Files
turso/simulator/generation/predicate/binary.rs

395 lines
15 KiB
Rust

//! Contains code for generation for [ast::Expr::Binary] Predicate
use limbo_sqlite3_parser::ast::{self, Expr};
use crate::{
generation::{
backtrack, one_of,
predicate::{CompoundPredicate, SimplePredicate},
table::{GTValue, LTValue, LikeValue},
ArbitraryFrom as _, ArbitraryFromMaybe as _,
},
model::{
query::predicate::Predicate,
table::{Table, Value},
},
};
impl Predicate {
/// Generate an [ast::Expr::Binary] [Predicate] from a column and [Value]
pub fn from_column_binary<R: rand::Rng>(
rng: &mut R,
column_name: &str,
value: &Value,
) -> Predicate {
let expr = one_of(
vec![
Box::new(|_| {
Expr::Binary(
Box::new(Expr::Id(ast::Id(column_name.to_string()))),
ast::Operator::Equals,
Box::new(Expr::Literal(value.into())),
)
}),
Box::new(|rng| {
let gt_value = GTValue::arbitrary_from(rng, value).0;
Expr::Binary(
Box::new(Expr::Id(ast::Id(column_name.to_string()))),
ast::Operator::Greater,
Box::new(Expr::Literal(gt_value.into())),
)
}),
Box::new(|rng| {
let lt_value = LTValue::arbitrary_from(rng, value).0;
Expr::Binary(
Box::new(Expr::Id(ast::Id(column_name.to_string()))),
ast::Operator::Less,
Box::new(Expr::Literal(lt_value.into())),
)
}),
],
rng,
);
Predicate(expr)
}
/// Produces a true [ast::Expr::Binary] [Predicate] that is true for the provided row in the given table
pub fn true_binary<R: rand::Rng>(rng: &mut R, t: &Table, row: &Vec<Value>) -> Predicate {
// Pick a column
let column_index = rng.gen_range(0..t.columns.len());
let column = &t.columns[column_index];
let value = &row[column_index];
let expr = backtrack(
vec![
(
1,
Box::new(|_| {
Some(Expr::Binary(
Box::new(ast::Expr::Qualified(
ast::Name(t.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::Equals,
Box::new(Expr::Literal(value.into())),
))
}),
),
(
1,
Box::new(|rng| {
let v = Value::arbitrary_from(rng, &column.column_type);
if &v == value {
None
} else {
Some(Expr::Binary(
Box::new(ast::Expr::Qualified(
ast::Name(t.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::NotEquals,
Box::new(Expr::Literal(v.into())),
))
}
}),
),
(
1,
Box::new(|rng| {
let lt_value = LTValue::arbitrary_from(rng, value).0;
Some(Expr::Binary(
Box::new(ast::Expr::Qualified(
ast::Name(t.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::Greater,
Box::new(Expr::Literal(lt_value.into())),
))
}),
),
(
1,
Box::new(|rng| {
let gt_value = GTValue::arbitrary_from(rng, value).0;
Some(Expr::Binary(
Box::new(ast::Expr::Qualified(
ast::Name(t.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::Less,
Box::new(Expr::Literal(gt_value.into())),
))
}),
),
(
1,
Box::new(|rng| {
LikeValue::arbitrary_from_maybe(rng, value).map(|like| {
Expr::Like {
lhs: Box::new(ast::Expr::Qualified(
ast::Name(t.name.clone()),
ast::Name(column.name.clone()),
)),
not: false, // TODO: also generate this value eventually
op: ast::LikeOperator::Like,
rhs: Box::new(Expr::Literal(like.0.into())),
escape: None, // TODO: implement
}
})
}),
),
],
rng,
);
// Backtrack will always return Some here
Predicate(expr.unwrap())
}
/// Produces an [ast::Expr::Binary] [Predicate] that is false for the provided row in the given table
pub fn false_binary<R: rand::Rng>(rng: &mut R, t: &Table, row: &Vec<Value>) -> Predicate {
// Pick a column
let column_index = rng.gen_range(0..t.columns.len());
let column = &t.columns[column_index];
let value = &row[column_index];
let expr = one_of(
vec![
Box::new(|_| {
Expr::Binary(
Box::new(ast::Expr::Qualified(
ast::Name(t.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::NotEquals,
Box::new(Expr::Literal(value.into())),
)
}),
Box::new(|rng| {
let v = loop {
let v = Value::arbitrary_from(rng, &column.column_type);
if &v != value {
break v;
}
};
Expr::Binary(
Box::new(ast::Expr::Qualified(
ast::Name(t.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::Equals,
Box::new(Expr::Literal(v.into())),
)
}),
Box::new(|rng| {
let gt_value = GTValue::arbitrary_from(rng, value).0;
Expr::Binary(
Box::new(ast::Expr::Qualified(
ast::Name(t.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::Greater,
Box::new(Expr::Literal(gt_value.into())),
)
}),
Box::new(|rng| {
let lt_value = LTValue::arbitrary_from(rng, value).0;
Expr::Binary(
Box::new(ast::Expr::Qualified(
ast::Name(t.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::Less,
Box::new(Expr::Literal(lt_value.into())),
)
}),
],
