mirror of
https://github.com/aljazceru/turso.git
synced 2025-12-23 11:14:19 +01:00
the only reason for `PseudoTable` to exist, is to provide column information for `PseudoCursor` creation. this should not be part of the schema.
281 lines
9.6 KiB
Rust
281 lines
9.6 KiB
Rust
use turso_sqlite3_parser::ast::{self, SortOrder};
|
|
|
|
use crate::{
|
|
schema::PseudoCursorType,
|
|
translate::collate::CollationSeq,
|
|
util::exprs_are_equivalent,
|
|
vdbe::{
|
|
builder::{CursorType, ProgramBuilder},
|
|
insn::Insn,
|
|
},
|
|
Result,
|
|
};
|
|
|
|
use super::{
|
|
emitter::{Resolver, TranslateCtx},
|
|
expr::translate_expr,
|
|
plan::{Distinctness, ResultSetColumn, SelectPlan, TableReferences},
|
|
result_row::{emit_offset, emit_result_row_and_limit},
|
|
};
|
|
|
|
// Metadata for handling ORDER BY operations
|
|
#[derive(Debug)]
|
|
pub struct SortMetadata {
|
|
// cursor id for the Sorter table where the sorted rows are stored
|
|
pub sort_cursor: usize,
|
|
// register where the sorter data is inserted and later retrieved from
|
|
pub reg_sorter_data: usize,
|
|
}
|
|
|
|
/// Initialize resources needed for ORDER BY processing
|
|
pub fn init_order_by(
|
|
program: &mut ProgramBuilder,
|
|
t_ctx: &mut TranslateCtx,
|
|
order_by: &[(ast::Expr, SortOrder)],
|
|
referenced_tables: &TableReferences,
|
|
) -> Result<()> {
|
|
let sort_cursor = program.alloc_cursor_id(CursorType::Sorter);
|
|
t_ctx.meta_sort = Some(SortMetadata {
|
|
sort_cursor,
|
|
reg_sorter_data: program.alloc_register(),
|
|
});
|
|
|
|
/*
|
|
* Terms of the ORDER BY clause that is part of a SELECT statement may be assigned a collating sequence using the COLLATE operator,
|
|
* in which case the specified collating function is used for sorting.
|
|
* Otherwise, if the expression sorted by an ORDER BY clause is a column,
|
|
* then the collating sequence of the column is used to determine sort order.
|
|
* If the expression is not a column and has no COLLATE clause, then the BINARY collating sequence is used.
|
|
*/
|
|
let collations = order_by
|
|
.iter()
|
|
.map(|(expr, _)| match expr {
|
|
ast::Expr::Collate(_, collation_name) => CollationSeq::new(collation_name).map(Some),
|
|
ast::Expr::Column { table, column, .. } => {
|
|
let table = referenced_tables.find_table_by_internal_id(*table).unwrap();
|
|
|
|
let Some(table_column) = table.get_column_at(*column) else {
|
|
crate::bail_parse_error!("column index out of bounds");
|
|
};
|
|
|
|
Ok(table_column.collation)
|
|
}
|
|
_ => Ok(Some(CollationSeq::default())),
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
program.emit_insn(Insn::SorterOpen {
|
|
cursor_id: sort_cursor,
|
|
columns: order_by.len(),
|
|
order: order_by.iter().map(|(_, direction)| *direction).collect(),
|
|
collations,
|
|
});
|
|
Ok(())
|
|
}
|
|
|
|
/// Emits the bytecode for outputting rows from an ORDER BY sorter.
|
|
/// This is called when the main query execution loop has finished processing,
|
|
/// and we can now emit rows from the ORDER BY sorter.
