Files
turso/core/vdbe/execute.rs
Pekka Enberg b2664e12c2 cargo fmt
2025-09-05 16:12:12 +03:00

10357 lines
361 KiB
Rust

#![allow(unused_variables)]
use crate::function::AlterTableFunc;
use crate::numeric::{NullableInteger, Numeric};
use crate::schema::Table;
use crate::storage::btree::{
integrity_check, IntegrityCheckError, IntegrityCheckState, PageCategory,
};
use crate::storage::database::DatabaseFile;
use crate::storage::page_cache::DumbLruPageCache;
use crate::storage::pager::{AtomicDbState, CreateBTreeFlags, DbState};
use crate::storage::sqlite3_ondisk::read_varint;
use crate::translate::collate::CollationSeq;
use crate::types::{
compare_immutable, compare_records_generic, Extendable, IOCompletions, ImmutableRecord,
SeekResult, Text,
};
use crate::util::{normalize_ident, IOExt as _};
use crate::vdbe::insn::InsertFlags;
use crate::vdbe::registers_to_ref_values;
use crate::vector::{vector_concat, vector_slice};
use crate::MvCursor;
use crate::{
error::{
LimboError, SQLITE_CONSTRAINT, SQLITE_CONSTRAINT_NOTNULL, SQLITE_CONSTRAINT_PRIMARYKEY,
},
ext::ExtValue,
function::{AggFunc, ExtFunc, MathFunc, MathFuncArity, ScalarFunc, VectorFunc},
functions::{
datetime::{
exec_date, exec_datetime_full, exec_julianday, exec_strftime, exec_time, exec_unixepoch,
},
printf::exec_printf,
},
};
use std::env::temp_dir;
use std::ops::DerefMut;
use std::{
borrow::BorrowMut,
rc::Rc,
sync::{Arc, Mutex},
};
use turso_macros::match_ignore_ascii_case;
use crate::{pseudo::PseudoCursor, result::LimboResult};
use crate::{
schema::{affinity, Affinity},
storage::btree::{BTreeCursor, BTreeKey},
};
use crate::{
storage::wal::CheckpointResult,
types::{
AggContext, Cursor, ExternalAggState, IOResult, SeekKey, SeekOp, SumAggState, Value,
ValueType,
},
util::{
cast_real_to_integer, cast_text_to_integer, cast_text_to_numeric, cast_text_to_real,
checked_cast_text_to_numeric, parse_schema_rows, RoundToPrecision,
},
vdbe::{
builder::CursorType,
insn::{IdxInsertFlags, Insn},
},
vector::{vector32, vector64, vector_distance_cos, vector_distance_l2, vector_extract},
};
use crate::{info, turso_assert, OpenFlags, RefValue, Row, TransactionState};
use super::{
insn::{Cookie, RegisterOrLiteral},
CommitState,
};
use parking_lot::RwLock;
use rand::{thread_rng, Rng};
use turso_parser::ast;
use turso_parser::parser::Parser;
use super::{
likeop::{construct_like_escape_arg, exec_glob, exec_like_with_escape},
sorter::Sorter,
};
use regex::{Regex, RegexBuilder};
use std::{cell::RefCell, collections::HashMap};
#[cfg(feature = "json")]
use crate::{
function::JsonFunc, json, json::convert_dbtype_to_raw_jsonb, json::get_json,
json::is_json_valid, json::json_array, json::json_array_length, json::json_arrow_extract,
json::json_arrow_shift_extract, json::json_error_position, json::json_extract,
json::json_from_raw_bytes_agg, json::json_insert, json::json_object, json::json_patch,
json::json_quote, json::json_remove, json::json_replace, json::json_set, json::json_type,
json::jsonb, json::jsonb_array, json::jsonb_extract, json::jsonb_insert, json::jsonb_object,
json::jsonb_patch, json::jsonb_remove, json::jsonb_replace, json::jsonb_set,
};
use super::{make_record, Program, ProgramState, Register};
#[cfg(feature = "fs")]
use crate::resolve_ext_path;
use crate::{bail_constraint_error, must_be_btree_cursor, MvStore, Pager, Result};
/// Macro to destructure an Insn enum variant, only to be used when it
/// is *impossible* to be another variant.
macro_rules! load_insn {
($variant:ident { $($field:tt $(: $binding:pat)?),* $(,)? }, $insn:expr) => {
#[cfg(debug_assertions)]
let Insn::$variant { $($field $(: $binding)?),* } = $insn else {
panic!("Expected Insn::{}, got {:?}", stringify!($variant), $insn);
};
#[cfg(not(debug_assertions))]
let Insn::$variant { $($field $(: $binding)?),*} = $insn else {
// this will optimize away the branch
unsafe { std::hint::unreachable_unchecked() };
};
};
}
macro_rules! return_if_io {
($expr:expr) => {
match $expr? {
IOResult::Done(v) => v,
IOResult::IO(io) => return Ok(InsnFunctionStepResult::IO(io)),
}
};
}
pub type InsnFunction = fn(
&Program,
&mut ProgramState,
&Insn,
&Rc<Pager>,
Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult>;
/// Compare two values using the specified collation for text values.
/// Non-text values are compared using their natural ordering.
fn compare_with_collation(
lhs: &Value,
rhs: &Value,
collation: Option<CollationSeq>,
) -> std::cmp::Ordering {
match (lhs, rhs) {
(Value::Text(lhs_text), Value::Text(rhs_text)) => {
if let Some(coll) = collation {
coll.compare_strings(lhs_text.as_str(), rhs_text.as_str())
} else {
lhs.cmp(rhs)
}
}
_ => lhs.cmp(rhs),
}
}
pub enum InsnFunctionStepResult {
Done,
IO(IOCompletions),
Row,
Interrupt,
Busy,
Step,
}
impl<T> From<IOResult<T>> for InsnFunctionStepResult {
fn from(value: IOResult<T>) -> Self {
match value {
IOResult::Done(_) => InsnFunctionStepResult::Done,
IOResult::IO(io) => InsnFunctionStepResult::IO(io),
}
}
}
pub fn op_init(
_program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Init { target_pc }, insn);
assert!(target_pc.is_offset());
state.pc = target_pc.as_offset_int();
Ok(InsnFunctionStepResult::Step)
}
pub fn op_add(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Add { lhs, rhs, dest }, insn);
state.registers[*dest] = Register::Value(
state.registers[*lhs]
.get_value()
.exec_add(state.registers[*rhs].get_value()),
);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_subtract(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Subtract { lhs, rhs, dest }, insn);
state.registers[*dest] = Register::Value(
state.registers[*lhs]
.get_value()
.exec_subtract(state.registers[*rhs].get_value()),
);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_multiply(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Multiply { lhs, rhs, dest }, insn);
state.registers[*dest] = Register::Value(
state.registers[*lhs]
.get_value()
.exec_multiply(state.registers[*rhs].get_value()),
);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_divide(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Divide { lhs, rhs, dest }, insn);
state.registers[*dest] = Register::Value(
state.registers[*lhs]
.get_value()
.exec_divide(state.registers[*rhs].get_value()),
);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_drop_index(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(DropIndex { index, db: _ }, insn);
program
.connection
.with_schema_mut(|schema| schema.remove_index(index));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_remainder(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Remainder { lhs, rhs, dest }, insn);
state.registers[*dest] = Register::Value(
state.registers[*lhs]
.get_value()
.exec_remainder(state.registers[*rhs].get_value()),
);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_bit_and(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(BitAnd { lhs, rhs, dest }, insn);
state.registers[*dest] = Register::Value(
state.registers[*lhs]
.get_value()
.exec_bit_and(state.registers[*rhs].get_value()),
);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_bit_or(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(BitOr { lhs, rhs, dest }, insn);
state.registers[*dest] = Register::Value(
state.registers[*lhs]
.get_value()
.exec_bit_or(state.registers[*rhs].get_value()),
);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_bit_not(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(BitNot { reg, dest }, insn);
state.registers[*dest] = Register::Value(state.registers[*reg].get_value().exec_bit_not());
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_checkpoint(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Checkpoint {
database: _,
checkpoint_mode,
dest,
},
insn
);
if !program.connection.auto_commit.get() {
// TODO: sqlite returns "Runtime error: database table is locked (6)" when a table is in use
// when a checkpoint is attempted. We don't have table locks, so return TableLocked for any
// attempt to checkpoint in an interactive transaction. This does not end the transaction,
// however.
return Err(LimboError::TableLocked);
}
let result = program.connection.checkpoint(*checkpoint_mode);
match result {
Ok(CheckpointResult {
num_attempted,
num_backfilled,
..
}) => {
// https://sqlite.org/pragma.html#pragma_wal_checkpoint
// 1st col: 1 (checkpoint SQLITE_BUSY) or 0 (not busy).
