Files
turso/core/vector/operations/jaccard.rs
Nikita Sivukhin 7e727d07af fix bugs add tests
2025-10-09 23:23:16 +04:00

163 lines
5.2 KiB
Rust

use crate::{
vector::vector_types::{Vector, VectorSparse, VectorType},
LimboError, Result,
};
pub fn vector_distance_jaccard(v1: &Vector, v2: &Vector) -> Result<f64> {
if v1.dims != v2.dims {
return Err(LimboError::ConversionError(
"Vectors must have the same dimensions".to_string(),
));
}
if v1.vector_type != v2.vector_type {
return Err(LimboError::ConversionError(
"Vectors must be of the same type".to_string(),
));
}
match v1.vector_type {
VectorType::Float32Dense => Ok(vector_f32_distance_jaccard(
v1.as_f32_slice(),
v2.as_f32_slice(),
)),
VectorType::Float64Dense => Ok(vector_f64_distance_jaccard(
v1.as_f64_slice(),
v2.as_f64_slice(),
)),
VectorType::Float32Sparse => Ok(vector_f32_sparse_distance_jaccard(
v1.as_f32_sparse(),
v2.as_f32_sparse(),
)),
}
}
fn vector_f32_distance_jaccard(v1: &[f32], v2: &[f32]) -> f64 {
let (mut min_sum, mut max_sum) = (0.0, 0.0);
for (&a, &b) in v1.iter().zip(v2.iter()) {
min_sum += a.min(b);
max_sum += a.max(b);
}
if max_sum == 0.0 {
return f64::NAN;
}
1. - (min_sum / max_sum) as f64
}
fn vector_f64_distance_jaccard(v1: &[f64], v2: &[f64]) -> f64 {
let (mut min_sum, mut max_sum) = (0.0, 0.0);
for (&a, &b) in v1.iter().zip(v2.iter()) {
min_sum += a.min(b);
max_sum += a.max(b);
}
if max_sum == 0.0 {
return f64::NAN;
}
1. - min_sum / max_sum
}
fn vector_f32_sparse_distance_jaccard(v1: VectorSparse<f32>, v2: VectorSparse<f32>) -> f64 {
let mut v1_pos = 0;
let mut v2_pos = 0;
let (mut min_sum, mut max_sum) = (0.0, 0.0);
while v1_pos < v1.idx.len() && v2_pos < v2.idx.len() {
if v1.idx[v1_pos] == v2.idx[v2_pos] {
min_sum += v1.values[v1_pos].min(v2.values[v2_pos]);
max_sum += v1.values[v1_pos].max(v2.values[v2_pos]);
v1_pos += 1;
v2_pos += 1;
} else if v1.idx[v1_pos] < v2.idx[v2_pos] {
min_sum += v1.values[v1_pos].min(0.);
max_sum += v1.values[v1_pos].max(0.);
v1_pos += 1;
} else {
min_sum += v2.values[v2_pos].min(0.);
max_sum += v2.values[v2_pos].max(0.);
v2_pos += 1;
}
}
while v1_pos < v1.idx.len() {
min_sum += v1.values[v1_pos].min(0.);
max_sum += v1.values[v1_pos].max(0.);
v1_pos += 1;
}
while v2_pos < v2.idx.len() {
min_sum += v2.values[v2_pos].min(0.);
max_sum += v2.values[v2_pos].max(0.);
v2_pos += 1;
}
if max_sum == 0.0 {
return f64::NAN;
}
1. - (min_sum / max_sum) as f64
}
#[cfg(test)]
mod tests {
use quickcheck_macros::quickcheck;
use crate::vector::{
operations::convert::vector_convert, vector_types::tests::ArbitraryVector,
};
use super::*;
#[test]
fn test_vector_distance_jaccard_f32() {
assert!(vector_f32_distance_jaccard(&[0.0, 0.0, 0.0], &[0.0, 0.0, 0.0]).is_nan());
assert_eq!(vector_f32_distance_jaccard(&[1.0, 2.0], &[0.0, 0.0]), 1.0);
assert_eq!(vector_f32_distance_jaccard(&[1.0, 2.0], &[1.0, 2.0]), 0.0);
assert_eq!(
vector_f32_distance_jaccard(&[1.0, 2.0], &[2.0, 1.0]),
1. - (1.0 + 1.0) / (2.0 + 2.0)
);
}
#[test]
fn test_vector_distance_jaccard_f64() {
assert!(vector_f64_distance_jaccard(&[], &[]).is_nan());
assert!(vector_f64_distance_jaccard(&[0.0, 0.0, 0.0], &[0.0, 0.0, 0.0]).is_nan());
assert_eq!(vector_f64_distance_jaccard(&[1.0, 2.0], &[0.0, 0.0]), 1.0);
assert_eq!(vector_f64_distance_jaccard(&[1.0, 2.0], &[1.0, 2.0]), 0.0);
assert_eq!(
vector_f64_distance_jaccard(&[1.0, 2.0], &[2.0, 1.0]),
1. - (1.0 + 1.0) / (2.0 + 2.0)
);
}
#[test]
fn test_vector_distance_jaccard_f32_sparse() {
assert!(
(vector_f32_sparse_distance_jaccard(
VectorSparse {
idx: &[0, 1],
values: &[1.0, 2.0]
},
VectorSparse {
idx: &[1, 2],
values: &[1.0, 3.0]
},
) - vector_f32_distance_jaccard(&[1.0, 2.0, 0.0], &[0.0, 1.0, 3.0]))
.abs()
< 1e-7
);
}
#[quickcheck]
fn prop_vector_distance_jaccard_dense_vs_sparse(
v1: ArbitraryVector<100>,
v2: ArbitraryVector<100>,
) -> bool {
let v1 = vector_convert(v1.into(), VectorType::Float32Dense).unwrap();
let v2 = vector_convert(v2.into(), VectorType::Float32Dense).unwrap();
let d1 = vector_distance_jaccard(&v1, &v2).unwrap();
println!("v1: {:?}, v2: {:?}", v1.as_f32_slice(), v2.as_f32_slice());
let sparse1 = vector_convert(v1, VectorType::Float32Sparse).unwrap();
let sparse2 = vector_convert(v2, VectorType::Float32Sparse).unwrap();
let d2 =
vector_f32_sparse_distance_jaccard(sparse1.as_f32_sparse(), sparse2.as_f32_sparse());
println!("d1: {}, d2: {}, delta: {}", d1, d2, (d1 - d2).abs());
(d1.is_nan() && d2.is_nan()) || (d1 - d2).abs() < 1e-6
}
}