] {
if state.ended_coroutine.get(*yield_reg) {
state.pc = end_offset.to_offset_int();
} else {
let pc: u32 = pc
.try_into()
.unwrap_or_else(|_| panic!("Yield: pc overflow: {}", pc));
// swap the program counter with the value in the yield register
// this is the mechanism that allows jumping back and forth between the coroutine and the caller
(state.pc, state.registers[*yield_reg]) =
(pc, OwnedValue::Integer((state.pc + 1) as i64));
}
} else {
unreachable!(
"yield_reg {} contains non-integer value: {:?}",
*yield_reg, state.registers[*yield_reg]
);
}
}
Insn::InsertAsync {
cursor,
key_reg,
record_reg,
flag: _,
} => {
{
let mut cursor = state.get_cursor(*cursor);
let cursor = cursor.as_btree_mut();
let record = match &state.registers[*record_reg] {
OwnedValue::Record(r) => r,
_ => unreachable!("Not a record! Cannot insert a non record value."),
};
let key = &state.registers[*key_reg];
// NOTE(pere): Sending moved_before == true is okay because we moved before but
// if we were to set to false after starting a balance procedure, it might
// leave undefined state.
return_if_io!(cursor.insert(key, record, true));
}
state.pc += 1;
}
Insn::InsertAwait { cursor_id } => {
{
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
cursor.wait_for_completion()?;
// Only update last_insert_rowid for regular table inserts, not schema modifications
if cursor.root_page() != 1 {
if let Some(rowid) = cursor.rowid()? {
if let Some(conn) = self.connection.upgrade() {
conn.update_last_rowid(rowid);
}
let prev_changes = self.n_change.get();
self.n_change.set(prev_changes + 1);
}
}
}
state.pc += 1;
}
Insn::DeleteAsync { cursor_id } => {
{
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.delete());
}
state.pc += 1;
}
Insn::DeleteAwait { cursor_id } => {
{
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
cursor.wait_for_completion()?;
}
let prev_changes = self.n_change.get();
self.n_change.set(prev_changes + 1);
state.pc += 1;
}
Insn::NewRowid {
cursor, rowid_reg, ..
} => {
let rowid = {
let mut cursor = state.get_cursor(*cursor);
let cursor = cursor.as_btree_mut();
// TODO: make io handle rng
let rowid = return_if_io!(get_new_rowid(cursor, thread_rng()));
rowid
};
state.registers[*rowid_reg] = OwnedValue::Integer(rowid);
state.pc += 1;
}
Insn::MustBeInt { reg } => {
match &state.registers[*reg] {
OwnedValue::Integer(_) => {}
OwnedValue::Float(f) => match cast_real_to_integer(*f) {
Ok(i) => state.registers[*reg] = OwnedValue::Integer(i),
Err(_) => crate::bail_parse_error!(
"MustBeInt: the value in register cannot be cast to integer"
),
},
OwnedValue::Text(text) => {
match checked_cast_text_to_numeric(text.as_str()) {
Ok(OwnedValue::Integer(i)) => {
state.registers[*reg] = OwnedValue::Integer(i)
}
Ok(OwnedValue::Float(f)) => {
state.registers[*reg] = OwnedValue::Integer(f as i64)
}
_ => crate::bail_parse_error!(
"MustBeInt: the value in register cannot be cast to integer"
),
}
}
_ => {
crate::bail_parse_error!(
"MustBeInt: the value in register cannot be cast to integer"
);
}
};
state.pc += 1;
}
Insn::SoftNull { reg } => {
state.registers[*reg] = OwnedValue::Null;
state.pc += 1;
}
Insn::NotExists {
cursor,
rowid_reg,
target_pc,
} => {
let exists = {
let mut cursor =
must_be_btree_cursor!(*cursor, self.cursor_ref, state, "NotExists");
let cursor = cursor.as_btree_mut();
let exists = return_if_io!(cursor.exists(&state.registers[*rowid_reg]));
exists
};
if exists {
state.pc += 1;
} else {
state.pc = target_pc.to_offset_int();
}
}
Insn::OffsetLimit {
limit_reg,
combined_reg,
offset_reg,
} => {
let limit_val = match state.registers[*limit_reg] {
OwnedValue::Integer(val) => val,
_ => {
return Err(LimboError::InternalError(
"OffsetLimit: the value in limit_reg is not an integer".into(),
));
}
};
let offset_val = match state.registers[*offset_reg] {
OwnedValue::Integer(val) if val < 0 => 0,
OwnedValue::Integer(val) if val >= 0 => val,
_ => {
return Err(LimboError::InternalError(
"OffsetLimit: the value in offset_reg is not an integer".into(),
));
}
};
let offset_limit_sum = limit_val.overflowing_add(offset_val);
if limit_val <= 0 || offset_limit_sum.1 {
state.registers[*combined_reg] = OwnedValue::Integer(-1);
} else {
state.registers[*combined_reg] = OwnedValue::Integer(offset_limit_sum.0);
}
state.pc += 1;
}
// this cursor may be reused for next insert
// Update: tablemoveto is used to travers on not exists, on insert depending on flags if nonseek it traverses again.
// If not there might be some optimizations obviously.
Insn::OpenWriteAsync {
cursor_id,
root_page,
} => {
let (_, cursor_type) = self.cursor_ref.get(*cursor_id).unwrap();
let mut cursors = state.cursors.borrow_mut();
let is_index = cursor_type.is_index();
let cursor = BTreeCursor::new(pager.clone(), *root_page);
if is_index {
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_btree(cursor));
} else {
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_btree(cursor));
}
state.pc += 1;
}
Insn::OpenWriteAwait {} => {
state.pc += 1;
}
Insn::Copy {
src_reg,
dst_reg,
amount,
} => {
for i in 0..=*amount {
state.registers[*dst_reg + i] = state.registers[*src_reg + i].clone();
}
state.pc += 1;
}
Insn::CreateBtree { db, root, flags } => {
if *db > 0 {
// TODO: implement temp databases
todo!("temp databases not implemented yet");
}
let root_page = pager.btree_create(*flags);
state.registers[*root] = OwnedValue::Integer(root_page as i64);
state.pc += 1;
}
Insn::Close { cursor_id } => {
let mut cursors = state.cursors.borrow_mut();
cursors.get_mut(*cursor_id).unwrap().take();
state.pc += 1;
}
Insn::IsNull { reg, target_pc } => {
if matches!(state.registers[*reg], OwnedValue::Null) {
state.pc = target_pc.to_offset_int();
} else {
state.pc += 1;
}
}
Insn::PageCount { db, dest } => {
if *db > 0 {
// TODO: implement temp databases
todo!("temp databases not implemented yet");
}
// SQLite returns "0" on an empty database, and 2 on the first insertion,
// so we'll mimic that behavior.
let mut pages = pager.db_header.borrow().database_size.into();
if pages == 1 {
pages = 0;
}
state.registers[*dest] = OwnedValue::Integer(pages);
state.pc += 1;
}
Insn::ParseSchema {
db: _,
where_clause,
} => {
let conn = self.connection.upgrade();
let conn = conn.as_ref().unwrap();
let stmt = conn.prepare(format!(
"SELECT * FROM sqlite_schema WHERE {}",
where_clause
))?;
let mut schema = RefCell::borrow_mut(&conn.schema);
// TODO: This function below is synchronous, make it async
parse_schema_rows(
Some(stmt),
&mut schema,
conn.pager.io.clone(),
&conn.db.syms.borrow(),
)?;
state.pc += 1;
}
Insn::ReadCookie { db, dest, cookie } => {
if *db > 0 {
// TODO: implement temp databases
todo!("temp databases not implemented yet");
}
let cookie_value = match cookie {
Cookie::UserVersion => pager.db_header.borrow().user_version.into(),
cookie => todo!("{cookie:?} is not yet implement for ReadCookie"),
};
state.registers[*dest] = OwnedValue::Integer(cookie_value);
state.pc += 1;
}
Insn::ShiftRight { lhs, rhs, dest } => {
state.registers[*dest] =
exec_shift_right(&state.registers[*lhs], &state.registers[*rhs]);
state.pc += 1;
}
Insn::ShiftLeft { lhs, rhs, dest } => {
state.registers[*dest] =
exec_shift_left(&state.registers[*lhs], &state.registers[*rhs]);
state.pc += 1;
}
Insn::Variable { index, dest } => {
state.registers[*dest] = state
.get_parameter(*index)
.ok_or(LimboError::Unbound(*index))?