state.registers[*dest] = Register::Value(Value::Integer(0));
// 2nd col: # modified pages written to wal file
state.registers[*dest + 1] = Register::Value(Value::Integer(num_attempted as i64));
// 3rd col: # pages moved to db after checkpoint
state.registers[*dest + 2] = Register::Value(Value::Integer(num_backfilled as i64));
}
Err(_err) => state.registers[*dest] = Register::Value(Value::Integer(1)),
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_null(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
match insn {
Insn::Null { dest, dest_end } | Insn::BeginSubrtn { dest, dest_end } => {
if let Some(dest_end) = dest_end {
for i in *dest..=*dest_end {
state.registers[i] = Register::Value(Value::Null);
}
} else {
state.registers[*dest] = Register::Value(Value::Null);
}
}
_ => unreachable!("unexpected Insn {:?}", insn),
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_null_row(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(NullRow { cursor_id }, insn);
{
let mut cursor = must_be_btree_cursor!(*cursor_id, program.cursor_ref, state, "NullRow");
let cursor = cursor.as_btree_mut();
cursor.set_null_flag(true);
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_compare(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Compare {
start_reg_a,
start_reg_b,
count,
collation,
},
insn
);
let start_reg_a = *start_reg_a;
let start_reg_b = *start_reg_b;
let count = *count;
let collation = collation.unwrap_or_default();
if start_reg_a + count > start_reg_b {
return Err(LimboError::InternalError(
"Compare registers overlap".to_string(),
));
}
let mut cmp = None;
for i in 0..count {
let a = state.registers[start_reg_a + i].get_value();
let b = state.registers[start_reg_b + i].get_value();
cmp = match (a, b) {
(Value::Text(left), Value::Text(right)) => {
Some(collation.compare_strings(left.as_str(), right.as_str()))
}
_ => Some(a.cmp(b)),
};
if cmp != Some(std::cmp::Ordering::Equal) {
break;
}
}
state.last_compare = cmp;
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_jump(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Jump {
target_pc_lt,
target_pc_eq,
target_pc_gt,
},
insn
);
assert!(target_pc_lt.is_offset());
assert!(target_pc_eq.is_offset());
assert!(target_pc_gt.is_offset());
let cmp = state.last_compare.take();
if cmp.is_none() {
return Err(LimboError::InternalError(
"Jump without compare".to_string(),
));
}
let target_pc = match cmp.unwrap() {
std::cmp::Ordering::Less => *target_pc_lt,
std::cmp::Ordering::Equal => *target_pc_eq,
std::cmp::Ordering::Greater => *target_pc_gt,
};
state.pc = target_pc.as_offset_int();
Ok(InsnFunctionStepResult::Step)
}
pub fn op_move(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Move {
source_reg,
dest_reg,
count,
},
insn
);
let source_reg = *source_reg;
let dest_reg = *dest_reg;
let count = *count;
for i in 0..count {
state.registers[dest_reg + i] = std::mem::replace(
&mut state.registers[source_reg + i],
Register::Value(Value::Null),
);
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_if_pos(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
IfPos {
reg,
target_pc,
decrement_by,
},
insn
);
assert!(target_pc.is_offset());
let reg = *reg;
let target_pc = *target_pc;
match state.registers[reg].get_value() {
Value::Integer(n) if *n > 0 => {
state.pc = target_pc.as_offset_int();
state.registers[reg] = Register::Value(Value::Integer(*n - *decrement_by as i64));
}
Value::Integer(_) => {
state.pc += 1;
}
_ => {
return Err(LimboError::InternalError(
"IfPos: the value in the register is not an integer".into(),
));
}
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_not_null(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(NotNull { reg, target_pc }, insn);
assert!(target_pc.is_offset());
let reg = *reg;
let target_pc = *target_pc;
match &state.registers[reg].get_value() {
Value::Null => {
state.pc += 1;
}
_ => {
state.pc = target_pc.as_offset_int();
}
}
Ok(InsnFunctionStepResult::Step)
}
#[derive(Debug, Clone, Copy, PartialEq)]
enum ComparisonOp {
Eq,
Ne,
Lt,
Le,
Gt,
Ge,
}
impl ComparisonOp {
fn compare(&self, lhs: &Value, rhs: &Value, collation: &CollationSeq) -> bool {
match (lhs, rhs) {
(Value::Text(lhs_text), Value::Text(rhs_text)) => {
let order = collation.compare_strings(lhs_text.as_str(), rhs_text.as_str());
match self {
ComparisonOp::Eq => order.is_eq(),
ComparisonOp::Ne => order.is_ne(),
ComparisonOp::Lt => order.is_lt(),
ComparisonOp::Le => order.is_le(),
ComparisonOp::Gt => order.is_gt(),
ComparisonOp::Ge => order.is_ge(),
}
}
(_, _) => match self {
ComparisonOp::Eq => *lhs == *rhs,
ComparisonOp::Ne => *lhs != *rhs,
ComparisonOp::Lt => *lhs < *rhs,
ComparisonOp::Le => *lhs <= *rhs,
ComparisonOp::Gt => *lhs > *rhs,
ComparisonOp::Ge => *lhs >= *rhs,
},
}
}
fn compare_integers(&self, lhs: &Value, rhs: &Value) -> bool {
match self {
ComparisonOp::Eq => lhs == rhs,
ComparisonOp::Ne => lhs != rhs,
ComparisonOp::Lt => lhs < rhs,
ComparisonOp::Le => lhs <= rhs,
ComparisonOp::Gt => lhs > rhs,
ComparisonOp::Ge => lhs >= rhs,
}
}
fn handle_nulls(&self, lhs: &Value, rhs: &Value, null_eq: bool, jump_if_null: bool) -> bool {
match self {
ComparisonOp::Eq => {
let both_null = lhs == rhs;
(null_eq && both_null) || (!null_eq && jump_if_null)
}
ComparisonOp::Ne => {
let at_least_one_null = lhs != rhs;
(null_eq && at_least_one_null) || (!null_eq && jump_if_null)
}
ComparisonOp::Lt | ComparisonOp::Le | ComparisonOp::Gt | ComparisonOp::Ge => {
jump_if_null
}
}
}
}
pub fn op_comparison(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
let (lhs, rhs, target_pc, flags, collation, op) = match insn {
Insn::Eq {
lhs,
rhs,
target_pc,
flags,
collation,
} => (
*lhs,
*rhs,
*target_pc,
*flags,
collation.unwrap_or_default(),
ComparisonOp::Eq,
),
Insn::Ne {
lhs,
rhs,
target_pc,
flags,
collation,
} => (
*lhs,
*rhs,
*target_pc,
*flags,
collation.unwrap_or_default(),
ComparisonOp::Ne,
),
Insn::Lt {
lhs,
rhs,
target_pc,
flags,
collation,
} => (
*lhs,
*rhs,
*target_pc,
*flags,
collation.unwrap_or_default(),
ComparisonOp::Lt,
),
Insn::Le {
lhs,
rhs,
target_pc,
flags,
collation,
} => (
*lhs,
*rhs,
*target_pc,
*flags,
collation.unwrap_or_default(),
ComparisonOp::Le,
),
Insn::Gt {
lhs,
rhs,
target_pc,
flags,
collation,
} => (
*lhs,
*rhs,
*target_pc,
*flags,
collation.unwrap_or_default(),
ComparisonOp::Gt,
),
Insn::Ge {
lhs,
rhs,
target_pc,
flags,
collation,
} => (
*lhs,
*rhs,
*target_pc,
*flags,
collation.unwrap_or_default(),
ComparisonOp::Ge,
),
_ => unreachable!("unexpected Insn {:?}", insn),
};
assert!(target_pc.is_offset());
let nulleq = flags.has_nulleq();
let jump_if_null = flags.has_jump_if_null();
let affinity = flags.get_affinity();
let lhs_value = state.registers[lhs].get_value();
let rhs_value = state.registers[rhs].get_value();
// Fast path for integers
if matches!(lhs_value, Value::Integer(_)) && matches!(rhs_value, Value::Integer(_)) {
if op.compare_integers(lhs_value, rhs_value) {
state.pc = target_pc.as_offset_int();
} else {
state.pc += 1;
}
return Ok(InsnFunctionStepResult::Step);
}
// Handle NULL values
if matches!(lhs_value, Value::Null) || matches!(rhs_value, Value::Null) {
if op.handle_nulls(lhs_value, rhs_value, nulleq, jump_if_null) {
state.pc = target_pc.as_offset_int();
} else {
state.pc += 1;
}
return Ok(InsnFunctionStepResult::Step);
}
let mut lhs_temp_reg = None;
let mut rhs_temp_reg = None;
let mut lhs_converted = false;
let mut rhs_converted = false;
// Apply affinity conversions
match affinity {
Affinity::Numeric | Affinity::Integer => {
let lhs_is_text = matches!(state.registers[lhs].get_value(), Value::Text(_));
let rhs_is_text = matches!(state.registers[rhs].get_value(), Value::Text(_));
if lhs_is_text || rhs_is_text {
if lhs_is_text {
lhs_temp_reg = Some(state.registers[lhs].clone());
lhs_converted = apply_numeric_affinity(lhs_temp_reg.as_mut().unwrap(), false);
}
if rhs_is_text {
rhs_temp_reg = Some(state.registers[rhs].clone());
rhs_converted = apply_numeric_affinity(rhs_temp_reg.as_mut().unwrap(), false);
}
}
}
Affinity::Text => {
let lhs_is_text = matches!(state.registers[lhs].get_value(), Value::Text(_));
let rhs_is_text = matches!(state.registers[rhs].get_value(), Value::Text(_));
if lhs_is_text || rhs_is_text {
if is_numeric_value(&state.registers[lhs]) {
lhs_temp_reg = Some(state.registers[lhs].clone());
lhs_converted = stringify_register(lhs_temp_reg.as_mut().unwrap());
}
if is_numeric_value(&state.registers[rhs]) {
rhs_temp_reg = Some(state.registers[rhs].clone());
rhs_converted = stringify_register(rhs_temp_reg.as_mut().unwrap());
}
}
}
Affinity::Real => {
if matches!(state.registers[lhs].get_value(), Value::Text(_)) {
lhs_temp_reg = Some(state.registers[lhs].clone());
lhs_converted = apply_numeric_affinity(lhs_temp_reg.as_mut().unwrap(), false);
}
if matches!(state.registers[rhs].get_value(), Value::Text(_)) {
rhs_temp_reg = Some(state.registers[rhs].clone());
rhs_converted = apply_numeric_affinity(rhs_temp_reg.as_mut().unwrap(), false);
}
if let Value::Integer(i) =
(lhs_temp_reg.as_ref().unwrap_or(&state.registers[lhs])).get_value()
{
lhs_temp_reg = Some(Register::Value(Value::Float(*i as f64)));
lhs_converted = true;
}
if let Value::Integer(i) = rhs_temp_reg
.as_ref()
.unwrap_or(&state.registers[rhs])
.get_value()
{
rhs_temp_reg = Some(Register::Value(Value::Float(*i as f64)));
rhs_converted = true;
}
}
Affinity::Blob => {} // Do nothing for blob affinity.
