Files
turso/core/translate/optimizer.rs

1096 lines
40 KiB
Rust

use std::rc::Rc;
use sqlite3_parser::ast;
use crate::{schema::Index, Result};
use super::plan::{
get_table_ref_bitmask_for_ast_expr, get_table_ref_bitmask_for_operator, DeletePlan, Direction,
IterationDirection, Plan, Search, SelectPlan, SourceOperator, TableReference,
TableReferenceType,
};
pub fn optimize_plan(plan: &mut Plan) -> Result<()> {
match plan {
Plan::Select(plan) => optimize_select_plan(plan),
Plan::Delete(plan) => optimize_delete_plan(plan),
}
}
/**
* Make a few passes over the plan to optimize it.
* TODO: these could probably be done in less passes,
* but having them separate makes them easier to understand
*/
fn optimize_select_plan(plan: &mut SelectPlan) -> Result<()> {
optimize_subqueries(&mut plan.source)?;
rewrite_exprs_select(plan)?;
if let ConstantConditionEliminationResult::ImpossibleCondition =
eliminate_constants(&mut plan.source, &mut plan.where_clause)?
{
plan.contains_constant_false_condition = true;
return Ok(());
}
push_predicates(
&mut plan.source,
&mut plan.where_clause,
&plan.referenced_tables,
)?;
use_indexes(
&mut plan.source,
&plan.referenced_tables,
&plan.available_indexes,
)?;
eliminate_unnecessary_orderby(
&mut plan.source,
&mut plan.order_by,
&plan.referenced_tables,
&plan.available_indexes,
)?;
Ok(())
}
fn optimize_delete_plan(plan: &mut DeletePlan) -> Result<()> {
rewrite_exprs_delete(plan)?;
if let ConstantConditionEliminationResult::ImpossibleCondition =
eliminate_constants(&mut plan.source, &mut plan.where_clause)?
{
plan.contains_constant_false_condition = true;
return Ok(());
}
use_indexes(
&mut plan.source,
&plan.referenced_tables,
&plan.available_indexes,
)?;
Ok(())
}
fn optimize_subqueries(operator: &mut SourceOperator) -> Result<()> {
match operator {
SourceOperator::Subquery { plan, .. } => {
optimize_select_plan(&mut *plan)?;
Ok(())
}
SourceOperator::Join { left, right, .. } => {
optimize_subqueries(left)?;
optimize_subqueries(right)?;
Ok(())
}
_ => Ok(()),
}
}
fn _operator_is_already_ordered_by(
operator: &mut SourceOperator,
key: &mut ast::Expr,
referenced_tables: &[TableReference],
available_indexes: &Vec<Rc<Index>>,
) -> Result<bool> {
match operator {
SourceOperator::Scan {
table_reference, ..
} => Ok(key.is_rowid_alias_of(table_reference.table_index)),
SourceOperator::Search {
table_reference,
search,
..
} => match search {
Search::RowidEq { .. } => Ok(key.is_rowid_alias_of(table_reference.table_index)),
Search::RowidSearch { .. } => Ok(key.is_rowid_alias_of(table_reference.table_index)),
Search::IndexSearch { index, .. } => {
let index_idx = key.check_index_scan(
table_reference.table_index,
referenced_tables,
available_indexes,
)?;
let index_is_the_same = index_idx
.map(|i| Rc::ptr_eq(&available_indexes[i], index))
.unwrap_or(false);
Ok(index_is_the_same)
}
},
SourceOperator::Join { left, .. } => {
_operator_is_already_ordered_by(left, key, referenced_tables, available_indexes)
}
_ => Ok(false),
}
}
fn eliminate_unnecessary_orderby(
operator: &mut SourceOperator,
order_by: &mut Option<Vec<(ast::Expr, Direction)>>,
referenced_tables: &[TableReference],
available_indexes: &Vec<Rc<Index>>,
) -> Result<()> {
if order_by.is_none() {
return Ok(());
}
let o = order_by.as_mut().unwrap();
if o.len() != 1 {
// TODO: handle multiple order by keys
return Ok(());
}
let (key, direction) = o.first_mut().unwrap();
let already_ordered =
_operator_is_already_ordered_by(operator, key, referenced_tables, available_indexes)?;
if already_ordered {
push_scan_direction(operator, direction);
*order_by = None;
}
Ok(())
}
/**
* Use indexes where possible
*/
fn use_indexes(
operator: &mut SourceOperator,
referenced_tables: &[TableReference],
available_indexes: &[Rc<Index>],
) -> Result<()> {
match operator {
SourceOperator::Subquery { .. } => Ok(()),
SourceOperator::Search { .. } => Ok(()),
SourceOperator::Scan {
table_reference,
predicates: filter,
id,
..