|
|
pub fn emit_order_by(
|
|
program: &mut ProgramBuilder,
|
|
t_ctx: &mut TranslateCtx,
|
|
plan: &SelectPlan,
|
|
) -> Result<()> {
|
|
let order_by = plan.order_by.as_ref().unwrap();
|
|
let result_columns = &plan.result_columns;
|
|
let sort_loop_start_label = program.allocate_label();
|
|
let sort_loop_next_label = program.allocate_label();
|
|
let sort_loop_end_label = program.allocate_label();
|
|
|
|
let sorter_column_count = order_by.len() + result_columns.len()
|
|
- t_ctx
|
|
.result_columns_to_skip_in_orderby_sorter
|
|
.as_ref()
|
|
.map(|v| v.len())
|
|
.unwrap_or(0);
|
|
|
|
let pseudo_cursor = program.alloc_cursor_id(CursorType::Pseudo(PseudoCursorType {
|
|
column_count: sorter_column_count,
|
|
}));
|
|
let SortMetadata {
|
|
sort_cursor,
|
|
reg_sorter_data,
|
|
} = *t_ctx.meta_sort.as_mut().unwrap();
|
|
|
|
program.emit_insn(Insn::OpenPseudo {
|
|
cursor_id: pseudo_cursor,
|
|
content_reg: reg_sorter_data,
|
|
num_fields: sorter_column_count,
|
|
});
|
|
|
|
program.emit_insn(Insn::SorterSort {
|
|
cursor_id: sort_cursor,
|
|
pc_if_empty: sort_loop_end_label,
|
|
});
|
|
program.preassign_label_to_next_insn(sort_loop_start_label);
|
|
|
|
emit_offset(program, plan, sort_loop_next_label, t_ctx.reg_offset)?;
|
|
|
|
program.emit_insn(Insn::SorterData {
|
|
cursor_id: sort_cursor,
|
|
dest_reg: reg_sorter_data,
|
|
pseudo_cursor,
|
|
});
|
|
|
|
// We emit the columns in SELECT order, not sorter order (sorter always has the sort keys first).
|
|
// This is tracked in m.result_column_indexes_in_orderby_sorter.
|
|
let cursor_id = pseudo_cursor;
|
|
let start_reg = t_ctx.reg_result_cols_start.unwrap();
|
|
for i in 0..result_columns.len() {
|
|
let reg = start_reg + i;
|
|
program.emit_column(
|
|
cursor_id,
|
|
t_ctx.result_column_indexes_in_orderby_sorter[i],
|
|
reg,
|
|
);
|
|
}
|
|
|
|
emit_result_row_and_limit(
|
|
program,
|
|
plan,
|
|
start_reg,
|
|
t_ctx.limit_ctx,
|
|
Some(sort_loop_end_label),
|
|
)?;
|
|
|
|
program.resolve_label(sort_loop_next_label, program.offset());
|
|
program.emit_insn(Insn::SorterNext {
|
|
cursor_id: sort_cursor,
|
|
pc_if_next: sort_loop_start_label,
|
|
});
|
|
program.preassign_label_to_next_insn(sort_loop_end_label);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Emits the bytecode for inserting a row into an ORDER BY sorter.
|
|
pub fn order_by_sorter_insert(
|
|
program: &mut ProgramBuilder,
|
|
resolver: &Resolver,
|
|
sort_metadata: &SortMetadata,
|
|
res_col_indexes_in_orderby_sorter: &mut Vec<usize>,
|
|
plan: &SelectPlan,
|
|
) -> Result<()> {
|
|
let order_by = plan.order_by.as_ref().unwrap();
|
|
let order_by_len = order_by.len();
|
|
let result_columns = &plan.result_columns;
|
|
// If any result columns can be skipped due to being an exact duplicate of a sort key, we need to know which ones and their new index in the ORDER BY sorter.
|
|
let result_columns_to_skip = order_by_deduplicate_result_columns(order_by, result_columns);
|
|
let result_columns_to_skip_len = result_columns_to_skip
|
|
.as_ref()
|
|
.map(|v| v.len())
|
|
.unwrap_or(0);
|
|
|
|
// The ORDER BY sorter has the sort keys first, then the result columns.