.clone();
state.pc += 1;
}
Insn::ZeroOrNull { rg1, rg2, dest } => {
if state.registers[*rg1] == OwnedValue::Null
|| state.registers[*rg2] == OwnedValue::Null
{
state.registers[*dest] = OwnedValue::Null
} else {
state.registers[*dest] = OwnedValue::Integer(0);
}
state.pc += 1;
}
Insn::Not { reg, dest } => {
state.registers[*dest] = exec_boolean_not(&state.registers[*reg]);
state.pc += 1;
}
Insn::Concat { lhs, rhs, dest } => {
state.registers[*dest] =
exec_concat(&state.registers[*lhs], &state.registers[*rhs]);
state.pc += 1;
}
Insn::And { lhs, rhs, dest } => {
state.registers[*dest] =
exec_and(&state.registers[*lhs], &state.registers[*rhs]);
state.pc += 1;
}
Insn::Or { lhs, rhs, dest } => {
state.registers[*dest] =
exec_or(&state.registers[*lhs], &state.registers[*rhs]);
state.pc += 1;
}
Insn::Noop => {
// Do nothing
// Advance the program counter for the next opcode
state.pc += 1
}
}
}
}
fn halt(&self, pager: Rc<Pager>) -> Result<StepResult> {
let connection = self
.connection
.upgrade()
.expect("only weak ref to connection?");
let auto_commit = *connection.auto_commit.borrow();
tracing::trace!("Halt auto_commit {}", auto_commit);
if auto_commit {
let current_state = connection.transaction_state.borrow().clone();
if current_state == TransactionState::Read {
pager.end_read_tx()?;
return Ok(StepResult::Done);
}
match pager.end_tx() {
Ok(crate::storage::wal::CheckpointStatus::IO) => Ok(StepResult::IO),
Ok(crate::storage::wal::CheckpointStatus::Done(_)) => {
if self.change_cnt_on {
if let Some(conn) = self.connection.upgrade() {
conn.set_changes(self.n_change.get());
}
}
Ok(StepResult::Done)
}
Err(e) => Err(e),
}
} else {
if self.change_cnt_on {
if let Some(conn) = self.connection.upgrade() {
conn.set_changes(self.n_change.get());
}
}
Ok(StepResult::Done)
}
}
}
fn get_new_rowid<R: Rng>(cursor: &mut BTreeCursor, mut rng: R) -> Result<CursorResult<i64>> {
match cursor.seek_to_last()? {
CursorResult::Ok(()) => {}
CursorResult::IO => return Ok(CursorResult::IO),
}
let mut rowid = cursor
.rowid()?
.unwrap_or(0) // if BTree is empty - use 0 as initial value for rowid
.checked_add(1) // add 1 but be careful with overflows
.unwrap_or(u64::MAX); // in case of overflow - use u64::MAX
if rowid > i64::MAX.try_into().unwrap() {
let distribution = Uniform::from(1..=i64::MAX);
let max_attempts = 100;
for count in 0..max_attempts {
rowid = distribution.sample(&mut rng).try_into().unwrap();
match cursor.seek(SeekKey::TableRowId(rowid), SeekOp::EQ)? {
CursorResult::Ok(false) => break, // Found a non-existing rowid
CursorResult::Ok(true) => {
if count == max_attempts - 1 {
return Err(LimboError::InternalError(
"Failed to generate a new rowid".to_string(),
));
} else {
continue; // Try next random rowid
}
}
CursorResult::IO => return Ok(CursorResult::IO),
}
}
}
Ok(CursorResult::Ok(rowid.try_into().unwrap()))
}
fn make_owned_record(registers: &[OwnedValue], start_reg: &usize, count: &usize) -> Record {
let mut values = Vec::with_capacity(*count);
for r in registers.iter().skip(*start_reg).take(*count) {
values.push(r.clone())
}
Record::new(values)
}
fn trace_insn(program: &Program, addr: InsnReference, insn: &Insn) {
if !tracing::enabled!(tracing::Level::TRACE) {
return;
}
tracing::trace!(
"{}",
explain::insn_to_str(
program,
addr,
insn,
String::new(),
program
.comments
.as_ref()
.and_then(|comments| comments.get(&{ addr }).copied())
)
);
}
fn print_insn(program: &Program, addr: InsnReference, insn: &Insn, indent: String) {
let s = explain::insn_to_str(
program,
addr,
insn,
indent,
program
.comments
.as_ref()
.and_then(|comments| comments.get(&{ addr }).copied()),
);
println!("{}", s);
}
fn get_indent_count(indent_count: usize, curr_insn: &Insn, prev_insn: Option<&Insn>) -> usize {
let indent_count = if let Some(insn) = prev_insn {
match insn {
Insn::RewindAwait { .. }
| Insn::LastAwait { .. }
| Insn::SorterSort { .. }
| Insn::SeekGE { .. }
| Insn::SeekGT { .. } => indent_count + 1,
_ => indent_count,
}
} else {
indent_count
};
match curr_insn {
Insn::NextAsync { .. } | Insn::SorterNext { .. } | Insn::PrevAsync { .. } => {
indent_count - 1
}
_ => indent_count,
}
}
fn exec_lower(reg: &OwnedValue) -> Option<OwnedValue> {
match reg {
OwnedValue::Text(t) => Some(OwnedValue::build_text(&t.as_str().to_lowercase())),
t => Some(t.to_owned()),
}
}
fn exec_length(reg: &OwnedValue) -> OwnedValue {
match reg {
OwnedValue::Text(_) | OwnedValue::Integer(_) | OwnedValue::Float(_) => {
OwnedValue::Integer(reg.to_string().chars().count() as i64)
}
OwnedValue::Blob(blob) => OwnedValue::Integer(blob.len() as i64),
OwnedValue::Agg(aggctx) => exec_length(aggctx.final_value()),
_ => reg.to_owned(),
}
}
fn exec_octet_length(reg: &OwnedValue) -> OwnedValue {
match reg {
OwnedValue::Text(_) | OwnedValue::Integer(_) | OwnedValue::Float(_) => {
OwnedValue::Integer(reg.to_string().into_bytes().len() as i64)
}
OwnedValue::Blob(blob) => OwnedValue::Integer(blob.len() as i64),
OwnedValue::Agg(aggctx) => exec_octet_length(aggctx.final_value()),
_ => reg.to_owned(),
}
}
fn exec_upper(reg: &OwnedValue) -> Option<OwnedValue> {
match reg {
OwnedValue::Text(t) => Some(OwnedValue::build_text(&t.as_str().to_uppercase())),
t => Some(t.to_owned()),
}
}
fn exec_concat_strings(registers: &[OwnedValue]) -> OwnedValue {
let mut result = String::new();
for reg in registers {
match reg {
OwnedValue::Text(text) => result.push_str(text.as_str()),
OwnedValue::Integer(i) => result.push_str(&i.to_string()),
OwnedValue::Float(f) => result.push_str(&f.to_string()),
OwnedValue::Agg(aggctx) => result.push_str(&aggctx.final_value().to_string()),
OwnedValue::Null => continue,
OwnedValue::Blob(_) => todo!("TODO concat blob"),
OwnedValue::Record(_) => unreachable!(),
}
}
OwnedValue::build_text(&result)
}
fn exec_concat_ws(registers: &[OwnedValue]) -> OwnedValue {
if registers.is_empty() {
return OwnedValue::Null;
}
let separator = match &registers[0] {
OwnedValue::Text(text) => text.as_str().to_string(),
OwnedValue::Integer(i) => i.to_string(),
OwnedValue::Float(f) => f.to_string(),
_ => return OwnedValue::Null,
};
let mut result = String::new();
for (i, reg) in registers.iter().enumerate().skip(1) {
if i > 1 {
result.push_str(&separator);
}
match reg {
OwnedValue::Text(text) => result.push_str(text.as_str()),
OwnedValue::Integer(i) => result.push_str(&i.to_string()),
OwnedValue::Float(f) => result.push_str(&f.to_string()),
_ => continue,
}
}
OwnedValue::build_text(&result)
}
fn exec_sign(reg: &OwnedValue) -> Option<OwnedValue> {
let num = match reg {
OwnedValue::Integer(i) => *i as f64,
OwnedValue::Float(f) => *f,
OwnedValue::Text(s) => {
if let Ok(i) = s.as_str().parse::<i64>() {
i as f64