} => {
if filter.is_none() {
return Ok(());
}
let fs = filter.as_mut().unwrap();
for i in 0..fs.len() {
let f = fs[i].take_ownership();
let table_index = referenced_tables
.iter()
.position(|t| t.table_identifier == table_reference.table_identifier)
.unwrap();
match try_extract_index_search_expression(
f,
table_index,
referenced_tables,
available_indexes,
)? {
Either::Left(non_index_using_expr) => {
fs[i] = non_index_using_expr;
}
Either::Right(index_search) => {
fs.remove(i);
*operator = SourceOperator::Search {
id: *id,
table_reference: table_reference.clone(),
predicates: Some(fs.clone()),
search: index_search,
};
return Ok(());
}
}
}
Ok(())
}
SourceOperator::Join { left, right, .. } => {
use_indexes(left, referenced_tables, available_indexes)?;
use_indexes(right, referenced_tables, available_indexes)?;
Ok(())
}
SourceOperator::Nothing { .. } => Ok(()),
}
}
#[derive(Debug, PartialEq, Clone)]
enum ConstantConditionEliminationResult {
Continue,
ImpossibleCondition,
}
// removes predicates that are always true
// returns a ConstantEliminationResult indicating whether any predicates are always false
fn eliminate_constants(
operator: &mut SourceOperator,
where_clause: &mut Option<Vec<ast::Expr>>,
) -> Result<ConstantConditionEliminationResult> {
if let Some(predicates) = where_clause {
let mut i = 0;
while i < predicates.len() {
let predicate = &predicates[i];
if predicate.is_always_true()? {
// true predicates can be removed since they don't affect the result
predicates.remove(i);
} else if predicate.is_always_false()? {
// any false predicate in a list of conjuncts (AND-ed predicates) will make the whole list false
predicates.truncate(0);
return Ok(ConstantConditionEliminationResult::ImpossibleCondition);
} else {
i += 1;
}
}
}
match operator {
SourceOperator::Subquery { .. } => Ok(ConstantConditionEliminationResult::Continue),
SourceOperator::Join {
left,
right,
predicates,
outer,
..
} => {
if eliminate_constants(left, where_clause)?
== ConstantConditionEliminationResult::ImpossibleCondition
{
return Ok(ConstantConditionEliminationResult::ImpossibleCondition);
}
if eliminate_constants(right, where_clause)?