}
let should_jump = op.compare(
lhs_temp_reg
.as_ref()
.unwrap_or(&state.registers[lhs])
.get_value(),
rhs_temp_reg
.as_ref()
.unwrap_or(&state.registers[rhs])
.get_value(),
&collation,
);
if lhs_converted {
state.registers[lhs] = lhs_temp_reg.unwrap();
}
if rhs_converted {
state.registers[rhs] = rhs_temp_reg.unwrap();
}
if should_jump {
state.pc = target_pc.as_offset_int();
} else {
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_if(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
If {
reg,
target_pc,
jump_if_null,
},
insn
);
assert!(target_pc.is_offset());
if state.registers[*reg]
.get_value()
.exec_if(*jump_if_null, false)
{
state.pc = target_pc.as_offset_int();
} else {
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_if_not(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
IfNot {
reg,
target_pc,
jump_if_null,
},
insn
);
assert!(target_pc.is_offset());
if state.registers[*reg]
.get_value()
.exec_if(*jump_if_null, true)
{
state.pc = target_pc.as_offset_int();
} else {
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_open_read(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
_pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
OpenRead {
cursor_id,
root_page,
db,
},
insn
);
let pager = program.get_pager_from_database_index(db);
let (_, cursor_type) = program.cursor_ref.get(*cursor_id).unwrap();
let mv_cursor = match program.connection.mv_tx_id.get() {
Some(tx_id) => {
let table_id = *root_page as u64;
let mv_store = mv_store.unwrap().clone();
let mv_cursor = Rc::new(RefCell::new(
MvCursor::new(mv_store, tx_id, table_id, pager.clone()).unwrap(),
));
Some(mv_cursor)
}
None => None,
};
let mut cursors = state.cursors.borrow_mut();
let num_columns = match cursor_type {
CursorType::BTreeTable(table_rc) => table_rc.columns.len(),
CursorType::BTreeIndex(index_arc) => index_arc.columns.len(),
CursorType::MaterializedView(table_rc, _) => table_rc.columns.len(),
_ => unreachable!("This should not have happened"),
};
match cursor_type {
CursorType::MaterializedView(_, view_mutex) => {
// This is a materialized view with storage
// Create btree cursor for reading the persistent data
let btree_cursor = Box::new(BTreeCursor::new_table(
mv_cursor,
pager.clone(),
*root_page,
num_columns,
));
// Get the view name and look up or create its transaction state
let view_name = view_mutex.lock().unwrap().name().to_string();
let tx_state = program
.connection
.view_transaction_states
.get_or_create(&view_name);
// Create materialized view cursor with this view's transaction state
let mv_cursor = crate::incremental::cursor::MaterializedViewCursor::new(
btree_cursor,
view_mutex.clone(),
pager.clone(),
tx_state,
)?;
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_materialized_view(mv_cursor));
}
CursorType::BTreeTable(_) => {
// Regular table
let cursor = BTreeCursor::new_table(mv_cursor, pager.clone(), *root_page, num_columns);
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_btree(cursor));
}
CursorType::BTreeIndex(index) => {
let cursor = BTreeCursor::new_index(
mv_cursor,
pager.clone(),
*root_page,
index.as_ref(),
num_columns,
);
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_btree(cursor));
}
CursorType::Pseudo(_) => {
panic!("OpenRead on pseudo cursor");
}
CursorType::Sorter => {
panic!("OpenRead on sorter cursor");
}
CursorType::VirtualTable(_) => {
panic!("OpenRead on virtual table cursor, use Insn:VOpen instead");
}
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_vopen(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(VOpen { cursor_id }, insn);
let (_, cursor_type) = program.cursor_ref.get(*cursor_id).unwrap();
let CursorType::VirtualTable(virtual_table) = cursor_type else {
panic!("VOpen on non-virtual table cursor");
};
let cursor = virtual_table.open(program.connection.clone())?;
state
.cursors
.borrow_mut()
.get_mut(*cursor_id)
.unwrap_or_else(|| panic!("cursor id {} out of bounds", *cursor_id))
.replace(Cursor::Virtual(cursor));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_vcreate(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
VCreate {
module_name,
table_name,
args_reg,
},
insn
);
let module_name = state.registers[*module_name].get_value().to_string();
let table_name = state.registers[*table_name].get_value().to_string();
let args = if let Some(args_reg) = args_reg {
if let Register::Record(rec) = &state.registers[*args_reg] {
rec.get_values().iter().map(|v| v.to_ffi()).collect()
} else {
return Err(LimboError::InternalError(
"VCreate: args_reg is not a record".to_string(),
));
}
} else {
vec![]
};
let conn = program.connection.clone();
let table =
crate::VirtualTable::table(Some(&table_name), &module_name, args, &conn.syms.borrow())?;
{
conn.syms
.borrow_mut()
.vtabs
.insert(table_name, table.clone());
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_vfilter(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
VFilter {
cursor_id,
pc_if_empty,
arg_count,
args_reg,
idx_str,
idx_num,
},
insn
);
let has_rows = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_virtual_mut();
let mut args = Vec::with_capacity(*arg_count);
for i in 0..*arg_count {
args.push(state.registers[args_reg + i].get_value().clone());
}
let idx_str = if let Some(idx_str) = idx_str {
Some(state.registers[*idx_str].get_value().to_string())
} else {
None
};
cursor.filter(*idx_num as i32, idx_str, *arg_count, args)?
};
// Increment filter_operations metric for virtual table filter
state.metrics.filter_operations = state.metrics.filter_operations.saturating_add(1);
if !has_rows {
state.pc = pc_if_empty.as_offset_int();
} else {
// VFilter positions to the first row if any exist, which counts as a read
state.metrics.rows_read = state.metrics.rows_read.saturating_add(1);
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_vcolumn(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
VColumn {
cursor_id,
column,
dest,
},
insn
);
let value = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_virtual_mut();
cursor.column(*column)?
};
state.registers[*dest] = Register::Value(value);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_vupdate(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
VUpdate {
cursor_id,
arg_count,
start_reg,
conflict_action,
..
},
insn
);
let (_, cursor_type) = program.cursor_ref.get(*cursor_id).unwrap();
let CursorType::VirtualTable(virtual_table) = cursor_type else {
panic!("VUpdate on non-virtual table cursor");
};
if virtual_table.readonly() {
return Err(LimboError::ReadOnly);
}
if *arg_count < 2 {
return Err(LimboError::InternalError(
"VUpdate: arg_count must be at least 2 (rowid and insert_rowid)".to_string(),
));
}
let mut argv = Vec::with_capacity(*arg_count);
for i in 0..*arg_count {
if let Some(value) = state.registers.get(*start_reg + i) {
argv.push(value.get_value().clone());
} else {
return Err(LimboError::InternalError(format!(
"VUpdate: register out of bounds at {}",
*start_reg + i
)));
}
}
let result = virtual_table.update(&argv);
match result {
Ok(Some(new_rowid)) => {
if *conflict_action == 5 {
// ResolveType::Replace
program.connection.update_last_rowid(new_rowid);
}
state.pc += 1;
}
Ok(None) => {
// no-op or successful update without rowid return
state.pc += 1;
}
Err(e) => {
// virtual table update failed
return Err(LimboError::ExtensionError(format!(
"Virtual table update failed: {e}"
)));
}
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_vnext(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
VNext {
cursor_id,
pc_if_next,
},
insn
);
let has_more = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_virtual_mut();
cursor.next()?
};
if has_more {
// Increment metrics for row read from virtual table (including materialized views)
state.metrics.rows_read = state.metrics.rows_read.saturating_add(1);
state.pc = pc_if_next.as_offset_int();
} else {
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_vdestroy(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(VDestroy { db, table_name }, insn);
let conn = program.connection.clone();
{
let Some(vtab) = conn.syms.borrow_mut().vtabs.remove(table_name) else {
return Err(crate::LimboError::InternalError(
"Could not find Virtual Table to Destroy".to_string(),
));
};
vtab.destroy()?;
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_open_pseudo(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
OpenPseudo {
cursor_id,
content_reg: _,
num_fields: _,
},
insn
);
{
let mut cursors = state.cursors.borrow_mut();
let cursor = PseudoCursor::default();
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_pseudo(cursor));
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_rewind(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Rewind {
cursor_id,
pc_if_empty,
},
insn
);
assert!(pc_if_empty.is_offset());
let is_empty = {
let mut cursor = state.get_cursor(*cursor_id);
match &mut *cursor {
Cursor::BTree(btree_cursor) => {
return_if_io!(btree_cursor.rewind());
btree_cursor.is_empty()
}
Cursor::MaterializedView(mv_cursor) => {
return_if_io!(mv_cursor.rewind());
!mv_cursor.is_valid()?
}
_ => panic!("Rewind on non-btree/materialized-view cursor"),
}
};
if is_empty {
state.pc = pc_if_empty.as_offset_int();
} else {
// Rewind positions to the first row, which is effectively a read
state.metrics.rows_read = state.metrics.rows_read.saturating_add(1);
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_last(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Last {
cursor_id,
pc_if_empty,
},
insn
);
assert!(pc_if_empty.is_offset());
let is_empty = {
let mut cursor = must_be_btree_cursor!(*cursor_id, program.cursor_ref, state, "Last");
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.last());
cursor.is_empty()
};
if is_empty {
state.pc = pc_if_empty.as_offset_int();
} else {
// Last positions to the last row, which is effectively a read
state.metrics.rows_read = state.metrics.rows_read.saturating_add(1);
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
/// Fast varint reader optimized for the common cases of 1-byte and 2-byte varints.
///
/// This function is a performance-optimized version of `read_varint()` that handles
/// the most common varint cases inline before falling back to the full implementation.
/// It follows the same varint encoding as SQLite.