} else if let Ok(f) = s.as_str().parse::<f64>() {
f
} else {
return Some(OwnedValue::Null);
}
}
OwnedValue::Blob(b) => match std::str::from_utf8(b) {
Ok(s) => {
if let Ok(i) = s.parse::<i64>() {
i as f64
} else if let Ok(f) = s.parse::<f64>() {
f
} else {
return Some(OwnedValue::Null);
}
}
Err(_) => return Some(OwnedValue::Null),
},
_ => return Some(OwnedValue::Null),
};
let sign = if num > 0.0 {
1
} else if num < 0.0 {
-1
} else {
0
};
Some(OwnedValue::Integer(sign))
}
/// Generates the Soundex code for a given word
pub fn exec_soundex(reg: &OwnedValue) -> OwnedValue {
let s = match reg {
OwnedValue::Null => return OwnedValue::build_text("?000"),
OwnedValue::Text(s) => {
// return ?000 if non ASCII alphabet character is found
if !s.as_str().chars().all(|c| c.is_ascii_alphabetic()) {
return OwnedValue::build_text("?000");
}
s.clone()
}
_ => return OwnedValue::build_text("?000"), // For unsupported types, return NULL
};
// Remove numbers and spaces
let word: String = s
.as_str()
.chars()
.filter(|c| !c.is_ascii_digit())
.collect::<String>()
.replace(" ", "");
if word.is_empty() {
return OwnedValue::build_text("0000");
}
let soundex_code = |c| match c {
'b' | 'f' | 'p' | 'v' => Some('1'),
'c' | 'g' | 'j' | 'k' | 'q' | 's' | 'x' | 'z' => Some('2'),
'd' | 't' => Some('3'),
'l' => Some('4'),
'm' | 'n' => Some('5'),
'r' => Some('6'),
_ => None,
};
// Convert the word to lowercase for consistent lookups
let word = word.to_lowercase();
let first_letter = word.chars().next().unwrap();
// Remove all occurrences of 'h' and 'w' except the first letter
let code: String = word
.chars()
.skip(1)
.filter(|&ch| ch != 'h' && ch != 'w')
.fold(first_letter.to_string(), |mut acc, ch| {
acc.push(ch);
acc
});
// Replace consonants with digits based on Soundex mapping
let tmp: String = code
.chars()
.map(|ch| match soundex_code(ch) {
Some(code) => code.to_string(),
None => ch.to_string(),
})
.collect();
// Remove adjacent same digits
let tmp = tmp.chars().fold(String::new(), |mut acc, ch| {
if !acc.ends_with(ch) {
acc.push(ch);
}
acc
});
// Remove all occurrences of a, e, i, o, u, y except the first letter
let mut result = tmp
.chars()
.enumerate()
.filter(|(i, ch)| *i == 0 || !matches!(ch, 'a' | 'e' | 'i' | 'o' | 'u' | 'y'))
.map(|(_, ch)| ch)
.collect::<String>();
// If the first symbol is a digit, replace it with the saved first letter
if let Some(first_digit) = result.chars().next() {
if first_digit.is_ascii_digit() {
result.replace_range(0..1, &first_letter.to_string());
}
}
// Append zeros if the result contains less than 4 characters
while result.len() < 4 {
result.push('0');
}
// Retain the first 4 characters and convert to uppercase
result.truncate(4);
OwnedValue::build_text(&result.to_uppercase())
}
fn exec_abs(reg: &OwnedValue) -> Result<OwnedValue> {
match reg {
OwnedValue::Integer(x) => {
match i64::checked_abs(*x) {
Some(y) => Ok(OwnedValue::Integer(y)),
// Special case: if we do the abs of "-9223372036854775808", it causes overflow.
// return IntegerOverflow error
None => Err(LimboError::IntegerOverflow),
}
}
OwnedValue::Float(x) => {
if x < &0.0 {
Ok(OwnedValue::Float(-x))
} else {
Ok(OwnedValue::Float(*x))
}
}
OwnedValue::Null => Ok(OwnedValue::Null),
_ => Ok(OwnedValue::Float(0.0)),
}
}
fn exec_random() -> OwnedValue {
let mut buf = [0u8; 8];
getrandom::getrandom(&mut buf).unwrap();
let random_number = i64::from_ne_bytes(buf);
OwnedValue::Integer(random_number)
}
fn exec_randomblob(reg: &OwnedValue) -> OwnedValue {
let length = match reg {
OwnedValue::Integer(i) => *i,
OwnedValue::Float(f) => *f as i64,
OwnedValue::Text(t) => t.as_str().parse().unwrap_or(1),
_ => 1,
}
.max(1) as usize;
let mut blob: Vec<u8> = vec![0; length];
getrandom::getrandom(&mut blob).expect("Failed to generate random blob");
OwnedValue::Blob(Rc::new(blob))
}
fn exec_quote(value: &OwnedValue) -> OwnedValue {
match value {
OwnedValue::Null => OwnedValue::build_text(&OwnedValue::Null.to_string()),
OwnedValue::Integer(_) | OwnedValue::Float(_) => value.to_owned(),
OwnedValue::Blob(_) => todo!(),
OwnedValue::Text(s) => {
let mut quoted = String::with_capacity(s.as_str().len() + 2);
quoted.push('\'');
for c in s.as_str().chars() {
if c == '\0' {
break;
} else if c == '\'' {
quoted.push('\'');
quoted.push(c);
} else {
quoted.push(c);
}
}
quoted.push('\'');
OwnedValue::build_text(&quoted)
}
_ => OwnedValue::Null, // For unsupported types, return NULL
}
}
fn exec_char(values: Vec<OwnedValue>) -> OwnedValue {
let result: String = values
.iter()
.filter_map(|x| {
if let OwnedValue::Integer(i) = x {
Some(*i as u8 as char)
} else {
None
}
})
.collect();
OwnedValue::build_text(&result)
}
fn construct_like_regex(pattern: &str) -> Regex {
let mut regex_pattern = String::with_capacity(pattern.len() * 2);
regex_pattern.push('^');
for c in pattern.chars() {
match c {
'\\' => regex_pattern.push_str("\\\\"),
'%' => regex_pattern.push_str(".*"),
'_' => regex_pattern.push('.'),
ch => {
if regex_syntax::is_meta_character(c) {
regex_pattern.push('\\');
}
regex_pattern.push(ch);
}
}
}
regex_pattern.push('$');
RegexBuilder::new(&regex_pattern)
.case_insensitive(true)
.dot_matches_new_line(true)
.build()
.unwrap()
}
// Implements LIKE pattern matching. Caches the constructed regex if a cache is provided
fn exec_like(regex_cache: Option<&mut HashMap<String, Regex>>, pattern: &str, text: &str) -> bool {
if let Some(cache) = regex_cache {
match cache.get(pattern) {
Some(re) => re.is_match(text),
None => {
let re = construct_like_regex(pattern);
let res = re.is_match(text);
cache.insert(pattern.to_string(), re);
res
}
}
} else {
let re = construct_like_regex(pattern);
re.is_match(text)
}
}
fn exec_min(regs: Vec<&OwnedValue>) -> OwnedValue {
regs.iter()
.min()
.map(|&v| v.to_owned())
.unwrap_or(OwnedValue::Null)
}
fn exec_max(regs: Vec<&OwnedValue>) -> OwnedValue {
regs.iter()
.max()
.map(|&v| v.to_owned())
.unwrap_or(OwnedValue::Null)
}
fn exec_nullif(first_value: &OwnedValue, second_value: &OwnedValue) -> OwnedValue {
if first_value != second_value {
first_value.clone()
} else {
OwnedValue::Null
}
}
fn exec_substring(
str_value: &OwnedValue,
start_value: &OwnedValue,
length_value: Option<&OwnedValue>,
) -> OwnedValue {
if let (OwnedValue::Text(str), OwnedValue::Integer(start)) = (str_value, start_value) {
let str_len = str.as_str().len() as i64;
// The left-most character of X is number 1.
// If Y is negative then the first character of the substring is found by counting from the right rather than the left.
let first_position = if *start < 0 {
str_len.saturating_sub((*start).abs())
} else {
*start - 1
};
// If Z is negative then the abs(Z) characters preceding the Y-th character are returned.