== ConstantConditionEliminationResult::ImpossibleCondition
&& !*outer
{
return Ok(ConstantConditionEliminationResult::ImpossibleCondition);
}
if predicates.is_none() {
return Ok(ConstantConditionEliminationResult::Continue);
}
let predicates = predicates.as_mut().unwrap();
let mut i = 0;
while i < predicates.len() {
let predicate = &mut predicates[i];
if predicate.is_always_true()? {
predicates.remove(i);
} else if predicate.is_always_false()? {
if !*outer {
predicates.truncate(0);
return Ok(ConstantConditionEliminationResult::ImpossibleCondition);
}
// in an outer join, we can't skip rows, so just replace all constant false predicates with 0
// so we don't later have to evaluate anything more complex or special-case the identifiers true and false
// which are just aliases for 1 and 0
*predicate = ast::Expr::Literal(ast::Literal::Numeric("0".to_string()));
i += 1;
} else {
i += 1;
}
}
Ok(ConstantConditionEliminationResult::Continue)
}
SourceOperator::Scan { predicates, .. } => {
if let Some(ps) = predicates {
let mut i = 0;
while i < ps.len() {
let predicate = &ps[i];
if predicate.is_always_true()? {
// true predicates can be removed since they don't affect the result
ps.remove(i);
} else if predicate.is_always_false()? {
// any false predicate in a list of conjuncts (AND-ed predicates) will make the whole list false
ps.truncate(0);
return Ok(ConstantConditionEliminationResult::ImpossibleCondition);
} else {
i += 1;
}
}
if ps.is_empty() {
*predicates = None;
}
}
Ok(ConstantConditionEliminationResult::Continue)
}
SourceOperator::Search { predicates, .. } => {
if let Some(predicates) = predicates {
let mut i = 0;
while i < predicates.len() {
let predicate = &predicates[i];
if predicate.is_always_true()? {
// true predicates can be removed since they don't affect the result
predicates.remove(i);
} else if predicate.is_always_false()? {
// any false predicate in a list of conjuncts (AND-ed predicates) will make the whole list false
predicates.truncate(0);
return Ok(ConstantConditionEliminationResult::ImpossibleCondition);
} else {
i += 1;
}
}
}
Ok(ConstantConditionEliminationResult::Continue)
}
SourceOperator::Nothing { .. } => Ok(ConstantConditionEliminationResult::Continue),
}
}
/**
Recursively pushes predicates down the tree, as far as possible.
Where a predicate is pushed determines at which loop level it will be evaluated.
For example, in SELECT * FROM t1 JOIN t2 JOIN t3 WHERE t1.a = t2.a AND t2.b = t3.b AND t1.c = 1
the predicate t1.c = 1 can be pushed to t1 and will be evaluated in the first (outermost) loop,
the predicate t1.a = t2.a can be pushed to t2 and will be evaluated in the second loop
while t2.b = t3.b will be evaluated in the third loop.
*/
fn push_predicates(
operator: &mut SourceOperator,
where_clause: &mut Option<Vec<ast::Expr>>,
referenced_tables: &Vec<TableReference>,
) -> Result<()> {
// First try to push down any predicates from the WHERE clause
if let Some(predicates) = where_clause {
let mut i = 0;
while i < predicates.len() {
// Take ownership of predicate to try pushing it down
let predicate = predicates[i].take_ownership();
// If predicate was successfully pushed (None returned), remove it from WHERE
let Some(predicate) = push_predicate(operator, predicate, referenced_tables)? else {
predicates.remove(i);
continue;
};
predicates[i] = predicate;
i += 1;
}
// Clean up empty WHERE clause
if predicates.is_empty() {
*where_clause = None;
}
}
match operator {
SourceOperator::Subquery { .. } => Ok(()),
SourceOperator::Join {
left,
right,
predicates,
outer,
..
} => {
// Recursively push predicates down both sides of join
push_predicates(left, where_clause, referenced_tables)?;
push_predicates(right, where_clause, referenced_tables)?;
if predicates.is_none() {
return Ok(());
}
let predicates = predicates.as_mut().unwrap();
let mut i = 0;
while i < predicates.len() {
let predicate_owned = predicates[i].take_ownership();
// For a join like SELECT * FROM left INNER JOIN right ON left.id = right.id AND left.name = 'foo'
// the predicate 'left.name = 'foo' can already be evaluated in the outer loop (left side of join)
// because the row can immediately be skipped if left.name != 'foo'.
// But for a LEFT JOIN, we can't do this since we need to ensure that all rows from the left table are included,
// even if there are no matching rows from the right table. This is why we can't push LEFT JOIN predicates to the left side.
let push_result = if *outer {
Some(predicate_owned)
} else {
push_predicate(left, predicate_owned, referenced_tables)?