///
/// # Optimized Cases
///
/// - **Single-byte case**: Values 0-127 (0x00-0x7F) are returned immediately
/// - **Two-byte case**: Values 128-16383 (0x80-0x3FFF) are handled inline
/// - **Multi-byte case**: Larger values fall back to the full `read_varint()` implementation
///
/// This function is similar to `sqlite3GetVarint32`
#[inline(always)]
fn read_varint_fast(buf: &[u8]) -> Result<(u64, usize)> {
// Fast path: Single-byte varint
if let Some(&first_byte) = buf.first() {
if first_byte & 0x80 == 0 {
return Ok((first_byte as u64, 1));
}
} else {
crate::bail_corrupt_error!("Invalid varint");
}
// Fast path: Two-byte varint
if let Some(&second_byte) = buf.get(1) {
if second_byte & 0x80 == 0 {
let v = (((buf[0] & 0x7f) as u64) << 7) + (second_byte as u64);
return Ok((v, 2));
}
} else {
crate::bail_corrupt_error!("Invalid varint");
}
//Fallback: Multi-byte varint
read_varint(buf)
}
#[derive(Debug, Clone, Copy)]
pub enum OpColumnState {
Start,
Rowid {
index_cursor_id: usize,
table_cursor_id: usize,
},
Seek {
rowid: i64,
table_cursor_id: usize,
},
GetColumn,
}
pub fn op_column(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Column {
cursor_id,
column,
dest,
default,
},
insn
);
'outer: loop {
match state.op_column_state {
OpColumnState::Start => {
if let Some((index_cursor_id, table_cursor_id)) =
state.deferred_seeks[*cursor_id].take()
{
state.op_column_state = OpColumnState::Rowid {
index_cursor_id,
table_cursor_id,
};
} else {
state.op_column_state = OpColumnState::GetColumn;
}
}
OpColumnState::Rowid {
index_cursor_id,
table_cursor_id,
} => {
let rowid = {
let mut index_cursor = state.get_cursor(index_cursor_id);
let index_cursor = index_cursor.as_btree_mut();
return_if_io!(index_cursor.rowid())
};
state.op_column_state = OpColumnState::Seek {
rowid: rowid.unwrap(),
table_cursor_id,
};
}
OpColumnState::Seek {
rowid,
table_cursor_id,
} => {
{
let mut table_cursor = state.get_cursor(table_cursor_id);
// MaterializedView cursors shouldn't go through deferred seek logic
// but if we somehow get here, handle it appropriately
match &mut *table_cursor {
Cursor::MaterializedView(mv_cursor) => {
// Seek to the rowid in the materialized view
return_if_io!(mv_cursor
.seek(SeekKey::TableRowId(rowid), SeekOp::GE { eq_only: true }));
}
_ => {
// Regular btree cursor
let table_cursor = table_cursor.as_btree_mut();
return_if_io!(table_cursor
.seek(SeekKey::TableRowId(rowid), SeekOp::GE { eq_only: true }));
}
}
}
state.op_column_state = OpColumnState::GetColumn;
}
OpColumnState::GetColumn => {
// First check if this is a MaterializedViewCursor
{
let mut cursor = state.get_cursor(*cursor_id);
if let Cursor::MaterializedView(mv_cursor) = &mut *cursor {
// Handle materialized view column access
let value = return_if_io!(mv_cursor.column(*column));
drop(cursor);
state.registers[*dest] = Register::Value(value);
break 'outer;
}
// Fall back to normal handling
}
let (_, cursor_type) = program.cursor_ref.get(*cursor_id).unwrap();
match cursor_type {
CursorType::BTreeTable(_)
| CursorType::BTreeIndex(_)
| CursorType::MaterializedView(_, _) => {
'ifnull: {
let mut cursor_ref = must_be_btree_cursor!(
*cursor_id,
program.cursor_ref,
state,
"Column"
);
let cursor = cursor_ref.as_btree_mut();
if cursor.get_null_flag() {
drop(cursor_ref);
state.registers[*dest] = Register::Value(Value::Null);
break 'outer;
}
let record_result = return_if_io!(cursor.record());
let Some(payload) = record_result.as_ref().map(|r| r.get_payload())
else {
break 'ifnull;
};
let mut record_cursor = cursor.record_cursor.borrow_mut();
if record_cursor.offsets.is_empty() {
let (header_size, header_len_bytes) = read_varint_fast(payload)?;
let header_size = header_size as usize;
debug_assert!(header_size <= payload.len() && header_size <= 98307, "header_size: {header_size}, header_len_bytes: {header_len_bytes}, payload.len(): {}", payload.len());
record_cursor.header_size = header_size;
record_cursor.header_offset = header_len_bytes;
record_cursor.offsets.push(header_size);
}
let target_column = *column;
let mut parse_pos = record_cursor.header_offset;
let mut data_offset = record_cursor
.offsets
.last()
.copied()
.expect("header_offset must be set");
// Parse the header for serial types incrementally until we have the target column
while record_cursor.serial_types.len() <= target_column
&& parse_pos < record_cursor.header_size
{
let (serial_type, varint_len) =
read_varint_fast(&payload[parse_pos..])?;
record_cursor.serial_types.push(serial_type);
parse_pos += varint_len;
let data_size = match serial_type {
// NULL
0 => 0,
// I8
1 => 1,
// I16
2 => 2,
// I24
3 => 3,
// I32
4 => 4,
// I48
5 => 6,
// I64
6 => 8,
// F64
7 => 8,
// CONST_INT0
8 => 0,
// CONST_INT1
9 => 0,
// BLOB
n if n >= 12 && n & 1 == 0 => (n - 12) >> 1,
// TEXT
n if n >= 13 && n & 1 == 1 => (n - 13) >> 1,
// Reserved
10 | 11 => {
return Err(LimboError::Corrupt(format!(
"Reserved serial type: {serial_type}"
)))
}
_ => unreachable!("Invalid serial type: {serial_type}"),
} as usize;
data_offset += data_size;
record_cursor.offsets.push(data_offset);
}
debug_assert!(
parse_pos <= record_cursor.header_size,
"parse_pos: {parse_pos}, header_size: {}",
record_cursor.header_size
);
record_cursor.header_offset = parse_pos;
if target_column >= record_cursor.serial_types.len() {
break 'ifnull;
}
let start_offset = record_cursor.offsets[target_column];
let end_offset = record_cursor.offsets[target_column + 1];
// SAFETY: We know that the payload is valid until the next row is processed.
let buf = unsafe {
std::mem::transmute::<&[u8], &'static [u8]>(
&payload[start_offset..end_offset],
)
};
let serial_type = record_cursor.serial_types[target_column];
drop(record_result);
drop(record_cursor);
drop(cursor_ref);
match serial_type {
// NULL
0 => break 'ifnull,
// I8
1 => {
state.registers[*dest] =
Register::Value(Value::Integer(buf[0] as i8 as i64));
}
// I16
2 => {
state.registers[*dest] =
Register::Value(Value::Integer(i16::from_be_bytes([
buf[0], buf[1],
])
as i64));
}
// I24
3 => {
let sign_extension = (buf[0] > 0x7F) as u8 * 0xFF;
let value = Value::Integer(i32::from_be_bytes([
sign_extension,
buf[0],
buf[1],
buf[2],
])
as i64);
state.registers[*dest] = Register::Value(value);
}
// I32
4 => {
let value = Value::Integer(i32::from_be_bytes([
buf[0], buf[1], buf[2], buf[3],
])
as i64);
state.registers[*dest] = Register::Value(value);
}
// I48
5 => {
let sign_extension = (buf[0] > 0x7F) as u8 * 0xFF;
let value = Value::Integer(i64::from_be_bytes([
sign_extension,
sign_extension,
buf[0],
buf[1],
buf[2],
buf[3],
buf[4],
buf[5],
]));
state.registers[*dest] = Register::Value(value);
}
// I64
6 => {
let value = Value::Integer(i64::from_be_bytes(
buf[..8].try_into().unwrap(),
));
state.registers[*dest] = Register::Value(value);
}
// F64
7 => {
let value = Value::Float(f64::from_be_bytes(
buf[..8].try_into().unwrap(),
));
state.registers[*dest] = Register::Value(value);
}
// CONST_INT0
8 => {
state.registers[*dest] = Register::Value(Value::Integer(0));
}
// CONST_INT1
9 => {
state.registers[*dest] = Register::Value(Value::Integer(1));
}
// BLOB
n if n >= 12 && n & 1 == 0 => {
// Try to reuse the registers when allocation is not needed.
match state.registers[*dest] {
Register::Value(Value::Blob(ref mut existing_blob)) => {
existing_blob.do_extend(&buf);
}
_ => {
state.registers[*dest] =
Register::Value(Value::Blob(buf.to_vec()));
}
}
}
// TEXT
n if n >= 13 && n & 1 == 1 => {
// Try to reuse the registers when allocation is not needed.
match state.registers[*dest] {
Register::Value(Value::Text(ref mut existing_text)) => {
// SAFETY: We know the text is valid UTF-8 because we only accept valid UTF-8 and the serial type is TEXT.
let text =
unsafe { std::str::from_utf8_unchecked(buf) };
existing_text.do_extend(&text);
}
_ => {
// SAFETY: We know the text is valid UTF-8 because we only accept valid UTF-8 and the serial type is TEXT.
let text =
unsafe { std::str::from_utf8_unchecked(buf) };
state.registers[*dest] =
Register::Value(Value::Text(Text::new(text)));
}
}
}
_ => panic!("Invalid serial type: {serial_type}"),
}
break 'outer;
};
// DEFAULT handling. Try to reuse the registers when allocation is not needed.
let Some(ref default) = default else {
state.registers[*dest] = Register::Value(Value::Null);
break;
};
match (default, &mut state.registers[*dest]) {
(
Value::Text(new_text),
Register::Value(Value::Text(existing_text)),
) => {
existing_text.do_extend(new_text);
}
(
Value::Blob(new_blob),
Register::Value(Value::Blob(existing_blob)),
) => {
existing_blob.do_extend(new_blob);
}
_ => {
state.registers[*dest] = Register::Value(default.clone());
}
}
break;
}
CursorType::Sorter => {
let record = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_sorter_mut();
cursor.record().cloned()
};
if let Some(record) = record {
state.registers[*dest] =
Register::Value(match record.get_value_opt(*column) {
Some(val) => val.to_owned(),
None => default.clone().unwrap_or(Value::Null),
});
} else {
state.registers[*dest] = Register::Value(Value::Null);
}
}
CursorType::Pseudo(_) => {
let value = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_pseudo_mut();
if let Some(record) = cursor.record() {
record.get_value(*column)?.to_owned()
} else {
Value::Null
}
};
state.registers[*dest] = Register::Value(value);
}
CursorType::VirtualTable(_) => {
panic!("Insn:Column on virtual table cursor, use Insn:VColumn instead");
}
}
break;
}
}
}
state.op_column_state = OpColumnState::Start;
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_type_check(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
TypeCheck {
start_reg,
count,
check_generated,
table_reference,
},
insn
);
assert!(table_reference.is_strict);
state.registers[*start_reg..*start_reg + *count]
.iter_mut()
.zip(table_reference.columns.iter())
.try_for_each(|(reg, col)| {
// INT PRIMARY KEY is not row_id_alias so we throw error if this col is NULL
if !col.is_rowid_alias && col.primary_key && matches!(reg.get_value(), Value::Null) {
bail_constraint_error!(
"NOT NULL constraint failed: {}.{} ({})",
&table_reference.name,
col.name.as_deref().unwrap_or(""),
SQLITE_CONSTRAINT
)
} else if col.is_rowid_alias && matches!(reg.get_value(), Value::Null) {
// Handle INTEGER PRIMARY KEY for null as usual (Rowid will be auto-assigned)
return Ok(());
}
let col_affinity = col.affinity();
let ty_str = &col.ty_str;
let ty_bytes = ty_str.as_bytes();
let applied = apply_affinity_char(reg, col_affinity);
let value_type = reg.get_value().value_type();
match_ignore_ascii_case!(match ty_bytes {
b"INTEGER" | b"INT" if value_type == ValueType::Integer => {}
b"REAL" if value_type == ValueType::Float => {}
b"BLOB" if value_type == ValueType::Blob => {}
b"TEXT" if value_type == ValueType::Text => {}
b"ANY" => {}
_ => bail_constraint_error!(
"cannot store {} value in {} column {}.{} ({})",
value_type,
ty_str,
&table_reference.name,
col.name.as_deref().unwrap_or(""),
SQLITE_CONSTRAINT
),
});
Ok(())
})?;
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_make_record(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
MakeRecord {
start_reg,
count,
dest_reg,
..