let last_position = match length_value {
Some(OwnedValue::Integer(length)) => first_position + *length,
_ => str_len,
};
let (start, end) = if first_position <= last_position {
(first_position, last_position)
} else {
(last_position, first_position)
};
OwnedValue::build_text(
&str.as_str()[start.clamp(-0, str_len) as usize..end.clamp(0, str_len) as usize],
)
} else {
OwnedValue::Null
}
}
fn exec_instr(reg: &OwnedValue, pattern: &OwnedValue) -> OwnedValue {
if reg == &OwnedValue::Null || pattern == &OwnedValue::Null {
return OwnedValue::Null;
}
if let (OwnedValue::Blob(reg), OwnedValue::Blob(pattern)) = (reg, pattern) {
let result = reg
.windows(pattern.len())
.position(|window| window == **pattern)
.map_or(0, |i| i + 1);
return OwnedValue::Integer(result as i64);
}
let reg_str;
let reg = match reg {
OwnedValue::Text(s) => s.as_str(),
_ => {
reg_str = reg.to_string();
reg_str.as_str()
}
};
let pattern_str;
let pattern = match pattern {
OwnedValue::Text(s) => s.as_str(),
_ => {
pattern_str = pattern.to_string();
pattern_str.as_str()
}
};
match reg.find(pattern) {
Some(position) => OwnedValue::Integer(position as i64 + 1),
None => OwnedValue::Integer(0),
}
}
fn exec_typeof(reg: &OwnedValue) -> OwnedValue {
match reg {
OwnedValue::Null => OwnedValue::build_text("null"),
OwnedValue::Integer(_) => OwnedValue::build_text("integer"),
OwnedValue::Float(_) => OwnedValue::build_text("real"),
OwnedValue::Text(_) => OwnedValue::build_text("text"),
OwnedValue::Blob(_) => OwnedValue::build_text("blob"),
OwnedValue::Agg(ctx) => exec_typeof(ctx.final_value()),
OwnedValue::Record(_) => unimplemented!(),
}
}
fn exec_hex(reg: &OwnedValue) -> OwnedValue {
match reg {
OwnedValue::Text(_)
| OwnedValue::Integer(_)
| OwnedValue::Float(_)
| OwnedValue::Blob(_) => {
let text = reg.to_string();
OwnedValue::build_text(&hex::encode_upper(text))
}
_ => OwnedValue::Null,
}
}
fn exec_unhex(reg: &OwnedValue, ignored_chars: Option<&OwnedValue>) -> OwnedValue {
match reg {
OwnedValue::Null => OwnedValue::Null,
_ => match ignored_chars {
None => match hex::decode(reg.to_string()) {
Ok(bytes) => OwnedValue::Blob(Rc::new(bytes)),
Err(_) => OwnedValue::Null,
},
Some(ignore) => match ignore {
OwnedValue::Text(_) => {
let pat = ignore.to_string();
let trimmed = reg
.to_string()
.trim_start_matches(|x| pat.contains(x))
.trim_end_matches(|x| pat.contains(x))
.to_string();
match hex::decode(trimmed) {
Ok(bytes) => OwnedValue::Blob(Rc::new(bytes)),
Err(_) => OwnedValue::Null,
}
}
_ => OwnedValue::Null,
},
},
}
}
fn exec_unicode(reg: &OwnedValue) -> OwnedValue {
match reg {
OwnedValue::Text(_)
| OwnedValue::Integer(_)
| OwnedValue::Float(_)
| OwnedValue::Blob(_) => {
let text = reg.to_string();
if let Some(first_char) = text.chars().next() {
OwnedValue::Integer(first_char as u32 as i64)
} else {
OwnedValue::Null
}
}
_ => OwnedValue::Null,
}
}
fn _to_float(reg: &OwnedValue) -> f64 {
match reg {
OwnedValue::Text(x) => match cast_text_to_numeric(x.as_str()) {
OwnedValue::Integer(i) => i as f64,
OwnedValue::Float(f) => f,
_ => unreachable!(),
},
OwnedValue::Integer(x) => *x as f64,
OwnedValue::Float(x) => *x,
OwnedValue::Agg(ctx) => _to_float(ctx.final_value()),
_ => 0.0,
}
}
fn exec_round(reg: &OwnedValue, precision: Option<OwnedValue>) -> OwnedValue {
let reg = _to_float(reg);
let round = |reg: f64, f: f64| {
let precision = if f < 1.0 { 0.0 } else { f };
OwnedValue::Float(reg.round_to_precision(precision as i32))
};
match precision {
Some(OwnedValue::Text(x)) => match cast_text_to_numeric(x.as_str()) {
OwnedValue::Integer(i) => round(reg, i as f64),
OwnedValue::Float(f) => round(reg, f),
_ => unreachable!(),
},
Some(OwnedValue::Integer(i)) => round(reg, i as f64),
Some(OwnedValue::Float(f)) => round(reg, f),
None => round(reg, 0.0),
_ => OwnedValue::Null,
}
}
// Implements TRIM pattern matching.
fn exec_trim(reg: &OwnedValue, pattern: Option<OwnedValue>) -> OwnedValue {
match (reg, pattern) {
(reg, Some(pattern)) => match reg {
OwnedValue::Text(_) | OwnedValue::Integer(_) | OwnedValue::Float(_) => {
let pattern_chars: Vec<char> = pattern.to_string().chars().collect();
OwnedValue::build_text(reg.to_string().trim_matches(&pattern_chars[..]))
}
_ => reg.to_owned(),
},
(OwnedValue::Text(t), None) => OwnedValue::build_text(t.as_str().trim()),
(reg, _) => reg.to_owned(),
}
}
// Implements LTRIM pattern matching.
fn exec_ltrim(reg: &OwnedValue, pattern: Option<OwnedValue>) -> OwnedValue {
match (reg, pattern) {
(reg, Some(pattern)) => match reg {
OwnedValue::Text(_) | OwnedValue::Integer(_) | OwnedValue::Float(_) => {
let pattern_chars: Vec<char> = pattern.to_string().chars().collect();
OwnedValue::build_text(reg.to_string().trim_start_matches(&pattern_chars[..]))
}
_ => reg.to_owned(),
},
(OwnedValue::Text(t), None) => OwnedValue::build_text(t.as_str().trim_start()),
(reg, _) => reg.to_owned(),
}
}
// Implements RTRIM pattern matching.
fn exec_rtrim(reg: &OwnedValue, pattern: Option<OwnedValue>) -> OwnedValue {
match (reg, pattern) {
(reg, Some(pattern)) => match reg {
OwnedValue::Text(_) | OwnedValue::Integer(_) | OwnedValue::Float(_) => {
let pattern_chars: Vec<char> = pattern.to_string().chars().collect();
OwnedValue::build_text(reg.to_string().trim_end_matches(&pattern_chars[..]))
}
_ => reg.to_owned(),
},
(OwnedValue::Text(t), None) => OwnedValue::build_text(t.as_str().trim_end()),
(reg, _) => reg.to_owned(),
}
}
fn exec_zeroblob(req: &OwnedValue) -> OwnedValue {
let length: i64 = match req {
OwnedValue::Integer(i) => *i,
OwnedValue::Float(f) => *f as i64,
OwnedValue::Text(s) => s.as_str().parse().unwrap_or(0),
_ => 0,
};
OwnedValue::Blob(Rc::new(vec![0; length.max(0) as usize]))
}
// exec_if returns whether you should jump
fn exec_if(reg: &OwnedValue, jump_if_null: bool, not: bool) -> bool {
match reg {
OwnedValue::Integer(0) | OwnedValue::Float(0.0) => not,
OwnedValue::Integer(_) | OwnedValue::Float(_) => !not,
OwnedValue::Null => jump_if_null,
_ => false,
}
}
fn exec_cast(value: &OwnedValue, datatype: &str) -> OwnedValue {
if matches!(value, OwnedValue::Null) {
return OwnedValue::Null;
}
match affinity(datatype) {
// NONE Casting a value to a type-name with no affinity causes the value to be converted into a BLOB. Casting to a BLOB consists of first casting the value to TEXT in the encoding of the database connection, then interpreting the resulting byte sequence as a BLOB instead of as TEXT.
// Historically called NONE, but it's the same as BLOB
Affinity::Blob => {
// Convert to TEXT first, then interpret as BLOB
// TODO: handle encoding
let text = value.to_string();
OwnedValue::Blob(Rc::new(text.into_bytes()))
}
// TEXT To cast a BLOB value to TEXT, the sequence of bytes that make up the BLOB is interpreted as text encoded using the database encoding.
// Casting an INTEGER or REAL value into TEXT renders the value as if via sqlite3_snprintf() except that the resulting TEXT uses the encoding of the database connection.
Affinity::Text => {
// Convert everything to text representation
// TODO: handle encoding and whatever sqlite3_snprintf does
OwnedValue::build_text(&value.to_string())
}
Affinity::Real => match value {
OwnedValue::Blob(b) => {
// Convert BLOB to TEXT first
let text = String::from_utf8_lossy(b);
cast_text_to_real(&text)
}
OwnedValue::Text(t) => cast_text_to_real(t.as_str()),
OwnedValue::Integer(i) => OwnedValue::Float(*i as f64),
OwnedValue::Float(f) => OwnedValue::Float(*f),
_ => OwnedValue::Float(0.0),
},
Affinity::Integer => match value {
OwnedValue::Blob(b) => {
// Convert BLOB to TEXT first
let text = String::from_utf8_lossy(b);
cast_text_to_integer(&text)
}
OwnedValue::Text(t) => cast_text_to_integer(t.as_str()),
OwnedValue::Integer(i) => OwnedValue::Integer(*i),
// A cast of a REAL value into an INTEGER results in the integer between the REAL value and zero
// that is closest to the REAL value. If a REAL is greater than the greatest possible signed integer (+9223372036854775807)
// then the result is the greatest possible signed integer and if the REAL is less than the least possible signed integer (-9223372036854775808)
// then the result is the least possible signed integer.