};
// Try pushing to left side first (see comment above for reasoning)
let Some(predicate) = push_result else {
predicates.remove(i);
continue;
};
// Then try right side
let Some(predicate) = push_predicate(right, predicate, referenced_tables)? else {
predicates.remove(i);
continue;
};
// If neither side could take it, keep in join predicates (not sure if this actually happens in practice)
// this is effectively the same as pushing to the right side, so maybe it could be removed and assert here
// that we don't reach this code
predicates[i] = predicate;
i += 1;
}
Ok(())
}
// Base cases - nowhere else to push to
SourceOperator::Scan { .. } => Ok(()),
SourceOperator::Search { .. } => Ok(()),
SourceOperator::Nothing { .. } => Ok(()),
}
}
/**
Push a single predicate down the tree, as far as possible.
Returns Ok(None) if the predicate was pushed, otherwise returns itself as Ok(Some(predicate))
*/
fn push_predicate(
operator: &mut SourceOperator,
predicate: ast::Expr,
referenced_tables: &Vec<TableReference>,
) -> Result<Option<ast::Expr>> {
match operator {
SourceOperator::Subquery {
predicates,
table_reference,
..
} => {
// **TODO**: we are currently just evaluating the predicate after the subquery yields,
// and not trying to do anythign more sophisticated.
// E.g. literally: SELECT * FROM (SELECT * FROM t1) sub WHERE sub.col = 'foo'
//
// It is possible, and not overly difficult, to determine that we can also push the
// predicate into the subquery coroutine itself before it yields. The above query would
// effectively become: SELECT * FROM (SELECT * FROM t1 WHERE col = 'foo') sub
//
// This matters more in cases where the subquery builds some kind of sorter/index in memory
// (or on disk) and in those cases pushing the predicate down to the coroutine will make the
// subquery produce less intermediate data. In cases where no intermediate data structures are
// built, it doesn't matter.
//
// Moreover, in many cases the subquery can even be completely eliminated, e.g. the above original
// query would become: SELECT * FROM t1 WHERE col = 'foo' without the subquery.
// **END TODO**
// Find position of this subquery in referenced_tables array
let subquery_index = referenced_tables
.iter()
.position(|t| {
t.table_identifier == table_reference.table_identifier
&& matches!(t.reference_type, TableReferenceType::Subquery { .. })
})
.unwrap();
// Get bitmask showing which tables this predicate references
let predicate_bitmask =
get_table_ref_bitmask_for_ast_expr(referenced_tables, &predicate)?;
// Each table has a bit position based on join order from left to right
// e.g. in SELECT * FROM t1 JOIN t2 JOIN t3
// t1 is position 0 (001), t2 is position 1 (010), t3 is position 2 (100)
// To push a predicate to a given table, it can only reference that table and tables to its left
// Example: For table t2 at position 1 (bit 010):
// - Can push: 011 (t2 + t1), 001 (just t1), 010 (just t2)
// - Can't push: 110 (t2 + t3)
let next_table_on_the_right_in_join_bitmask = 1 << (subquery_index + 1);
if predicate_bitmask >= next_table_on_the_right_in_join_bitmask {
return Ok(Some(predicate));
}
if predicates.is_none() {
predicates.replace(vec![predicate]);
} else {
predicates.as_mut().unwrap().push(predicate);
}
Ok(None)
}
SourceOperator::Scan {
predicates,
table_reference,
..
} => {
// Find position of this table in referenced_tables array
let table_index = referenced_tables
.iter()
.position(|t| {
t.table_identifier == table_reference.table_identifier
&& t.reference_type == TableReferenceType::BTreeTable
})
.unwrap();
// Get bitmask showing which tables this predicate references
let predicate_bitmask =
get_table_ref_bitmask_for_ast_expr(referenced_tables, &predicate)?;
// Each table has a bit position based on join order from left to right
// e.g. in SELECT * FROM t1 JOIN t2 JOIN t3
// t1 is position 0 (001), t2 is position 1 (010), t3 is position 2 (100)
// To push a predicate to a given table, it can only reference that table and tables to its left
// Example: For table t2 at position 1 (bit 010):
// - Can push: 011 (t2 + t1), 001 (just t1), 010 (just t2)
// - Can't push: 110 (t2 + t3)
let next_table_on_the_right_in_join_bitmask = 1 << (table_index + 1);
if predicate_bitmask >= next_table_on_the_right_in_join_bitmask {
return Ok(Some(predicate));
}
// Add predicate to this table's filters
if predicates.is_none() {
predicates.replace(vec![predicate]);
} else {
predicates.as_mut().unwrap().push(predicate);
}
Ok(None)
}
// Search nodes don't exist yet at this point; Scans are transformed to Search in use_indexes()
SourceOperator::Search { .. } => unreachable!(),
SourceOperator::Join {
left,
right,
predicates: join_on_preds,
outer,
..