},
insn
);
let record = make_record(&state.registers, start_reg, count);
state.registers[*dest_reg] = Register::Record(record);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_result_row(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(ResultRow { start_reg, count }, insn);
let row = Row {
values: &state.registers[*start_reg] as *const Register,
count: *count,
};
state.result_row = Some(row);
state.pc += 1;
Ok(InsnFunctionStepResult::Row)
}
pub fn op_next(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Next {
cursor_id,
pc_if_next,
},
insn
);
assert!(pc_if_next.is_offset());
let is_empty = {
let mut cursor = state.get_cursor(*cursor_id);
match &mut *cursor {
Cursor::BTree(btree_cursor) => {
btree_cursor.set_null_flag(false);
return_if_io!(btree_cursor.next());
btree_cursor.is_empty()
}
Cursor::MaterializedView(mv_cursor) => {
let has_more = return_if_io!(mv_cursor.next());
!has_more
}
_ => panic!("Next on non-btree/materialized-view cursor"),
}
};
if !is_empty {
// Increment metrics for row read
state.metrics.rows_read = state.metrics.rows_read.saturating_add(1);
state.metrics.btree_next = state.metrics.btree_next.saturating_add(1);
// Track if this is a full table scan or index scan
if let Some((_, cursor_type)) = program.cursor_ref.get(*cursor_id) {
if cursor_type.is_index() {
state.metrics.index_steps = state.metrics.index_steps.saturating_add(1);
} else if matches!(cursor_type, CursorType::BTreeTable(_)) {
state.metrics.fullscan_steps = state.metrics.fullscan_steps.saturating_add(1);
}
}
state.pc = pc_if_next.as_offset_int();
} else {
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_prev(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Prev {
cursor_id,
pc_if_prev,
},
insn
);
assert!(pc_if_prev.is_offset());
let is_empty = {
let mut cursor = must_be_btree_cursor!(*cursor_id, program.cursor_ref, state, "Prev");
let cursor = cursor.as_btree_mut();
cursor.set_null_flag(false);
return_if_io!(cursor.prev());
cursor.is_empty()
};
if !is_empty {
// Increment metrics for row read
state.metrics.rows_read = state.metrics.rows_read.saturating_add(1);
state.metrics.btree_prev = state.metrics.btree_prev.saturating_add(1);
// Track if this is a full table scan or index scan
if let Some((_, cursor_type)) = program.cursor_ref.get(*cursor_id) {
if cursor_type.is_index() {
state.metrics.index_steps = state.metrics.index_steps.saturating_add(1);
} else if matches!(cursor_type, CursorType::BTreeTable(_)) {
state.metrics.fullscan_steps = state.metrics.fullscan_steps.saturating_add(1);
}
}
state.pc = pc_if_prev.as_offset_int();
} else {
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn halt(
program: &Program,
state: &mut ProgramState,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
err_code: usize,
description: &str,
) -> Result<InsnFunctionStepResult> {
if err_code > 0 {
// invalidate page cache in case of error
pager.clear_page_cache();
}
match err_code {
0 => {}
SQLITE_CONSTRAINT_PRIMARYKEY => {
return Err(LimboError::Constraint(format!(
"UNIQUE constraint failed: {description} (19)"
)));
}
SQLITE_CONSTRAINT_NOTNULL => {
return Err(LimboError::Constraint(format!(
"NOT NULL constraint failed: {description} (19)"
)));
}
_ => {
return Err(LimboError::Constraint(format!(
"undocumented halt error code {description}"
)));
}
}
let auto_commit = program.connection.auto_commit.get();
tracing::trace!("halt(auto_commit={})", auto_commit);
if auto_commit {
program
.commit_txn(pager.clone(), state, mv_store, false)
.map(Into::into)
} else {
Ok(InsnFunctionStepResult::Done)
}
}
pub fn op_halt(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Halt {
err_code,
description,
},
insn
);
halt(program, state, pager, mv_store, *err_code, description)
}
pub fn op_halt_if_null(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
HaltIfNull {
target_reg,
err_code,
description,
},
insn
);
if state.registers[*target_reg].get_value() == &Value::Null {
halt(program, state, pager, mv_store, *err_code, description)
} else {
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
}
pub fn op_transaction(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
_pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Transaction {
db,
write,
schema_cookie,
},
insn
);
let conn = program.connection.clone();
if *write && conn._db.open_flags.contains(OpenFlags::ReadOnly) {
return Err(LimboError::ReadOnly);
}
let pager = program.get_pager_from_database_index(db);
// 1. We try to upgrade current version
let current_state = conn.transaction_state.get();
let (new_transaction_state, updated) = if conn.is_nested_stmt.get() {
(current_state, false)
} else {
match (current_state, write) {
// pending state means that we tried beginning a tx and the method returned IO.
// instead of ending the read tx, just update the state to pending.
(TransactionState::PendingUpgrade, write) => {
turso_assert!(
*write,
"pending upgrade should only be set for write transactions"
);
(
TransactionState::Write {
schema_did_change: false,
},
true,
)
}
(TransactionState::Write { schema_did_change }, true) => {
(TransactionState::Write { schema_did_change }, false)
}
(TransactionState::Write { schema_did_change }, false) => {
(TransactionState::Write { schema_did_change }, false)
}
(TransactionState::Read, true) => (
TransactionState::Write {
schema_did_change: false,
},
true,
),
(TransactionState::Read, false) => (TransactionState::Read, false),
(TransactionState::None, true) => (
TransactionState::Write {
schema_did_change: false,
},
true,
),
(TransactionState::None, false) => (TransactionState::Read, true),
}
};
// 2. Start transaction if needed
if let Some(mv_store) = &mv_store {
// In MVCC we don't have write exclusivity, therefore we just need to start a transaction if needed.
// Programs can run Transaction twice, first with read flag and then with write flag. So a single txid is enough
// for both.
if program.connection.mv_tx_id.get().is_none() {
// We allocate the first page lazily in the first transaction.
return_if_io!(pager.maybe_allocate_page1());
// TODO: when we fix MVCC enable schema cookie detection for reprepare statements
// let header_schema_cookie = pager
// .io
// .block(|| pager.with_header(|header| header.schema_cookie.get()))?;
// if header_schema_cookie != *schema_cookie {
// return Err(LimboError::SchemaUpdated);
// }
let tx_id = mv_store.begin_tx(pager.clone());
conn.mv_transactions.borrow_mut().push(tx_id);
program.connection.mv_tx_id.set(Some(tx_id));
}
} else {
if updated && matches!(current_state, TransactionState::None) {
turso_assert!(
!conn.is_nested_stmt.get(),
"nested stmt should not begin a new read transaction"
);
if let LimboResult::Busy = pager.begin_read_tx()? {
return Ok(InsnFunctionStepResult::Busy);
}
}
if updated && matches!(new_transaction_state, TransactionState::Write { .. }) {
turso_assert!(
!conn.is_nested_stmt.get(),
"nested stmt should not begin a new write transaction"
);
match pager.begin_write_tx()? {
IOResult::Done(r) => {
if let LimboResult::Busy = r {
pager.end_read_tx()?;
conn.transaction_state.replace(TransactionState::None);
conn.auto_commit.replace(true);
return Ok(InsnFunctionStepResult::Busy);
}
}
IOResult::IO(io) => {
// set the transaction state to pending so we don't have to
// end the read transaction.
program
.connection
.transaction_state
.replace(TransactionState::PendingUpgrade);
return Ok(InsnFunctionStepResult::IO(io));
}
}
}
}
// 3. Transaction state should be updated before checking for Schema cookie so that the tx is ended properly on error
if updated {
conn.transaction_state.replace(new_transaction_state);
}
// 4. Check whether schema has changed if we are actually going to access the database.