OwnedValue::Float(f) => {
let i = f.trunc() as i128;
if i > i64::MAX as i128 {
OwnedValue::Integer(i64::MAX)
} else if i < i64::MIN as i128 {
OwnedValue::Integer(i64::MIN)
} else {
OwnedValue::Integer(i as i64)
}
}
_ => OwnedValue::Integer(0),
},
Affinity::Numeric => match value {
OwnedValue::Blob(b) => {
let text = String::from_utf8_lossy(b);
cast_text_to_numeric(&text)
}
OwnedValue::Text(t) => cast_text_to_numeric(t.as_str()),
OwnedValue::Integer(i) => OwnedValue::Integer(*i),
OwnedValue::Float(f) => OwnedValue::Float(*f),
_ => value.clone(), // TODO probably wrong
},
}
}
fn exec_replace(source: &OwnedValue, pattern: &OwnedValue, replacement: &OwnedValue) -> OwnedValue {
// The replace(X,Y,Z) function returns a string formed by substituting string Z for every occurrence of
// string Y in string X. The BINARY collating sequence is used for comparisons. If Y is an empty string
// then return X unchanged. If Z is not initially a string, it is cast to a UTF-8 string prior to processing.
// If any of the arguments is NULL, the result is NULL.
if matches!(source, OwnedValue::Null)
|| matches!(pattern, OwnedValue::Null)
|| matches!(replacement, OwnedValue::Null)
{
return OwnedValue::Null;
}
let source = exec_cast(source, "TEXT");
let pattern = exec_cast(pattern, "TEXT");
let replacement = exec_cast(replacement, "TEXT");
// If any of the casts failed, panic as text casting is not expected to fail.
match (&source, &pattern, &replacement) {
(OwnedValue::Text(source), OwnedValue::Text(pattern), OwnedValue::Text(replacement)) => {
if pattern.as_str().is_empty() {
return OwnedValue::Text(source.clone());
}
let result = source
.as_str()
.replace(pattern.as_str(), replacement.as_str());
OwnedValue::build_text(&result)
}
_ => unreachable!("text cast should never fail"),
}
}
fn execute_sqlite_version(version_integer: i64) -> String {
let major = version_integer / 1_000_000;
let minor = (version_integer % 1_000_000) / 1_000;
let release = version_integer % 1_000;
format!("{}.{}.{}", major, minor, release)
}
fn to_f64(reg: &OwnedValue) -> Option<f64> {
match reg {
OwnedValue::Integer(i) => Some(*i as f64),
OwnedValue::Float(f) => Some(*f),
OwnedValue::Text(t) => t.as_str().parse::<f64>().ok(),
OwnedValue::Agg(ctx) => to_f64(ctx.final_value()),
_ => None,
}
}
fn exec_math_unary(reg: &OwnedValue, function: &MathFunc) -> OwnedValue {
// In case of some functions and integer input, return the input as is
if let OwnedValue::Integer(_) = reg {
if matches! { function, MathFunc::Ceil | MathFunc::Ceiling | MathFunc::Floor | MathFunc::Trunc }
{
return reg.clone();
}
}
let f = match to_f64(reg) {
Some(f) => f,
None => return OwnedValue::Null,
};
let result = match function {
MathFunc::Acos => f.acos(),
MathFunc::Acosh => f.acosh(),
MathFunc::Asin => f.asin(),
MathFunc::Asinh => f.asinh(),
MathFunc::Atan => f.atan(),
MathFunc::Atanh => f.atanh(),
MathFunc::Ceil | MathFunc::Ceiling => f.ceil(),
MathFunc::Cos => f.cos(),
MathFunc::Cosh => f.cosh(),
MathFunc::Degrees => f.to_degrees(),
MathFunc::Exp => f.exp(),
MathFunc::Floor => f.floor(),
MathFunc::Ln => f.ln(),
MathFunc::Log10 => f.log10(),
MathFunc::Log2 => f.log2(),
MathFunc::Radians => f.to_radians(),
MathFunc::Sin => f.sin(),
MathFunc::Sinh => f.sinh(),
MathFunc::Sqrt => f.sqrt(),
MathFunc::Tan => f.tan(),
MathFunc::Tanh => f.tanh(),
MathFunc::Trunc => f.trunc(),
_ => unreachable!("Unexpected mathematical unary function {:?}", function),
};
if result.is_nan() {
OwnedValue::Null
} else {
OwnedValue::Float(result)
}
}
fn exec_math_binary(lhs: &OwnedValue, rhs: &OwnedValue, function: &MathFunc) -> OwnedValue {
let lhs = match to_f64(lhs) {
Some(f) => f,
None => return OwnedValue::Null,
};
let rhs = match to_f64(rhs) {
Some(f) => f,
None => return OwnedValue::Null,
};
let result = match function {
MathFunc::Atan2 => lhs.atan2(rhs),
MathFunc::Mod => lhs % rhs,
MathFunc::Pow | MathFunc::Power => lhs.powf(rhs),
_ => unreachable!("Unexpected mathematical binary function {:?}", function),
};
if result.is_nan() {
OwnedValue::Null
} else {
OwnedValue::Float(result)
}
}
fn exec_math_log(arg: &OwnedValue, base: Option<&OwnedValue>) -> OwnedValue {
let f = match to_f64(arg) {
Some(f) => f,
None => return OwnedValue::Null,
};
let base = match base {
Some(base) => match to_f64(base) {
Some(f) => f,
None => return OwnedValue::Null,
},
None => 10.0,
};
if f <= 0.0 || base <= 0.0 || base == 1.0 {
return OwnedValue::Null;
}
OwnedValue::Float(f.log(base))
}
#[cfg(test)]
mod tests {
use crate::vdbe::exec_replace;
use super::{
exec_abs, exec_char, exec_hex, exec_if, exec_instr, exec_length, exec_like, exec_lower,
exec_ltrim, exec_max, exec_min, exec_nullif, exec_quote, exec_random, exec_randomblob,
exec_round, exec_rtrim, exec_sign, exec_soundex, exec_substring, exec_trim, exec_typeof,
exec_unhex, exec_unicode, exec_upper, exec_zeroblob, execute_sqlite_version, AggContext,
Bitfield, OwnedValue,
};
use std::{collections::HashMap, rc::Rc};
#[test]
fn test_length() {
let input_str = OwnedValue::build_text("bob");
let expected_len = OwnedValue::Integer(3);
assert_eq!(exec_length(&input_str), expected_len);
let input_integer = OwnedValue::Integer(123);
let expected_len = OwnedValue::Integer(3);
assert_eq!(exec_length(&input_integer), expected_len);
let input_float = OwnedValue::Float(123.456);
let expected_len = OwnedValue::Integer(7);
assert_eq!(exec_length(&input_float), expected_len);
let expected_blob = OwnedValue::Blob(Rc::new("example".as_bytes().to_vec()));
let expected_len = OwnedValue::Integer(7);
assert_eq!(exec_length(&expected_blob), expected_len);
}
#[test]
fn test_quote() {
let input = OwnedValue::build_text("abc\0edf");
let expected = OwnedValue::build_text("'abc'");
assert_eq!(exec_quote(&input), expected);
let input = OwnedValue::Integer(123);
let expected = OwnedValue::Integer(123);
assert_eq!(exec_quote(&input), expected);
let input = OwnedValue::build_text("hello''world");
let expected = OwnedValue::build_text("'hello''''world'");
assert_eq!(exec_quote(&input), expected);
}
#[test]
fn test_typeof() {
let input = OwnedValue::Null;
let expected: OwnedValue = OwnedValue::build_text("null");
assert_eq!(exec_typeof(&input), expected);
let input = OwnedValue::Integer(123);
let expected: OwnedValue = OwnedValue::build_text("integer");
assert_eq!(exec_typeof(&input), expected);
let input = OwnedValue::Float(123.456);
let expected: OwnedValue = OwnedValue::build_text("real");
assert_eq!(exec_typeof(&input), expected);
let input = OwnedValue::build_text("hello");
let expected: OwnedValue = OwnedValue::build_text("text");
assert_eq!(exec_typeof(&input), expected);
let input = OwnedValue::Blob(Rc::new("limbo".as_bytes().to_vec()));
let expected: OwnedValue = OwnedValue::build_text("blob");
assert_eq!(exec_typeof(&input), expected);
let input = OwnedValue::Agg(Box::new(AggContext::Sum(OwnedValue::Integer(123))));
let expected = OwnedValue::build_text("integer");
assert_eq!(exec_typeof(&input), expected);
}
#[test]
fn test_unicode() {
assert_eq!(
exec_unicode(&OwnedValue::build_text("a")),
OwnedValue::Integer(97)
);
assert_eq!(
exec_unicode(&OwnedValue::build_text("😊")),
OwnedValue::Integer(128522)
);
assert_eq!(exec_unicode(&OwnedValue::build_text("")), OwnedValue::Null);
assert_eq!(
exec_unicode(&OwnedValue::Integer(23)),
OwnedValue::Integer(50)
);
assert_eq!(
exec_unicode(&OwnedValue::Integer(0)),
OwnedValue::Integer(48)
);
assert_eq!(
exec_unicode(&OwnedValue::Float(0.0)),
OwnedValue::Integer(48)
);
assert_eq!(
exec_unicode(&OwnedValue::Float(23.45)),
OwnedValue::Integer(50)
);
assert_eq!(exec_unicode(&OwnedValue::Null), OwnedValue::Null);
assert_eq!(
exec_unicode(&OwnedValue::Blob(Rc::new("example".as_bytes().to_vec()))),
OwnedValue::Integer(101)
);
}
#[test]
fn test_min_max() {