} => {
// Try pushing to left side first
let push_result_left = push_predicate(left, predicate, referenced_tables)?;
if push_result_left.is_none() {
return Ok(None);
}
// Then try right side
let push_result_right =
push_predicate(right, push_result_left.unwrap(), referenced_tables)?;
if push_result_right.is_none() {
return Ok(None);
}
// For LEFT JOIN, predicates must stay at join level
if *outer {
return Ok(Some(push_result_right.unwrap()));
}
let pred = push_result_right.unwrap();
// Get bitmasks for tables referenced in predicate and both sides of join
let table_refs_bitmask = get_table_ref_bitmask_for_ast_expr(referenced_tables, &pred)?;
let left_bitmask = get_table_ref_bitmask_for_operator(referenced_tables, left)?;
let right_bitmask = get_table_ref_bitmask_for_operator(referenced_tables, right)?;
// If predicate doesn't reference tables from both sides, it can't be a join condition
if table_refs_bitmask & left_bitmask == 0 || table_refs_bitmask & right_bitmask == 0 {
return Ok(Some(pred));
}
// Add as join predicate since it references both sides
if join_on_preds.is_none() {
join_on_preds.replace(vec![pred]);
} else {
join_on_preds.as_mut().unwrap().push(pred);
}
Ok(None)
}
SourceOperator::Nothing { .. } => Ok(Some(predicate)),
}
}
fn push_scan_direction(operator: &mut SourceOperator, direction: &Direction) {
match operator {
SourceOperator::Scan { iter_dir, .. } => {
if iter_dir.is_none() {
match direction {
Direction::Ascending => *iter_dir = Some(IterationDirection::Forwards),
Direction::Descending => *iter_dir = Some(IterationDirection::Backwards),
}
}
}
_ => todo!(),
}
}
fn rewrite_exprs_select(plan: &mut SelectPlan) -> Result<()> {
rewrite_source_operator_exprs(&mut plan.source)?;
for rc in plan.result_columns.iter_mut() {
rewrite_expr(&mut rc.expr)?;
}
for agg in plan.aggregates.iter_mut() {
rewrite_expr(&mut agg.original_expr)?;
}
if let Some(predicates) = &mut plan.where_clause {
for expr in predicates {
rewrite_expr(expr)?;
}
}
if let Some(group_by) = &mut plan.group_by {
for expr in group_by.exprs.iter_mut() {
rewrite_expr(expr)?;
}
}
if let Some(order_by) = &mut plan.order_by {
for (expr, _) in order_by.iter_mut() {
rewrite_expr(expr)?;
}
}
Ok(())
}
fn rewrite_exprs_delete(plan: &mut DeletePlan) -> Result<()> {
rewrite_source_operator_exprs(&mut plan.source)?;
if let Some(predicates) = &mut plan.where_clause {
for expr in predicates {
rewrite_expr(expr)?;
}
}
Ok(())
}
fn rewrite_source_operator_exprs(operator: &mut SourceOperator) -> Result<()> {
match operator {
SourceOperator::Join {
left,
right,
predicates,
..
} => {
rewrite_source_operator_exprs(left)?;
rewrite_source_operator_exprs(right)?;
if let Some(predicates) = predicates {
for expr in predicates.iter_mut() {
rewrite_expr(expr)?;
}
}
Ok(())
}
SourceOperator::Scan { predicates, .. } | SourceOperator::Search { predicates, .. } => {
if let Some(predicates) = predicates {
for expr in predicates.iter_mut() {
rewrite_expr(expr)?;
}
}
Ok(())
}
SourceOperator::Subquery { predicates, .. } => {
if let Some(predicates) = predicates {
for expr in predicates.iter_mut() {
rewrite_expr(expr)?;
}
}
Ok(())
}
SourceOperator::Nothing { .. } => Ok(()),
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum ConstantPredicate {
AlwaysTrue,
AlwaysFalse,
}
/**
Helper trait for expressions that can be optimized
Implemented for ast::Expr
*/
pub trait Optimizable {
// if the expression is a constant expression e.g. '1', returns the constant condition
fn check_constant(&self) -> Result<Option<ConstantPredicate>>;
fn is_always_true(&self) -> Result<bool> {
Ok(self
.check_constant()?