// Can only read header if page 1 has been allocated already
// begin_write_tx that happens, but not begin_read_tx
// TODO: this is a hack to make the pager run the IO loop
let res = pager
.io
.block(|| pager.with_header(|header| header.schema_cookie.get()));
match res {
Ok(header_schema_cookie) => {
if header_schema_cookie != *schema_cookie {
tracing::info!(
"schema changed, force reprepare: {} != {}",
header_schema_cookie,
*schema_cookie
);
return Err(LimboError::SchemaUpdated);
}
}
// This means we are starting a read_tx and we do not have a page 1 yet, so we just continue execution
Err(LimboError::Page1NotAlloc) => {}
Err(err) => {
return Err(err);
}
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_auto_commit(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
AutoCommit {
auto_commit,
rollback,
},
insn
);
let conn = program.connection.clone();
if matches!(state.commit_state, CommitState::Committing) {
return program
.commit_txn(pager.clone(), state, mv_store, *rollback)
.map(Into::into);
}
if *auto_commit != conn.auto_commit.get() {
if *rollback {
// TODO(pere): add rollback I/O logic once we implement rollback journal
return_if_io!(pager.end_tx(true, &conn));
conn.transaction_state.replace(TransactionState::None);
conn.auto_commit.replace(true);
} else {
conn.auto_commit.replace(*auto_commit);
}
} else if !*auto_commit {
return Err(LimboError::TxError(
"cannot start a transaction within a transaction".to_string(),
));
} else if *rollback {
return Err(LimboError::TxError(
"cannot rollback - no transaction is active".to_string(),
));
} else {
return Err(LimboError::TxError(
"cannot commit - no transaction is active".to_string(),
));
}
program
.commit_txn(pager.clone(), state, mv_store, *rollback)
.map(Into::into)
}
pub fn op_goto(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Goto { target_pc }, insn);
assert!(target_pc.is_offset());
state.pc = target_pc.as_offset_int();
Ok(InsnFunctionStepResult::Step)
}
pub fn op_gosub(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Gosub {
target_pc,
return_reg,
},
insn
);
assert!(target_pc.is_offset());
state.registers[*return_reg] = Register::Value(Value::Integer((state.pc + 1) as i64));
state.pc = target_pc.as_offset_int();
Ok(InsnFunctionStepResult::Step)
}
pub fn op_return(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Return {
return_reg,
can_fallthrough,
},
insn
);
if let Value::Integer(pc) = state.registers[*return_reg].get_value() {
let pc: u32 = (*pc)
.try_into()
.unwrap_or_else(|_| panic!("Return register is negative: {pc}"));
state.pc = pc;
} else {
if !*can_fallthrough {
return Err(LimboError::InternalError(
"Return register is not an integer".to_string(),
));
}
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_integer(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Integer { value, dest }, insn);
state.registers[*dest] = Register::Value(Value::Integer(*value));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_real(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Real { value, dest }, insn);
state.registers[*dest] = Register::Value(Value::Float(*value));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_real_affinity(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(RealAffinity { register }, insn);
if let Value::Integer(i) = &state.registers[*register].get_value() {
state.registers[*register] = Register::Value(Value::Float(*i as f64));
};
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_string8(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(String8 { value, dest }, insn);
state.registers[*dest] = Register::Value(Value::build_text(value));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_blob(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Blob { value, dest }, insn);
state.registers[*dest] = Register::Value(Value::Blob(value.clone()));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_row_data(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(RowData { cursor_id, dest }, insn);
let record = {
let mut cursor_ref =
must_be_btree_cursor!(*cursor_id, program.cursor_ref, state, "RowData");
let cursor = cursor_ref.as_btree_mut();
let record_option = return_if_io!(cursor.record());
let record = record_option.ok_or_else(|| {
LimboError::InternalError("RowData: cursor has no record".to_string())
})?;
record.clone()
};
let reg = &mut state.registers[*dest];
*reg = Register::Record(record);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
#[derive(Debug, Clone, Copy)]
pub enum OpRowIdState {
Start,
Record {
index_cursor_id: usize,
table_cursor_id: usize,
},
Seek {
rowid: i64,
table_cursor_id: usize,
},
GetRowid,
}
pub fn op_row_id(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(RowId { cursor_id, dest }, insn);
loop {
match state.op_row_id_state {
OpRowIdState::Start => {
if let Some((index_cursor_id, table_cursor_id)) =
state.deferred_seeks[*cursor_id].take()
{
state.op_row_id_state = OpRowIdState::Record {
index_cursor_id,
table_cursor_id,
};
} else {
state.op_row_id_state = OpRowIdState::GetRowid;
}
}
OpRowIdState::Record {
index_cursor_id,
table_cursor_id,
} => {
let rowid = {
let mut index_cursor = state.get_cursor(index_cursor_id);
let index_cursor = index_cursor.as_btree_mut();
let record = return_if_io!(index_cursor.record());
let record = record.as_ref().unwrap();
let mut record_cursor_ref = index_cursor.record_cursor.borrow_mut();
let record_cursor = record_cursor_ref.deref_mut();
let rowid = record.last_value(record_cursor).unwrap();
match rowid {
Ok(RefValue::Integer(rowid)) => rowid,
_ => unreachable!(),
}
};
state.op_row_id_state = OpRowIdState::Seek {
rowid,
table_cursor_id,
}
}
OpRowIdState::Seek {
rowid,
table_cursor_id,
} => {
{
let mut table_cursor = state.get_cursor(table_cursor_id);
let table_cursor = table_cursor.as_btree_mut();
return_if_io!(
table_cursor.seek(SeekKey::TableRowId(rowid), SeekOp::GE { eq_only: true })
);
}
state.op_row_id_state = OpRowIdState::GetRowid;
}
OpRowIdState::GetRowid => {
let mut cursors = state.cursors.borrow_mut();
if let Some(Cursor::BTree(btree_cursor)) = cursors.get_mut(*cursor_id).unwrap() {
if let Some(ref rowid) = return_if_io!(btree_cursor.rowid()) {
state.registers[*dest] = Register::Value(Value::Integer(*rowid));
} else {
state.registers[*dest] = Register::Value(Value::Null);
}
} else if let Some(Cursor::Virtual(virtual_cursor)) =
cursors.get_mut(*cursor_id).unwrap()
{
let rowid = virtual_cursor.rowid();
if rowid != 0 {
state.registers[*dest] = Register::Value(Value::Integer(rowid));
} else {
state.registers[*dest] = Register::Value(Value::Null);
}
} else if let Some(Cursor::MaterializedView(mv_cursor)) =
cursors.get_mut(*cursor_id).unwrap()
{
if let Some(rowid) = return_if_io!(mv_cursor.rowid()) {
state.registers[*dest] = Register::Value(Value::Integer(rowid));
} else {
state.registers[*dest] = Register::Value(Value::Null);
}
} else {
return Err(LimboError::InternalError(
"RowId: cursor is not a table, virtual, or materialized view cursor"
.to_string(),
));
}
break;
}
}
}
state.op_row_id_state = OpRowIdState::Start;
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_idx_row_id(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(IdxRowId { cursor_id, dest }, insn);
let mut cursors = state.cursors.borrow_mut();
let cursor = cursors.get_mut(*cursor_id).unwrap().as_mut().unwrap();
let cursor = cursor.as_btree_mut();
let rowid = return_if_io!(cursor.rowid());
state.registers[*dest] = match rowid {
Some(rowid) => Register::Value(Value::Integer(rowid)),
None => Register::Value(Value::Null),
};
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_seek_rowid(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
SeekRowid {
cursor_id,
src_reg,
target_pc,
},
insn
);
assert!(target_pc.is_offset());
let (pc, did_seek) = {
let mut cursor = state.get_cursor(*cursor_id);
// Handle MaterializedView cursor
let (pc, did_seek) = match &mut *cursor {
Cursor::MaterializedView(mv_cursor) => {
let rowid = match state.registers[*src_reg].get_value() {
Value::Integer(rowid) => Some(*rowid),
Value::Null => None,
_ => None,
};
match rowid {
Some(rowid) => {
let seek_result = return_if_io!(mv_cursor
.seek(SeekKey::TableRowId(rowid), SeekOp::GE { eq_only: true }));
let pc = if !matches!(seek_result, SeekResult::Found) {
target_pc.as_offset_int()
} else {
state.pc + 1
};
(pc, true)
}
None => (target_pc.as_offset_int(), false),
}
}
Cursor::BTree(btree_cursor) => {
let rowid = match state.registers[*src_reg].get_value() {
Value::Integer(rowid) => Some(*rowid),
Value::Null => None,
// For non-integer values try to apply affinity and convert them to integer.
other => {
let mut temp_reg = Register::Value(other.clone());
let converted = apply_affinity_char(&mut temp_reg, Affinity::Numeric);
if converted {
match temp_reg.get_value() {
Value::Integer(i) => Some(*i),
Value::Float(f) => Some(*f as i64),
_ => unreachable!("apply_affinity_char with Numeric should produce an integer if it returns true"),
}
} else {
None
}
}
};
match rowid {
Some(rowid) => {
let seek_result = return_if_io!(btree_cursor
.seek(SeekKey::TableRowId(rowid), SeekOp::GE { eq_only: true }));
let pc = if !matches!(seek_result, SeekResult::Found) {
target_pc.as_offset_int()
} else {
state.pc + 1
};
(pc, true)
}
None => (target_pc.as_offset_int(), false),
}
}
_ => panic!("SeekRowid on non-btree/materialized-view cursor"),
};
(pc, did_seek)
};
// Increment btree_seeks metric for SeekRowid operation after cursor is dropped
if did_seek {
state.metrics.btree_seeks = state.metrics.btree_seeks.saturating_add(1);
}
state.pc = pc;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_deferred_seek(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
DeferredSeek {
index_cursor_id,
table_cursor_id,
},
insn
);
state.deferred_seeks[*table_cursor_id] = Some((*index_cursor_id, *table_cursor_id));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
/// Separate enum for seek key to avoid lifetime issues
/// with using [SeekKey] - OpSeekState always owns the key,
/// unless it's [OpSeekKey::IndexKeyFromRegister] in which case the record
/// is owned by the program state's registers and we store the register number.
#[derive(Debug)]
pub enum OpSeekKey {
TableRowId(i64),
IndexKeyOwned(ImmutableRecord),
IndexKeyFromRegister(usize),
}
pub enum OpSeekState {
/// Initial state
Start,
/// Position cursor with seek operation with (rowid, op) search parameters
Seek { key: OpSeekKey, op: SeekOp },
/// Advance cursor (with [BTreeCursor::next]/[BTreeCursor::prev] methods) which was
/// positioned after [OpSeekState::Seek] state if [BTreeCursor::seek] returned [SeekResult::TryAdvance]
Advance { op: SeekOp },
/// Move cursor to the last BTree row if DB knows that comparison result will be fixed (due to type ordering, e.g. NUMBER always <= TEXT)
MoveLast,
}
pub fn op_seek(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
let (cursor_id, is_index, record_source, target_pc) = match insn {
Insn::SeekGE {
cursor_id,
is_index,
start_reg,
num_regs,
target_pc,
..
}
| Insn::SeekLE {
cursor_id,
is_index,
start_reg,
num_regs,
target_pc,
..
}
| Insn::SeekGT {
cursor_id,
is_index,
start_reg,
num_regs,
target_pc,
..
}
| Insn::SeekLT {
cursor_id,
is_index,
start_reg,
num_regs,
target_pc,
..
