mirror of
https://github.com/aljazceru/turso.git
synced 2025-12-17 00:24:21 +01:00
Improve reproducibility by documenting the steps needed to run the benchmarks and generate the plots. Also simplify plot generation a bit.
84 lines
2.5 KiB
Python
84 lines
2.5 KiB
Python
import sys
|
|
|
|
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
import scienceplots # noqa: F401
|
|
|
|
plt.style.use(["science"])
|
|
plt.rcParams.update({
|
|
"text.usetex": True,
|
|
"font.family": "serif",
|
|
"font.serif": ["Times"],
|
|
})
|
|
|
|
# Get CSV filenames from command line arguments
|
|
if len(sys.argv) < 2:
|
|
print("Usage: python script.py <csv_filename> [<csv_filename> ...]")
|
|
sys.exit(1)
|
|
|
|
csv_filenames = sys.argv[1:]
|
|
|
|
# Output filename
|
|
output_filename = "compute-impact.pdf"
|
|
|
|
# Read data from all CSV files and concatenate
|
|
dfs = [pd.read_csv(filename) for filename in csv_filenames]
|
|
df = pd.concat(dfs, ignore_index=True)
|
|
|
|
# Create figure and axis
|
|
fig, ax = plt.subplots(figsize=(10, 6))
|
|
|
|
# Get unique systems and thread counts
|
|
systems = df["system"].unique()
|
|
thread_counts = sorted(df["threads"].unique())
|
|
|
|
# Get colors from the current color cycle
|
|
prop_cycle = plt.rcParams["axes.prop_cycle"]
|
|
colors_list = prop_cycle.by_key()["color"]
|
|
|
|
# Plot a line for each system-thread combination
|
|
markers = ["o", "s", "^", "D"]
|
|
linestyles = ["-", "--", "-.", ":"]
|
|
|
|
plot_idx = 0
|
|
for sys_idx, system in enumerate(systems):
|
|
df_system = df[df["system"] == system]
|
|
for thread_idx, threads in enumerate(thread_counts):
|
|
df_thread = df_system[df_system["threads"] == threads].sort_values("compute")
|
|
if len(df_thread) > 0:
|
|
ax.plot(df_thread["compute"], df_thread["throughput"],
|
|
marker=markers[thread_idx % len(markers)],
|
|
color=colors_list[plot_idx % len(colors_list)],
|
|
linestyle=linestyles[sys_idx % len(linestyles)],
|
|
linewidth=2, markersize=8,
|
|
label=f'{system} ({threads} thread{"s" if threads > 1 else ""})')
|
|
plot_idx += 1
|
|
|
|
# Customize the plot
|
|
ax.set_xlabel(r"Compute Time (microseconds)", fontsize=14, fontweight="bold")
|
|
ax.set_ylabel("Throughput (rows/second)", fontsize=14, fontweight="bold")
|
|
|
|
# Set y-axis to start from 0 with dynamic upper limit
|
|
max_throughput = df["throughput"].max()
|
|
ax.set_ylim(0, max_throughput * 1.15) # Add 15% tolerance for legend space
|
|
|
|
# Format y-axis labels
|
|
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, p: f"{int(x/1000)}k"))
|
|
|
|
# Add legend
|
|
ax.legend(loc="lower left", frameon=True, fontsize=11)
|
|
|
|
# Add grid for better readability
|
|
ax.grid(axis="both", alpha=0.3, linestyle="--")
|
|
ax.set_axisbelow(True)
|
|
|
|
# Adjust layout
|
|
plt.tight_layout()
|
|
|
|
# Save the figure
|
|
plt.savefig(output_filename, dpi=300, bbox_inches="tight")
|
|
print(f"Saved plot to {output_filename}")
|
|
|
|
# Display the plot
|
|
plt.show()
|