.map_or(false, |c| c == ConstantPredicate::AlwaysTrue))
}
fn is_always_false(&self) -> Result<bool> {
Ok(self
.check_constant()?
.map_or(false, |c| c == ConstantPredicate::AlwaysFalse))
}
fn is_rowid_alias_of(&self, table_index: usize) -> bool;
fn check_index_scan(
&mut self,
table_index: usize,
referenced_tables: &[TableReference],
available_indexes: &[Rc<Index>],
) -> Result<Option<usize>>;
}
impl Optimizable for ast::Expr {
fn is_rowid_alias_of(&self, table_index: usize) -> bool {
match self {
Self::Column {
table,
is_rowid_alias,
..
} => *is_rowid_alias && *table == table_index,
_ => false,
}
}
fn check_index_scan(
&mut self,
table_index: usize,
referenced_tables: &[TableReference],
available_indexes: &[Rc<Index>],
) -> Result<Option<usize>> {
match self {
Self::Column { table, column, .. } => {
if *table != table_index {
return Ok(None);
}
for (idx, index) in available_indexes.iter().enumerate() {
let table_ref = &referenced_tables[*table];
if index.table_name == table_ref.table.get_name() {
let column = table_ref.table.get_column_at(*column);
if index.columns.first().unwrap().name == column.name {
return Ok(Some(idx));
}
}
}
Ok(None)
}
Self::Binary(lhs, op, rhs) => {
// Only consider index scans for binary ops that are comparisons.
// e.g. "t1.id = t2.id" is a valid index scan, but "t1.id + 1" is not.
//
// TODO/optimization: consider detecting index scan on e.g. table t1 in
// "WHERE t1.id + 1 = t2.id"
// here the Expr could be rewritten to "t1.id = t2.id - 1"
// and then t1.id could be used as an index key.
if !matches!(
*op,
ast::Operator::Equals
| ast::Operator::Greater
| ast::Operator::GreaterEquals
| ast::Operator::Less
| ast::Operator::LessEquals
) {
return Ok(None);
}
let lhs_index =
lhs.check_index_scan(table_index, referenced_tables, available_indexes)?;
if lhs_index.is_some() {
return Ok(lhs_index);
}
let rhs_index =
rhs.check_index_scan(table_index, referenced_tables, available_indexes)?;
if rhs_index.is_some() {
// swap lhs and rhs
let swapped_operator = match *op {
ast::Operator::Equals => ast::Operator::Equals,
ast::Operator::Greater => ast::Operator::Less,
ast::Operator::GreaterEquals => ast::Operator::LessEquals,
ast::Operator::Less => ast::Operator::Greater,
ast::Operator::LessEquals => ast::Operator::GreaterEquals,
_ => unreachable!(),
};
let lhs_new = rhs.take_ownership();
let rhs_new = lhs.take_ownership();
*self = Self::Binary(Box::new(lhs_new), swapped_operator, Box::new(rhs_new));
return Ok(rhs_index);
}
Ok(None)
}
_ => Ok(None),
}
}
fn check_constant(&self) -> Result<Option<ConstantPredicate>> {
match self {
Self::Literal(lit) => match lit {
ast::Literal::Null => Ok(Some(ConstantPredicate::AlwaysFalse)),
ast::Literal::Numeric(b) => {
if let Ok(int_value) = b.parse::<i64>() {
return Ok(Some(if int_value == 0 {
ConstantPredicate::AlwaysFalse
} else {
ConstantPredicate::AlwaysTrue
}));
}
if let Ok(float_value) = b.parse::<f64>() {
return Ok(Some(if float_value == 0.0 {
ConstantPredicate::AlwaysFalse
} else {
ConstantPredicate::AlwaysTrue
}));
}
Ok(None)
}
ast::Literal::String(s) => {
let without_quotes = s.trim_matches('\'');