} => (
cursor_id,
*is_index,
RecordSource::Unpacked {
start_reg: *start_reg,
num_regs: *num_regs,
},
target_pc,
),
_ => unreachable!("unexpected Insn {:?}", insn),
};
assert!(
target_pc.is_offset(),
"op_seek: target_pc should be an offset, is: {target_pc:?}"
);
let eq_only = match insn {
Insn::SeekGE { eq_only, .. } | Insn::SeekLE { eq_only, .. } => *eq_only,
_ => false,
};
let op = match insn {
Insn::SeekGE { eq_only, .. } => SeekOp::GE { eq_only: *eq_only },
Insn::SeekGT { .. } => SeekOp::GT,
Insn::SeekLE { eq_only, .. } => SeekOp::LE { eq_only: *eq_only },
Insn::SeekLT { .. } => SeekOp::LT,
_ => unreachable!("unexpected Insn {:?}", insn),
};
match seek_internal(
program,
state,
pager,
mv_store,
record_source,
*cursor_id,
is_index,
op,
) {
Ok(SeekInternalResult::Found) => {
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
Ok(SeekInternalResult::NotFound) => {
state.pc = target_pc.as_offset_int();
Ok(InsnFunctionStepResult::Step)
}
Ok(SeekInternalResult::IO(io)) => Ok(InsnFunctionStepResult::IO(io)),
Err(e) => Err(e),
}
}
#[derive(Debug)]
pub enum SeekInternalResult {
Found,
NotFound,
IO(IOCompletions),
}
#[derive(Clone)]
pub enum RecordSource {
Unpacked { start_reg: usize, num_regs: usize },
Packed { record_reg: usize },
}
/// Internal function used by many VDBE instructions that need to perform a seek operation.
///
/// Explanation for some of the arguments:
/// - `record_source`: whether the seek key record is already a record (packed) or it will be constructed from registers (unpacked)
/// - `cursor_id`: the cursor id
/// - `is_index`: true if the cursor is an index, false if it is a table
/// - `op`: the [SeekOp] to perform
#[allow(clippy::too_many_arguments)]
pub fn seek_internal(
program: &Program,
state: &mut ProgramState,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
record_source: RecordSource,
cursor_id: usize,
is_index: bool,
op: SeekOp,
) -> Result<SeekInternalResult> {
/// wrapper so we can use the ? operator and handle errors correctly in this outer function
fn inner(
program: &Program,
state: &mut ProgramState,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
record_source: RecordSource,
cursor_id: usize,
is_index: bool,
op: SeekOp,
) -> Result<SeekInternalResult> {
loop {
match &state.seek_state {
OpSeekState::Start => {
if is_index {
// FIXME: text-to-numeric conversion should also happen here when applicable (when index column is numeric)
// See below for the table-btree implementation of this
match record_source {
RecordSource::Unpacked {
start_reg,
num_regs,
} => {
let record_from_regs =
make_record(&state.registers, &start_reg, &num_regs);
state.seek_state = OpSeekState::Seek {
key: OpSeekKey::IndexKeyOwned(record_from_regs),
op,
};
}
RecordSource::Packed { record_reg } => {
state.seek_state = OpSeekState::Seek {
key: OpSeekKey::IndexKeyFromRegister(record_reg),
op,
};
}
};
continue;
}
let RecordSource::Unpacked {
start_reg,
num_regs,
} = record_source
else {
unreachable!("op_seek: record_source should be Unpacked for table-btree");
};
assert_eq!(num_regs, 1, "op_seek: num_regs should be 1 for table-btree");
let original_value = state.registers[start_reg].get_value().clone();
let mut temp_value = original_value.clone();
let conversion_successful = if matches!(temp_value, Value::Text(_)) {
let mut temp_reg = Register::Value(temp_value);
let converted = apply_numeric_affinity(&mut temp_reg, false);
temp_value = temp_reg.get_value().clone();
converted
} else {
true // Non-text values don't need conversion
};
let int_key = extract_int_value(&temp_value);
let lost_precision =
!conversion_successful || !matches!(temp_value, Value::Integer(_));
let actual_op = if lost_precision {
match &temp_value {
Value::Float(f) => {
let int_key_as_float = int_key as f64;
let c = if int_key_as_float > *f {
1
} else if int_key_as_float < *f {
-1
} else {
0
};
match c.cmp(&0) {
std::cmp::Ordering::Less => match op {
SeekOp::LT => SeekOp::LE { eq_only: false }, // (x < 5.1) -> (x <= 5)
SeekOp::GE { .. } => SeekOp::GT, // (x >= 5.1) -> (x > 5)
other => other,
},
std::cmp::Ordering::Greater => match op {
SeekOp::GT => SeekOp::GE { eq_only: false }, // (x > 4.9) -> (x >= 5)
SeekOp::LE { .. } => SeekOp::LT, // (x <= 4.9) -> (x < 5)
other => other,
},
std::cmp::Ordering::Equal => op,
}
}
Value::Text(_) | Value::Blob(_) => {
match op {
SeekOp::GT | SeekOp::GE { .. } => {
// No integers are > or >= non-numeric text
return Ok(SeekInternalResult::NotFound);
}
SeekOp::LT | SeekOp::LE { .. } => {
// All integers are < or <= non-numeric text
// Move to last position and then use the normal seek logic
state.seek_state = OpSeekState::MoveLast;
continue;
}
}
}
_ => op,
}
} else {
op
};
let rowid = if matches!(original_value, Value::Null) {
match actual_op {
SeekOp::GE { .. } | SeekOp::GT => {
return Ok(SeekInternalResult::NotFound);
}
SeekOp::LE { .. } | SeekOp::LT => {
// No integers are < NULL
return Ok(SeekInternalResult::NotFound);
}
}
} else {
int_key
};
state.seek_state = OpSeekState::Seek {
key: OpSeekKey::TableRowId(rowid),
op: actual_op,
};
continue;
}
OpSeekState::Seek { key, op } => {
let seek_result = {
let mut cursor = state.get_cursor(cursor_id);
let cursor = cursor.as_btree_mut();
let seek_key = match key {
OpSeekKey::TableRowId(rowid) => SeekKey::TableRowId(*rowid),
OpSeekKey::IndexKeyOwned(record) => SeekKey::IndexKey(record),
OpSeekKey::IndexKeyFromRegister(record_reg) => match &state.registers[*record_reg] {
Register::Record(ref record) => SeekKey::IndexKey(record),
_ => unreachable!("op_seek: record_reg should be a Record register when OpSeekKey::IndexKeyFromRegister is used"),
}
};
match cursor.seek(seek_key, *op)? {
IOResult::Done(seek_result) => seek_result,
IOResult::IO(io) => return Ok(SeekInternalResult::IO(io)),
}
};
// Increment btree_seeks metric after seek operation and cursor is dropped
state.metrics.btree_seeks = state.metrics.btree_seeks.saturating_add(1);
let found = match seek_result {
SeekResult::Found => true,
SeekResult::NotFound => false,
SeekResult::TryAdvance => {
state.seek_state = OpSeekState::Advance { op: *op };
continue;
}
};
return Ok(if found {
SeekInternalResult::Found
} else {
SeekInternalResult::NotFound
});
}
OpSeekState::Advance { op } => {
let found = {
let mut cursor = state.get_cursor(cursor_id);
let cursor = cursor.as_btree_mut();
// Seek operation has anchor number which equals to the closed boundary of the range
// (e.g. for >= x - anchor is x, for > x - anchor is x + 1)
//
// Before Advance state, cursor was positioned to the leaf page which should hold the anchor.
// Sometimes this leaf page can have no matching rows, and in this case
// we need to move cursor in the direction of Seek to find record which matches the seek filter
//
// Consider following scenario: Seek [> 666]
// interior page dividers: I1: [ .. 667 .. ]
// / \
// leaf pages: P1[661,665] P2[anything here is GT 666]
// After the initial Seek, cursor will be positioned after the end of leaf page P1 [661, 665]
// because this is potential position for insertion of value 666.
// But as P1 has no row matching Seek criteria - we need to move it to the right
// (and as we at the page boundary, we will move cursor to the next neighbor leaf, which guaranteed to have
// row keys greater than divider, which is greater or equal than anchor)
// this same logic applies for indexes, but the next/prev record is expected to be found in the parent page's
// divider cell.
let result = match op {
SeekOp::GT | SeekOp::GE { .. } => cursor.next()?,
SeekOp::LT | SeekOp::LE { .. } => cursor.prev()?,
};
match result {
IOResult::Done(found) => found,
IOResult::IO(io) => return Ok(SeekInternalResult::IO(io)),
}
};
return Ok(if found {
SeekInternalResult::Found
} else {
SeekInternalResult::NotFound
});
}
OpSeekState::MoveLast => {
let mut cursor = state.get_cursor(cursor_id);
let cursor = cursor.as_btree_mut();
match cursor.last()? {
IOResult::Done(()) => {}
IOResult::IO(io) => return Ok(SeekInternalResult::IO(io)),
}
// the MoveLast variant is only used for SeekOp::LT and SeekOp::LE when the seek condition is always true,
// so we have always found what we were looking for.
return Ok(SeekInternalResult::Found);
}
}
}
}
let result = inner(
program,
state,
pager,
mv_store,
record_source,
cursor_id,
is_index,
op,
);
if !matches!(result, Ok(SeekInternalResult::IO(..))) {
state.seek_state = OpSeekState::Start;
}
result
}
/// Returns the tie-breaker ordering for SQLite index comparison opcodes.
///
/// When comparing index keys that omit the PRIMARY KEY/ROWID, SQLite uses a
/// tie-breaker value (`default_rc` in the C code) to determine the result when
/// the non-primary-key portions of the keys are equal.