rng,
);
Predicate(expr)
}
}
impl SimplePredicate {
/// Generates a true [ast::Expr::Binary] [SimplePredicate] from a [Table]
pub fn true_binary<R: rand::Rng>(rng: &mut R, table: &Table, column_index: usize) -> Self {
let column = &table.columns[column_index];
let column_values = table
.rows
.iter()
.map(|r| &r[column_index])
.collect::<Vec<_>>();
let expr = one_of(
vec![
Box::new(|rng| {
Expr::Binary(
Box::new(ast::Expr::Qualified(
ast::Name(table.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::Equals,
Box::new(Expr::arbitrary_from(rng, &column_values)),
)
}),
Box::new(|rng| {
let gt_value = GTValue::arbitrary_from(rng, &column_values).0;
Expr::Binary(
Box::new(ast::Expr::Qualified(
ast::Name(table.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::Greater,
Box::new(Expr::Literal(gt_value.into())),
)
}),
Box::new(|rng| {
let lt_value = LTValue::arbitrary_from(rng, &column_values).0;
Expr::Binary(
Box::new(ast::Expr::Qualified(
ast::Name(table.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::Less,
Box::new(Expr::Literal(lt_value.into())),
)
}),
],
rng,
);
SimplePredicate(Predicate(expr))
}
/// Generates a false [ast::Expr::Binary] [SimplePredicate] from a [Table]
pub fn false_binary<R: rand::Rng>(rng: &mut R, table: &Table, column_index: usize) -> Self {
let column = &table.columns[column_index];
let column_values = table
.rows
.iter()
.map(|r| &r[column_index])
.collect::<Vec<_>>();
let expr = one_of(
vec![
Box::new(|rng| {
Expr::Binary(
Box::new(Expr::Qualified(
ast::Name(table.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::NotEquals,
Box::new(Expr::arbitrary_from(rng, &column_values)),
)
}),
Box::new(|rng| {
let lt_value = LTValue::arbitrary_from(rng, &column_values).0;
Expr::Binary(
Box::new(Expr::Qualified(
ast::Name(table.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::Greater,
Box::new(Expr::Literal(lt_value.into())),
)
}),
Box::new(|rng| {
let gt_value = GTValue::arbitrary_from(rng, &column_values).0;
Expr::Binary(
Box::new(Expr::Qualified(
ast::Name(table.name.clone()),
ast::Name(column.name.clone()),
)),
ast::Operator::Less,
Box::new(Expr::Literal(gt_value.into())),
)
}),
],
rng,
);
SimplePredicate(Predicate(expr))
}
}
impl CompoundPredicate {
/// Decide if you want to create an AND or an OR
pub fn from_table_binary<R: rand::Rng>(
rng: &mut R,
table: &Table,
predicate_value: bool,
) -> Self {
let predicate = if rng.gen_bool(0.7) {
// An AND for true requires each of its children to be true
// An AND for false requires at least one of its children to be false
if predicate_value {
(0..rng.gen_range(0..=3))
.map(|_| SimplePredicate::arbitrary_from(rng, (table, true)).0)
.reduce(|accum, curr| {
Predicate(Expr::Binary(
Box::new(accum.0),
ast::Operator::And,
Box::new(curr.0),
))
})
.unwrap_or(Predicate::true_()) // Empty And is True
} else {
// Create a vector of random booleans
let mut booleans = (0..rng.gen_range(0..=3))
.map(|_| rng.gen_bool(0.5))
.collect::<Vec<_>>();
let len = booleans.len();
// Make sure at least one of them is false
if !booleans.is_empty() && booleans.iter().all(|b| *b) {
booleans[rng.gen_range(0..len)] = false;
}
booleans
.iter()
.map(|b| SimplePredicate::arbitrary_from(rng, (table, *b)).0)
.reduce(|accum, curr| {
Predicate(Expr::Binary(
Box::new(accum.0),
ast::Operator::And,
Box::new(curr.0),
))
})
.unwrap_or(Predicate::true_()) // Empty And is True
}
} else {
// An OR for true requires at least one of its children to be true
// An OR for false requires each of its children to be false
if predicate_value {
// Create a vector of random booleans
let mut booleans = (0..rng.gen_range(0..=3))
.map(|_| rng.gen_bool(0.5))
.collect::<Vec<_>>();
let len = booleans.len();
// Make sure at least one of them is true
if !booleans.is_empty() && booleans.iter().all(|b| !*b) {
booleans[rng.gen_range(0..len)] = true;
}
booleans
.iter()
.map(|b| SimplePredicate::arbitrary_from(rng, (table, *b)).0)
.reduce(|accum, curr| {
Predicate(Expr::Binary(
Box::new(accum.0),
ast::Operator::Or,
Box::new(curr.0),
))
})
.unwrap_or(Predicate::false_()) // Empty Or is False
} else {
(0..rng.gen_range(0..=3))
.map(|_| SimplePredicate::arbitrary_from(rng, (table, false)).0)
.reduce(|accum, curr| {
Predicate(Expr::Binary(
Box::new(accum.0),
ast::Operator::Or,
Box::new(curr.0),
))
})
.unwrap_or(Predicate::false_()) // Empty Or is False
}
};
Self(predicate)
}
}