if let Ok(int_value) = without_quotes.parse::<i64>() {
return Ok(Some(if int_value == 0 {
ConstantPredicate::AlwaysFalse
} else {
ConstantPredicate::AlwaysTrue
}));
}
if let Ok(float_value) = without_quotes.parse::<f64>() {
return Ok(Some(if float_value == 0.0 {
ConstantPredicate::AlwaysFalse
} else {
ConstantPredicate::AlwaysTrue
}));
}
Ok(Some(ConstantPredicate::AlwaysFalse))
}
_ => Ok(None),
},
Self::Unary(op, expr) => {
if *op == ast::UnaryOperator::Not {
let trivial = expr.check_constant()?;
return Ok(trivial.map(|t| match t {
ConstantPredicate::AlwaysTrue => ConstantPredicate::AlwaysFalse,
ConstantPredicate::AlwaysFalse => ConstantPredicate::AlwaysTrue,
}));
}
if *op == ast::UnaryOperator::Negative {
let trivial = expr.check_constant()?;
return Ok(trivial);
}
Ok(None)
}
Self::InList { lhs: _, not, rhs } => {
if rhs.is_none() {
return Ok(Some(if *not {
ConstantPredicate::AlwaysTrue
} else {
ConstantPredicate::AlwaysFalse
}));
}
let rhs = rhs.as_ref().unwrap();
if rhs.is_empty() {
return Ok(Some(if *not {
ConstantPredicate::AlwaysTrue
} else {
ConstantPredicate::AlwaysFalse
}));
}
Ok(None)
}
Self::Binary(lhs, op, rhs) => {
let lhs_trivial = lhs.check_constant()?;
let rhs_trivial = rhs.check_constant()?;
match op {
ast::Operator::And => {
if lhs_trivial == Some(ConstantPredicate::AlwaysFalse)
|| rhs_trivial == Some(ConstantPredicate::AlwaysFalse)
{
return Ok(Some(ConstantPredicate::AlwaysFalse));
}
if lhs_trivial == Some(ConstantPredicate::AlwaysTrue)
&& rhs_trivial == Some(ConstantPredicate::AlwaysTrue)
{
return Ok(Some(ConstantPredicate::AlwaysTrue));
}
Ok(None)
}
ast::Operator::Or => {
if lhs_trivial == Some(ConstantPredicate::AlwaysTrue)
|| rhs_trivial == Some(ConstantPredicate::AlwaysTrue)
{
return Ok(Some(ConstantPredicate::AlwaysTrue));
}
if lhs_trivial == Some(ConstantPredicate::AlwaysFalse)
&& rhs_trivial == Some(ConstantPredicate::AlwaysFalse)
{
return Ok(Some(ConstantPredicate::AlwaysFalse));
}
Ok(None)
}
_ => Ok(None),
}
}
_ => Ok(None),
}
}
}
pub enum Either<T, U> {
Left(T),
Right(U),
}
pub fn try_extract_index_search_expression(
expr: ast::Expr,
table_index: usize,
referenced_tables: &[TableReference],
available_indexes: &[Rc<Index>],
) -> Result<Either<ast::Expr, Search>> {
match expr {
ast::Expr::Binary(mut lhs, operator, mut rhs) => {
if lhs.is_rowid_alias_of(table_index) {
match operator {
ast::Operator::Equals => {
return Ok(Either::Right(Search::RowidEq { cmp_expr: *rhs }));
}
ast::Operator::Greater
| ast::Operator::GreaterEquals
| ast::Operator::Less
| ast::Operator::LessEquals => {
return Ok(Either::Right(Search::RowidSearch {
cmp_op: operator,
cmp_expr: *rhs,
}));
}
_ => {}
}
}
if rhs.is_rowid_alias_of(table_index) {
match operator {
ast::Operator::Equals => {
return Ok(Either::Right(Search::RowidEq { cmp_expr: *lhs }));
}
ast::Operator::Greater
| ast::Operator::GreaterEquals
| ast::Operator::Less
| ast::Operator::LessEquals => {
return Ok(Either::Right(Search::RowidSearch {
cmp_op: operator,
cmp_expr: *lhs,
}));
}
_ => {}
}
}
if let Some(index_index) =
lhs.check_index_scan(table_index, referenced_tables, available_indexes)?