let input_int_vec = vec![&OwnedValue::Integer(-1), &OwnedValue::Integer(10)];
assert_eq!(exec_min(input_int_vec.clone()), OwnedValue::Integer(-1));
assert_eq!(exec_max(input_int_vec.clone()), OwnedValue::Integer(10));
let str1 = OwnedValue::build_text("A");
let str2 = OwnedValue::build_text("z");
let input_str_vec = vec![&str2, &str1];
assert_eq!(exec_min(input_str_vec.clone()), OwnedValue::build_text("A"));
assert_eq!(exec_max(input_str_vec.clone()), OwnedValue::build_text("z"));
let input_null_vec = vec![&OwnedValue::Null, &OwnedValue::Null];
assert_eq!(exec_min(input_null_vec.clone()), OwnedValue::Null);
assert_eq!(exec_max(input_null_vec.clone()), OwnedValue::Null);
let input_mixed_vec = vec![&OwnedValue::Integer(10), &str1];
assert_eq!(exec_min(input_mixed_vec.clone()), OwnedValue::Integer(10));
assert_eq!(
exec_max(input_mixed_vec.clone()),
OwnedValue::build_text("A")
);
}
#[test]
fn test_trim() {
let input_str = OwnedValue::build_text(" Bob and Alice ");
let expected_str = OwnedValue::build_text("Bob and Alice");
assert_eq!(exec_trim(&input_str, None), expected_str);
let input_str = OwnedValue::build_text(" Bob and Alice ");
let pattern_str = OwnedValue::build_text("Bob and");
let expected_str = OwnedValue::build_text("Alice");
assert_eq!(exec_trim(&input_str, Some(pattern_str)), expected_str);
}
#[test]
fn test_ltrim() {
let input_str = OwnedValue::build_text(" Bob and Alice ");
let expected_str = OwnedValue::build_text("Bob and Alice ");
assert_eq!(exec_ltrim(&input_str, None), expected_str);
let input_str = OwnedValue::build_text(" Bob and Alice ");
let pattern_str = OwnedValue::build_text("Bob and");
let expected_str = OwnedValue::build_text("Alice ");
assert_eq!(exec_ltrim(&input_str, Some(pattern_str)), expected_str);
}
#[test]
fn test_rtrim() {
let input_str = OwnedValue::build_text(" Bob and Alice ");
let expected_str = OwnedValue::build_text(" Bob and Alice");
assert_eq!(exec_rtrim(&input_str, None), expected_str);
let input_str = OwnedValue::build_text(" Bob and Alice ");
let pattern_str = OwnedValue::build_text("Bob and");
let expected_str = OwnedValue::build_text(" Bob and Alice");
assert_eq!(exec_rtrim(&input_str, Some(pattern_str)), expected_str);
let input_str = OwnedValue::build_text(" Bob and Alice ");
let pattern_str = OwnedValue::build_text("and Alice");
let expected_str = OwnedValue::build_text(" Bob");
assert_eq!(exec_rtrim(&input_str, Some(pattern_str)), expected_str);
}
#[test]
fn test_soundex() {
let input_str = OwnedValue::build_text("Pfister");
let expected_str = OwnedValue::build_text("P236");
assert_eq!(exec_soundex(&input_str), expected_str);
let input_str = OwnedValue::build_text("husobee");
let expected_str = OwnedValue::build_text("H210");
assert_eq!(exec_soundex(&input_str), expected_str);
let input_str = OwnedValue::build_text("Tymczak");
let expected_str = OwnedValue::build_text("T522");
assert_eq!(exec_soundex(&input_str), expected_str);
let input_str = OwnedValue::build_text("Ashcraft");
let expected_str = OwnedValue::build_text("A261");
assert_eq!(exec_soundex(&input_str), expected_str);
let input_str = OwnedValue::build_text("Robert");
let expected_str = OwnedValue::build_text("R163");
assert_eq!(exec_soundex(&input_str), expected_str);
let input_str = OwnedValue::build_text("Rupert");
let expected_str = OwnedValue::build_text("R163");
assert_eq!(exec_soundex(&input_str), expected_str);
let input_str = OwnedValue::build_text("Rubin");
let expected_str = OwnedValue::build_text("R150");
assert_eq!(exec_soundex(&input_str), expected_str);
let input_str = OwnedValue::build_text("Kant");
let expected_str = OwnedValue::build_text("K530");
assert_eq!(exec_soundex(&input_str), expected_str);
let input_str = OwnedValue::build_text("Knuth");
let expected_str = OwnedValue::build_text("K530");
assert_eq!(exec_soundex(&input_str), expected_str);
let input_str = OwnedValue::build_text("x");
let expected_str = OwnedValue::build_text("X000");
assert_eq!(exec_soundex(&input_str), expected_str);
let input_str = OwnedValue::build_text("闪电五连鞭");
let expected_str = OwnedValue::build_text("?000");
assert_eq!(exec_soundex(&input_str), expected_str);
}
#[test]
fn test_upper_case() {
let input_str = OwnedValue::build_text("Limbo");
let expected_str = OwnedValue::build_text("LIMBO");
assert_eq!(exec_upper(&input_str).unwrap(), expected_str);
let input_int = OwnedValue::Integer(10);
assert_eq!(exec_upper(&input_int).unwrap(), input_int);
assert_eq!(exec_upper(&OwnedValue::Null).unwrap(), OwnedValue::Null)
}
#[test]
fn test_lower_case() {
let input_str = OwnedValue::build_text("Limbo");
let expected_str = OwnedValue::build_text("limbo");
assert_eq!(exec_lower(&input_str).unwrap(), expected_str);
let input_int = OwnedValue::Integer(10);
assert_eq!(exec_lower(&input_int).unwrap(), input_int);
assert_eq!(exec_lower(&OwnedValue::Null).unwrap(), OwnedValue::Null)
}
#[test]
fn test_hex() {
let input_str = OwnedValue::build_text("limbo");
let expected_val = OwnedValue::build_text("6C696D626F");
assert_eq!(exec_hex(&input_str), expected_val);
let input_int = OwnedValue::Integer(100);
let expected_val = OwnedValue::build_text("313030");
assert_eq!(exec_hex(&input_int), expected_val);
let input_float = OwnedValue::Float(12.34);
let expected_val = OwnedValue::build_text("31322E3334");
assert_eq!(exec_hex(&input_float), expected_val);
}
#[test]
fn test_unhex() {
let input = OwnedValue::build_text("6f");
let expected = OwnedValue::Blob(Rc::new(vec![0x6f]));
assert_eq!(exec_unhex(&input, None), expected);
let input = OwnedValue::build_text("6f");
let expected = OwnedValue::Blob(Rc::new(vec![0x6f]));
assert_eq!(exec_unhex(&input, None), expected);
let input = OwnedValue::build_text("611");
let expected = OwnedValue::Null;
assert_eq!(exec_unhex(&input, None), expected);
let input = OwnedValue::build_text("");
let expected = OwnedValue::Blob(Rc::new(vec![]));
assert_eq!(exec_unhex(&input, None), expected);
let input = OwnedValue::build_text("61x");
let expected = OwnedValue::Null;
assert_eq!(exec_unhex(&input, None), expected);
let input = OwnedValue::Null;
let expected = OwnedValue::Null;
assert_eq!(exec_unhex(&input, None), expected);
}
#[test]
fn test_abs() {
let int_positive_reg = OwnedValue::Integer(10);
let int_negative_reg = OwnedValue::Integer(-10);
assert_eq!(exec_abs(&int_positive_reg).unwrap(), int_positive_reg);
assert_eq!(exec_abs(&int_negative_reg).unwrap(), int_positive_reg);
let float_positive_reg = OwnedValue::Integer(10);
let float_negative_reg = OwnedValue::Integer(-10);
assert_eq!(exec_abs(&float_positive_reg).unwrap(), float_positive_reg);
assert_eq!(exec_abs(&float_negative_reg).unwrap(), float_positive_reg);
assert_eq!(
exec_abs(&OwnedValue::build_text("a")).unwrap(),
OwnedValue::Float(0.0)
);
assert_eq!(exec_abs(&OwnedValue::Null).unwrap(), OwnedValue::Null);
// ABS(i64::MIN) should return RuntimeError
assert!(exec_abs(&OwnedValue::Integer(i64::MIN)).is_err());
}
#[test]
fn test_char() {
assert_eq!(
exec_char(vec![OwnedValue::Integer(108), OwnedValue::Integer(105)]),
OwnedValue::build_text("li")
);
assert_eq!(exec_char(vec![]), OwnedValue::build_text(""));
assert_eq!(
exec_char(vec![OwnedValue::Null]),
OwnedValue::build_text("")
);
assert_eq!(
exec_char(vec![OwnedValue::build_text("a")]),
OwnedValue::build_text("")
);
}
#[test]
fn test_like_with_escape_or_regexmeta_chars() {
assert!(exec_like(None, r#"\%A"#, r#"\A"#));
assert!(exec_like(None, "%a%a", "aaaa"));
}
#[test]
fn test_like_no_cache() {
assert!(exec_like(None, "a%", "aaaa"));
assert!(exec_like(None, "%a%a", "aaaa"));
assert!(!exec_like(None, "%a.a", "aaaa"));
assert!(!exec_like(None, "a.a%", "aaaa"));
assert!(!exec_like(None, "%a.ab", "aaaa"));
}
#[test]
fn test_like_with_cache() {
let mut cache = HashMap::new();