|
|
let orderby_sorter_column_count =
|
|
order_by_len + result_columns.len() - result_columns_to_skip_len;
|
|
let start_reg = program.alloc_registers(orderby_sorter_column_count);
|
|
for (i, (expr, _)) in order_by.iter().enumerate() {
|
|
let key_reg = start_reg + i;
|
|
translate_expr(
|
|
program,
|
|
Some(&plan.table_references),
|
|
expr,
|
|
key_reg,
|
|
resolver,
|
|
)?;
|
|
}
|
|
let mut cur_reg = start_reg + order_by_len;
|
|
let mut cur_idx_in_orderby_sorter = order_by_len;
|
|
let mut translated_result_col_count = 0;
|
|
for (i, rc) in result_columns.iter().enumerate() {
|
|
if let Some(ref v) = result_columns_to_skip {
|
|
let found = v.iter().find(|(skipped_idx, _)| *skipped_idx == i);
|
|
// If the result column is in the list of columns to skip, we need to know its new index in the ORDER BY sorter.
|
|
if let Some((_, result_column_idx)) = found {
|
|
res_col_indexes_in_orderby_sorter.insert(i, *result_column_idx);
|
|
continue;
|
|
}
|
|
}
|
|
translate_expr(
|
|
program,
|
|
Some(&plan.table_references),
|
|
&rc.expr,
|
|
cur_reg,
|
|
resolver,
|
|
)?;
|
|
translated_result_col_count += 1;
|
|
res_col_indexes_in_orderby_sorter.insert(i, cur_idx_in_orderby_sorter);
|
|
cur_idx_in_orderby_sorter += 1;
|
|
cur_reg += 1;
|
|
}
|
|
|
|
// Handle SELECT DISTINCT deduplication
|
|
if let Distinctness::Distinct { ctx } = &plan.distinctness {
|
|
let distinct_ctx = ctx.as_ref().expect("distinct context must exist");
|
|
let num_regs = order_by_len + translated_result_col_count;
|
|
distinct_ctx.emit_deduplication_insns(program, num_regs, start_reg);
|
|
}
|
|
|
|
let SortMetadata {
|
|
sort_cursor,
|
|
reg_sorter_data,
|
|
} = sort_metadata;
|
|
|
|
sorter_insert(
|
|
program,
|
|
start_reg,
|
|
orderby_sorter_column_count,
|
|
*sort_cursor,
|
|
*reg_sorter_data,
|
|
);
|
|
Ok(())
|
|
}
|
|
|
|
/// Emits the bytecode for inserting a row into a sorter.
|
|
/// This can be either a GROUP BY sorter or an ORDER BY sorter.
|
|
pub fn sorter_insert(
|
|
program: &mut ProgramBuilder,
|
|
start_reg: usize,
|
|
column_count: usize,
|
|
cursor_id: usize,
|
|
record_reg: usize,
|
|
) {
|
|
program.emit_insn(Insn::MakeRecord {
|
|
start_reg,
|
|
count: column_count,
|
|
dest_reg: record_reg,
|
|
index_name: None,
|
|
});
|
|
program.emit_insn(Insn::SorterInsert {
|
|
cursor_id,
|
|
record_reg,
|
|
});
|
|
}
|
|
|
|
/// In case any of the ORDER BY sort keys are exactly equal to a result column, we can skip emitting that result column.
|
|
/// If we skip a result column, we need to keep track what index in the ORDER BY sorter the result columns have,
|
|
/// because the result columns should be emitted in the SELECT clause order, not the ORDER BY clause order.
|
|
///
|
|
/// If any result columns can be skipped, this returns list of 2-tuples of (SkippedResultColumnIndex: usize, ResultColumnIndexInOrderBySorter: usize)
|
|
pub fn order_by_deduplicate_result_columns(
|
|
order_by: &[(ast::Expr, SortOrder)],
|
|
result_columns: &[ResultSetColumn],
|
|
) -> Option<Vec<(usize, usize)>> {
|
|
let mut result_column_remapping: Option<Vec<(usize, usize)>> = None;
|
|
for (i, rc) in result_columns.iter().enumerate() {
|
|
let found = order_by
|
|
.iter()
|
|
.enumerate()
|
|
.find(|(_, (expr, _))| exprs_are_equivalent(expr, &rc.expr));
|
|
if let Some((j, _)) = found {
|
|
if let Some(ref mut v) = result_column_remapping {
|
|
v.push((i, j));
|
|
} else {
|
|
result_column_remapping = Some(vec![(i, j)]);
|
|
}
|
|
}
|
|
}
|
|
|
|
result_column_remapping
|
|
}
|