{
match operator {
ast::Operator::Equals
| ast::Operator::Greater
| ast::Operator::GreaterEquals
| ast::Operator::Less
| ast::Operator::LessEquals => {
return Ok(Either::Right(Search::IndexSearch {
index: available_indexes[index_index].clone(),
cmp_op: operator,
cmp_expr: *rhs,
}));
}
_ => {}
}
}
if let Some(index_index) =
rhs.check_index_scan(table_index, referenced_tables, available_indexes)?
{
match operator {
ast::Operator::Equals
| ast::Operator::Greater
| ast::Operator::GreaterEquals
| ast::Operator::Less
| ast::Operator::LessEquals => {
return Ok(Either::Right(Search::IndexSearch {
index: available_indexes[index_index].clone(),
cmp_op: operator,
cmp_expr: *lhs,
}));
}
_ => {}
}
}
Ok(Either::Left(ast::Expr::Binary(lhs, operator, rhs)))
}
_ => Ok(Either::Left(expr)),
}
}
fn rewrite_expr(expr: &mut ast::Expr) -> Result<()> {
match expr {
ast::Expr::Id(id) => {
// Convert "true" and "false" to 1 and 0
if id.0.eq_ignore_ascii_case("true") {
*expr = ast::Expr::Literal(ast::Literal::Numeric(1.to_string()));
return Ok(());
}
if id.0.eq_ignore_ascii_case("false") {
*expr = ast::Expr::Literal(ast::Literal::Numeric(0.to_string()));
return Ok(());
}
Ok(())
}
ast::Expr::Between {
lhs,
not,
start,
end,
} => {
// Convert `y NOT BETWEEN x AND z` to `x > y OR y > z`
let (lower_op, upper_op) = if *not {
(ast::Operator::Greater, ast::Operator::Greater)
} else {
// Convert `y BETWEEN x AND z` to `x <= y AND y <= z`
(ast::Operator::LessEquals, ast::Operator::LessEquals)
};
rewrite_expr(start)?;
rewrite_expr(lhs)?;
rewrite_expr(end)?;
let start = start.take_ownership();
let lhs = lhs.take_ownership();
let end = end.take_ownership();
let lower_bound = ast::Expr::Binary(Box::new(start), lower_op, Box::new(lhs.clone()));
let upper_bound = ast::Expr::Binary(Box::new(lhs), upper_op, Box::new(end));
if *not {
*expr = ast::Expr::Binary(
Box::new(lower_bound),
ast::Operator::Or,
Box::new(upper_bound),
);
} else {
*expr = ast::Expr::Binary(
Box::new(lower_bound),
ast::Operator::And,
Box::new(upper_bound),
);
}
Ok(())
}
ast::Expr::Parenthesized(ref mut exprs) => {
for subexpr in exprs.iter_mut() {
rewrite_expr(subexpr)?;
}
let exprs = std::mem::take(exprs);
*expr = ast::Expr::Parenthesized(exprs);
Ok(())
}
// Process other expressions recursively
ast::Expr::Binary(lhs, _, rhs) => {
rewrite_expr(lhs)?;
rewrite_expr(rhs)?;
Ok(())
}
ast::Expr::FunctionCall { args, .. } => {
if let Some(args) = args {
for arg in args.iter_mut() {
rewrite_expr(arg)?;
}
}
Ok(())
}
_ => Ok(()),
}
}
trait TakeOwnership {
fn take_ownership(&mut self) -> Self;
}
impl TakeOwnership for ast::Expr {
fn take_ownership(&mut self) -> Self {
std::mem::replace(self, ast::Expr::Literal(ast::Literal::Null))
}
}