assert!(exec_like(Some(&mut cache), "a%", "aaaa"));
assert!(exec_like(Some(&mut cache), "%a%a", "aaaa"));
assert!(!exec_like(Some(&mut cache), "%a.a", "aaaa"));
assert!(!exec_like(Some(&mut cache), "a.a%", "aaaa"));
assert!(!exec_like(Some(&mut cache), "%a.ab", "aaaa"));
// again after values have been cached
assert!(exec_like(Some(&mut cache), "a%", "aaaa"));
assert!(exec_like(Some(&mut cache), "%a%a", "aaaa"));
assert!(!exec_like(Some(&mut cache), "%a.a", "aaaa"));
assert!(!exec_like(Some(&mut cache), "a.a%", "aaaa"));
assert!(!exec_like(Some(&mut cache), "%a.ab", "aaaa"));
}
#[test]
fn test_random() {
match exec_random() {
OwnedValue::Integer(value) => {
// Check that the value is within the range of i64
assert!(
(i64::MIN..=i64::MAX).contains(&value),
"Random number out of range"
);
}
_ => panic!("exec_random did not return an Integer variant"),
}
}
#[test]
fn test_exec_randomblob() {
struct TestCase {
input: OwnedValue,
expected_len: usize,
}
let test_cases = vec![
TestCase {
input: OwnedValue::Integer(5),
expected_len: 5,
},
TestCase {
input: OwnedValue::Integer(0),
expected_len: 1,
},
TestCase {
input: OwnedValue::Integer(-1),
expected_len: 1,
},
TestCase {
input: OwnedValue::build_text(""),
expected_len: 1,
},
TestCase {
input: OwnedValue::build_text("5"),
expected_len: 5,
},
TestCase {
input: OwnedValue::build_text("0"),
expected_len: 1,
},
TestCase {
input: OwnedValue::build_text("-1"),
expected_len: 1,
},
TestCase {
input: OwnedValue::Float(2.9),
expected_len: 2,
},
TestCase {
input: OwnedValue::Float(-3.15),
expected_len: 1,
},
TestCase {
input: OwnedValue::Null,
expected_len: 1,
},
];
for test_case in &test_cases {
let result = exec_randomblob(&test_case.input);
match result {
OwnedValue::Blob(blob) => {
assert_eq!(blob.len(), test_case.expected_len);
}
_ => panic!("exec_randomblob did not return a Blob variant"),
}
}
}
#[test]
fn test_exec_round() {
let input_val = OwnedValue::Float(123.456);
let expected_val = OwnedValue::Float(123.0);
assert_eq!(exec_round(&input_val, None), expected_val);
let input_val = OwnedValue::Float(123.456);
let precision_val = OwnedValue::Integer(2);
let expected_val = OwnedValue::Float(123.46);
assert_eq!(exec_round(&input_val, Some(precision_val)), expected_val);
let input_val = OwnedValue::Float(123.456);
let precision_val = OwnedValue::build_text("1");
let expected_val = OwnedValue::Float(123.5);
assert_eq!(exec_round(&input_val, Some(precision_val)), expected_val);
let input_val = OwnedValue::build_text("123.456");
let precision_val = OwnedValue::Integer(2);
let expected_val = OwnedValue::Float(123.46);
assert_eq!(exec_round(&input_val, Some(precision_val)), expected_val);
let input_val = OwnedValue::Integer(123);
let precision_val = OwnedValue::Integer(1);
let expected_val = OwnedValue::Float(123.0);
assert_eq!(exec_round(&input_val, Some(precision_val)), expected_val);
let input_val = OwnedValue::Float(100.123);
let expected_val = OwnedValue::Float(100.0);
assert_eq!(exec_round(&input_val, None), expected_val);
let input_val = OwnedValue::Float(100.123);
let expected_val = OwnedValue::Null;
assert_eq!(exec_round(&input_val, Some(OwnedValue::Null)), expected_val);
}
#[test]
fn test_exec_if() {
let reg = OwnedValue::Integer(0);
assert!(!exec_if(&reg, false, false));
assert!(exec_if(&reg, false, true));
let reg = OwnedValue::Integer(1);
assert!(exec_if(&reg, false, false));
assert!(!exec_if(&reg, false, true));
let reg = OwnedValue::Null;
assert!(!exec_if(&reg, false, false));
assert!(!exec_if(&reg, false, true));
let reg = OwnedValue::Null;
assert!(exec_if(&reg, true, false));
assert!(exec_if(&reg, true, true));
let reg = OwnedValue::Null;
assert!(!exec_if(&reg, false, false));
assert!(!exec_if(&reg, false, true));
}
#[test]
fn test_nullif() {
assert_eq!(
exec_nullif(&OwnedValue::Integer(1), &OwnedValue::Integer(1)),
OwnedValue::Null
);
assert_eq!(
exec_nullif(&OwnedValue::Float(1.1), &OwnedValue::Float(1.1)),
OwnedValue::Null
);
assert_eq!(
exec_nullif(
&OwnedValue::build_text("limbo"),
&OwnedValue::build_text("limbo")
),
OwnedValue::Null
);
assert_eq!(
exec_nullif(&OwnedValue::Integer(1), &OwnedValue::Integer(2)),
OwnedValue::Integer(1)
);
assert_eq!(
exec_nullif(&OwnedValue::Float(1.1), &OwnedValue::Float(1.2)),
OwnedValue::Float(1.1)
);
assert_eq!(
exec_nullif(
&OwnedValue::build_text("limbo"),
&OwnedValue::build_text("limb")
),
OwnedValue::build_text("limbo")
);
}
#[test]
fn test_substring() {
let str_value = OwnedValue::build_text("limbo");
let start_value = OwnedValue::Integer(1);
let length_value = OwnedValue::Integer(3);
let expected_val = OwnedValue::build_text("lim");
assert_eq!(
exec_substring(&str_value, &start_value, Some(&length_value)),
expected_val
);
let str_value = OwnedValue::build_text("limbo");
let start_value = OwnedValue::Integer(1);
let length_value = OwnedValue::Integer(10);
let expected_val = OwnedValue::build_text("limbo");
assert_eq!(
exec_substring(&str_value, &start_value, Some(&length_value)),
expected_val
);
let str_value = OwnedValue::build_text("limbo");
let start_value = OwnedValue::Integer(10);
let length_value = OwnedValue::Integer(3);
let expected_val = OwnedValue::build_text("");
assert_eq!(
exec_substring(&str_value, &start_value, Some(&length_value)),
expected_val
);
let str_value = OwnedValue::build_text("limbo");
let start_value = OwnedValue::Integer(3);
let length_value = OwnedValue::Null;
let expected_val = OwnedValue::build_text("mbo");
assert_eq!(
exec_substring(&str_value, &start_value, Some(&length_value)),
expected_val
);
let str_value = OwnedValue::build_text("limbo");
let start_value = OwnedValue::Integer(10);
let length_value = OwnedValue::Null;
let expected_val = OwnedValue::build_text("");
assert_eq!(
exec_substring(&str_value, &start_value, Some(&length_value)),
expected_val
);
}
#[test]
fn test_exec_instr() {
let input = OwnedValue::build_text("limbo");
let pattern = OwnedValue::build_text("im");
let expected = OwnedValue::Integer(2);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::build_text("limbo");
let pattern = OwnedValue::build_text("limbo");
let expected = OwnedValue::Integer(1);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::build_text("limbo");
let pattern = OwnedValue::build_text("o");
let expected = OwnedValue::Integer(5);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::build_text("liiiiimbo");
let pattern = OwnedValue::build_text("ii");
let expected = OwnedValue::Integer(2);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::build_text("limbo");
let pattern = OwnedValue::build_text("limboX");
let expected = OwnedValue::Integer(0);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::build_text("limbo");
let pattern = OwnedValue::build_text("");
let expected = OwnedValue::Integer(1);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::build_text("");
let pattern = OwnedValue::build_text("limbo");
let expected = OwnedValue::Integer(0);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::build_text("");
let pattern = OwnedValue::build_text("");
let expected = OwnedValue::Integer(1);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::Null;
let pattern = OwnedValue::Null;
let expected = OwnedValue::Null;
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::build_text("limbo");
let pattern = OwnedValue::Null;
let expected = OwnedValue::Null;
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::Null;
let pattern = OwnedValue::build_text("limbo");
let expected = OwnedValue::Null;
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::Integer(123);
let pattern = OwnedValue::Integer(2);
let expected = OwnedValue::Integer(2);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::Integer(123);
let pattern = OwnedValue::Integer(5);
let expected = OwnedValue::Integer(0);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::Float(12.34);
let pattern = OwnedValue::Float(2.3);
let expected = OwnedValue::Integer(2);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::Float(12.34);
let pattern = OwnedValue::Float(5.6);
let expected = OwnedValue::Integer(0);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::Float(12.34);
let pattern = OwnedValue::build_text(".");
let expected = OwnedValue::Integer(3);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::Blob(Rc::new(vec![1, 2, 3, 4, 5]));
let pattern = OwnedValue::Blob(Rc::new(vec![3, 4]));
let expected = OwnedValue::Integer(3);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::Blob(Rc::new(vec![1, 2, 3, 4, 5]));
let pattern = OwnedValue::Blob(Rc::new(vec![3, 2]));
let expected = OwnedValue::Integer(0);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::Blob(Rc::new(vec![0x61, 0x62, 0x63, 0x64, 0x65]));
let pattern = OwnedValue::build_text("cd");
let expected = OwnedValue::Integer(3);
assert_eq!(exec_instr(&input, &pattern), expected);
let input = OwnedValue::build_text("abcde");
let pattern = OwnedValue::Blob(Rc::new(vec![0x63, 0x64]));
let expected = OwnedValue::Integer(3);
assert_eq!(exec_instr(&input, &pattern), expected);
}
#[test]
fn test_exec_sign() {
let input = OwnedValue::Integer(42);
let expected = Some(OwnedValue::Integer(1));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::Integer(-42);
let expected = Some(OwnedValue::Integer(-1));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::Integer(0);
let expected = Some(OwnedValue::Integer(0));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::Float(0.0);
let expected = Some(OwnedValue::Integer(0));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::Float(0.1);
let expected = Some(OwnedValue::Integer(1));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::Float(42.0);
let expected = Some(OwnedValue::Integer(1));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::Float(-42.0);
let expected = Some(OwnedValue::Integer(-1));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::build_text("abc");
let expected = Some(OwnedValue::Null);
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::build_text("42");
let expected = Some(OwnedValue::Integer(1));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::build_text("-42");
let expected = Some(OwnedValue::Integer(-1));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::build_text("0");
let expected = Some(OwnedValue::Integer(0));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::Blob(Rc::new(b"abc".to_vec()));
let expected = Some(OwnedValue::Null);
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::Blob(Rc::new(b"42".to_vec()));
let expected = Some(OwnedValue::Integer(1));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::Blob(Rc::new(b"-42".to_vec()));
let expected = Some(OwnedValue::Integer(-1));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::Blob(Rc::new(b"0".to_vec()));
let expected = Some(OwnedValue::Integer(0));
assert_eq!(exec_sign(&input), expected);
let input = OwnedValue::Null;
let expected = Some(OwnedValue::Null);
assert_eq!(exec_sign(&input), expected);
}
#[test]
fn test_exec_zeroblob() {
let input = OwnedValue::Integer(0);
let expected = OwnedValue::Blob(Rc::new(vec![]));
assert_eq!(exec_zeroblob(&input), expected);
let input = OwnedValue::Null;
let expected = OwnedValue::Blob(Rc::new(vec![]));
assert_eq!(exec_zeroblob(&input), expected);
let input = OwnedValue::Integer(4);
let expected = OwnedValue::Blob(Rc::new(vec![0; 4]));
assert_eq!(exec_zeroblob(&input), expected);
let input = OwnedValue::Integer(-1);
let expected = OwnedValue::Blob(Rc::new(vec![]));
assert_eq!(exec_zeroblob(&input), expected);
let input = OwnedValue::build_text("5");
let expected = OwnedValue::Blob(Rc::new(vec![0; 5]));
assert_eq!(exec_zeroblob(&input), expected);
let input = OwnedValue::build_text("-5");
let expected = OwnedValue::Blob(Rc::new(vec![]));
assert_eq!(exec_zeroblob(&input), expected);
let input = OwnedValue::build_text("text");
let expected = OwnedValue::Blob(Rc::new(vec![]));
assert_eq!(exec_zeroblob(&input), expected);
let input = OwnedValue::Float(2.6);
let expected = OwnedValue::Blob(Rc::new(vec![0; 2]));
assert_eq!(exec_zeroblob(&input), expected);
let input = OwnedValue::Blob(Rc::new(vec![1]));
let expected = OwnedValue::Blob(Rc::new(vec![]));
assert_eq!(exec_zeroblob(&input), expected);
}
#[test]
fn test_execute_sqlite_version() {
let version_integer = 3046001;
let expected = "3.46.1";
assert_eq!(execute_sqlite_version(version_integer), expected);
}
#[test]
fn test_replace() {
let input_str = OwnedValue::build_text("bob");
let pattern_str = OwnedValue::build_text("b");
let replace_str = OwnedValue::build_text("a");
let expected_str = OwnedValue::build_text("aoa");
assert_eq!(
exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = OwnedValue::build_text("bob");
let pattern_str = OwnedValue::build_text("b");
let replace_str = OwnedValue::build_text("");
let expected_str = OwnedValue::build_text("o");
assert_eq!(
exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = OwnedValue::build_text("bob");
let pattern_str = OwnedValue::build_text("b");
let replace_str = OwnedValue::build_text("abc");
let expected_str = OwnedValue::build_text("abcoabc");
assert_eq!(
exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = OwnedValue::build_text("bob");
let pattern_str = OwnedValue::build_text("a");
let replace_str = OwnedValue::build_text("b");
let expected_str = OwnedValue::build_text("bob");
assert_eq!(
exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = OwnedValue::build_text("bob");
let pattern_str = OwnedValue::build_text("");
let replace_str = OwnedValue::build_text("a");
let expected_str = OwnedValue::build_text("bob");
assert_eq!(
exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = OwnedValue::build_text("bob");
let pattern_str = OwnedValue::Null;
let replace_str = OwnedValue::build_text("a");
let expected_str = OwnedValue::Null;
assert_eq!(
exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = OwnedValue::build_text("bo5");
let pattern_str = OwnedValue::Integer(5);
let replace_str = OwnedValue::build_text("a");
let expected_str = OwnedValue::build_text("boa");
assert_eq!(
exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = OwnedValue::build_text("bo5.0");
let pattern_str = OwnedValue::Float(5.0);
let replace_str = OwnedValue::build_text("a");
let expected_str = OwnedValue::build_text("boa");
assert_eq!(
exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = OwnedValue::build_text("bo5");
let pattern_str = OwnedValue::Float(5.0);
let replace_str = OwnedValue::build_text("a");
let expected_str = OwnedValue::build_text("bo5");
assert_eq!(
exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = OwnedValue::build_text("bo5.0");
let pattern_str = OwnedValue::Float(5.0);
let replace_str = OwnedValue::Float(6.0);
let expected_str = OwnedValue::build_text("bo6.0");
assert_eq!(
exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
// todo: change this test to use (0.1 + 0.2) instead of 0.3 when decimals are implemented.
let input_str = OwnedValue::build_text("tes3");
let pattern_str = OwnedValue::Integer(3);
let replace_str = OwnedValue::Agg(Box::new(AggContext::Sum(OwnedValue::Float(0.3))));
let expected_str = OwnedValue::build_text("tes0.3");
assert_eq!(
exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
}
#[test]
fn test_bitfield() {
let mut bitfield = Bitfield::<4>::new();
for i in 0..256 {
bitfield.set(i);
assert!(bitfield.get(i));
for j in 0..i {
assert!(bitfield.get(j));
}
for j in i + 1..256 {
assert!(!bitfield.get(j));
}
}
for i in 0..256 {
bitfield.unset(i);
assert!(!bitfield.get(i));
}
}
}