///
/// This function extracts the appropriate tie-breaker based on the comparison opcode:
///
/// ## Tie-breaker Logic
///
/// - **`IdxLE` and `IdxGT`**: Return `Ordering::Less` (equivalent to `default_rc = -1`)
/// - When keys are equal, these operations should favor the "less than" result
/// - `IdxLE`: "less than or equal" - equality should be treated as "less"
/// - `IdxGT`: "greater than" - equality should be treated as "less" (so condition fails)
///
/// - **`IdxGE` and `IdxLT`**: Return `Ordering::Equal` (equivalent to `default_rc = 0`)
/// - When keys are equal, these operations should treat it as true equality
/// - `IdxGE`: "greater than or equal" - equality should be treated as "equal"
/// - `IdxLT`: "less than" - equality should be treated as "equal" (so condition fails)
///
/// ## SQLite Implementation Details
///
/// In SQLite's C implementation, this corresponds to:
/// ```c
/// if( pOp->opcode<OP_IdxLT ){
/// assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
/// r.default_rc = -1; // Ordering::Less
/// }else{
/// assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
/// r.default_rc = 0; // Ordering::Equal
/// }
/// ```
#[inline(always)]
fn get_tie_breaker_from_idx_comp_op(insn: &Insn) -> std::cmp::Ordering {
match insn {
Insn::IdxLE { .. } | Insn::IdxGT { .. } => std::cmp::Ordering::Less,
Insn::IdxGE { .. } | Insn::IdxLT { .. } => std::cmp::Ordering::Equal,
_ => panic!("Invalid instruction for index comparison"),
}
}
#[allow(clippy::let_and_return)]
pub fn op_idx_ge(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
IdxGE {
cursor_id,
start_reg,
num_regs,
target_pc,
},
insn
);
assert!(target_pc.is_offset());
let pc = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let pc = if let Some(idx_record) = return_if_io!(cursor.record()) {
// Create the comparison record from registers
let values =
registers_to_ref_values(&state.registers[*start_reg..*start_reg + *num_regs]);
let tie_breaker = get_tie_breaker_from_idx_comp_op(insn);
let ord = compare_records_generic(
&idx_record, // The serialized record from the index
&values, // The record built from registers
cursor.index_info.as_ref().unwrap(), // Sort order flags
0,
tie_breaker,
)?;
if ord.is_ge() {
target_pc.as_offset_int()
} else {
state.pc + 1
}
} else {
// No record at cursor position, jump to target
target_pc.as_offset_int()
};
pc
};
state.pc = pc;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_seek_end(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(SeekEnd { cursor_id }, *insn);
{
let mut cursor = state.get_cursor(cursor_id);
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.seek_end());
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
#[allow(clippy::let_and_return)]
pub fn op_idx_le(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
IdxLE {
cursor_id,
start_reg,
num_regs,
target_pc,
},
insn
);
assert!(target_pc.is_offset());
let pc = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let pc = if let Some(idx_record) = return_if_io!(cursor.record()) {
let values =
registers_to_ref_values(&state.registers[*start_reg..*start_reg + *num_regs]);
let tie_breaker = get_tie_breaker_from_idx_comp_op(insn);
let ord = compare_records_generic(
&idx_record,
&values,
cursor.index_info.as_ref().unwrap(),
0,
tie_breaker,
)?;
if ord.is_le() {
target_pc.as_offset_int()
} else {
state.pc + 1
}
} else {
// No record at cursor position, jump to target
target_pc.as_offset_int()
};
pc
};
state.pc = pc;
Ok(InsnFunctionStepResult::Step)
}
#[allow(clippy::let_and_return)]
pub fn op_idx_gt(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
IdxGT {
cursor_id,
start_reg,
num_regs,
target_pc,
},
insn
);
assert!(target_pc.is_offset());
let pc = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let pc = if let Some(idx_record) = return_if_io!(cursor.record()) {
let values =
registers_to_ref_values(&state.registers[*start_reg..*start_reg + *num_regs]);
let tie_breaker = get_tie_breaker_from_idx_comp_op(insn);
let ord = compare_records_generic(
&idx_record,
&values,
cursor.index_info.as_ref().unwrap(),
0,
tie_breaker,
)?;
if ord.is_gt() {
target_pc.as_offset_int()
} else {
state.pc + 1
}
} else {
// No record at cursor position, jump to target
target_pc.as_offset_int()
};
pc
};
state.pc = pc;
Ok(InsnFunctionStepResult::Step)
}
#[allow(clippy::let_and_return)]
pub fn op_idx_lt(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
IdxLT {
cursor_id,
start_reg,
num_regs,
target_pc,
},
insn
);
assert!(target_pc.is_offset());
let pc = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let pc = if let Some(idx_record) = return_if_io!(cursor.record()) {
let values =
registers_to_ref_values(&state.registers[*start_reg..*start_reg + *num_regs]);
let tie_breaker = get_tie_breaker_from_idx_comp_op(insn);
let ord = compare_records_generic(
&idx_record,
&values,
cursor.index_info.as_ref().unwrap(),
0,
tie_breaker,
)?;
if ord.is_lt() {
target_pc.as_offset_int()
} else {
state.pc + 1
}
} else {
// No record at cursor position, jump to target
target_pc.as_offset_int()
};
pc
};
state.pc = pc;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_decr_jump_zero(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(DecrJumpZero { reg, target_pc }, insn);
assert!(target_pc.is_offset());
match state.registers[*reg].get_value() {
Value::Integer(n) => {
let n = n - 1;
state.registers[*reg] = Register::Value(Value::Integer(n));
if n == 0 {
state.pc = target_pc.as_offset_int();
} else {
state.pc += 1;
}
}
_ => unreachable!("DecrJumpZero on non-integer register"),
}
Ok(InsnFunctionStepResult::Step)
}
fn apply_kbn_step(acc: &mut Value, r: f64, state: &mut SumAggState) {
let s = acc.as_float();
let t = s + r;
let correction = if s.abs() > r.abs() {
(s - t) + r
} else {
(r - t) + s
};
state.r_err += correction;
*acc = Value::Float(t);
}
// Add a (possibly large) integer to the running sum.
fn apply_kbn_step_int(acc: &mut Value, i: i64, state: &mut SumAggState) {
const THRESHOLD: i64 = 4503599627370496; // 2^52
if i <= -THRESHOLD || i >= THRESHOLD {
let i_sm = i % 16384;
let i_big = i - i_sm;
apply_kbn_step(acc, i_big as f64, state);
apply_kbn_step(acc, i_sm as f64, state);
} else {
apply_kbn_step(acc, i as f64, state);
}
}
pub fn op_agg_step(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
AggStep {
acc_reg,
col,
delimiter,
func,
},
insn
);
if let Register::Value(Value::Null) = state.registers[*acc_reg] {
state.registers[*acc_reg] = match func {
AggFunc::Avg => {
Register::Aggregate(AggContext::Avg(Value::Float(0.0), Value::Integer(0)))
}
AggFunc::Sum => {
Register::Aggregate(AggContext::Sum(Value::Null, SumAggState::default()))
}
AggFunc::Total => {
// The result of total() is always a floating point value.
// No overflow error is ever raised if any prior input was a floating point value.
// Total() never throws an integer overflow.
Register::Aggregate(AggContext::Sum(Value::Float(0.0), SumAggState::default()))
}
AggFunc::Count | AggFunc::Count0 => {
Register::Aggregate(AggContext::Count(Value::Integer(0)))
}
AggFunc::Max => Register::Aggregate(AggContext::Max(None)),
AggFunc::Min => Register::Aggregate(AggContext::Min(None)),
AggFunc::GroupConcat | AggFunc::StringAgg => {
Register::Aggregate(AggContext::GroupConcat(Value::build_text("")))
}
#[cfg(feature = "json")]
AggFunc::JsonGroupArray | AggFunc::JsonbGroupArray => {
Register::Aggregate(AggContext::GroupConcat(Value::Blob(vec![])))
}
#[cfg(feature = "json")]
AggFunc::JsonGroupObject | AggFunc::JsonbGroupObject => {
Register::Aggregate(AggContext::GroupConcat(Value::Blob(vec![])))
}
AggFunc::External(func) => match func.as_ref() {
ExtFunc::Aggregate {
init,
step,
finalize,
argc,
} => Register::Aggregate(AggContext::External(ExternalAggState {
state: unsafe { (init)() },
argc: *argc,
step_fn: *step,
finalize_fn: *finalize,
finalized_value: None,
})),
_ => unreachable!("scalar function called in aggregate context"),
},
};
}
match func {
AggFunc::Avg => {
let col = state.registers[*col].clone();
let Register::Aggregate(agg) = state.registers[*acc_reg].borrow_mut() else {
panic!(
"Unexpected value {:?} in AggStep at register {}",
state.registers[*acc_reg], *acc_reg
);
};
let AggContext::Avg(acc, count) = agg.borrow_mut() else {
unreachable!();
};
*acc = acc.exec_add(col.get_value());
*count += 1;
}
AggFunc::Sum | AggFunc::Total => {
let col = state.registers[*col].clone();
let Register::Aggregate(agg) = state.registers[*acc_reg].borrow_mut() else {
panic!(
"Unexpected value {:?} at register {:?} in AggStep",
state.registers[*acc_reg], *acc_reg
);
};
let AggContext::Sum(acc, sum_state) = agg.borrow_mut() else {
unreachable!();
};
match col {
Register::Value(value) => {
match value {
Value::Null => {
// Ignore NULLs
}
Value::Integer(i) => match acc {
Value::Null => {
*acc = Value::Integer(i);
}
Value::Integer(acc_i) => {
match acc_i.checked_add(i) {
Some(sum) => *acc = Value::Integer(sum),
None => {
// Overflow -> switch to float with KBN summation
let acc_f = *acc_i as f64;
*acc = Value::Float(acc_f);
sum_state.approx = true;
sum_state.ovrfl = true;
apply_kbn_step_int(acc, i, sum_state);
}
}
}
Value::Float(_) => {
apply_kbn_step_int(acc, i, sum_state);
}
_ => unreachable!(),
},
Value::Float(f) => match acc {
Value::Null => {
*acc = Value::Float(f);
}
Value::Integer(i) => {
let i_f = *i as f64;
*acc = Value::Float(i_f);
sum_state.approx = true;
apply_kbn_step(acc, f, sum_state);
}
Value::Float(_) => {
sum_state.approx = true;
apply_kbn_step(acc, f, sum_state);
}
_ => unreachable!(),
},
_ => {
// If any input to sum() is neither an integer nor a NULL, then sum() returns a float
// https://sqlite.org/lang_aggfunc.html
sum_state.approx = true;
}
}
}
_ => unreachable!(),
}
}
AggFunc::Count | AggFunc::Count0 => {
let col = state.registers[*col].get_value().clone();
if matches!(&state.registers[*acc_reg], Register::Value(Value::Null)) {
state.registers[*acc_reg] =
Register::Aggregate(AggContext::Count(Value::Integer(0)));
}
let Register::Aggregate(agg) = state.registers[*acc_reg].borrow_mut() else {
panic!(
"Unexpected value {:?} in AggStep at register {}",
state.registers[*acc_reg], *acc_reg
);
};
let AggContext::Count(count) = agg.borrow_mut() else {
unreachable!();
};
if !(matches!(func, AggFunc::Count) && matches!(col, Value::Null)) {
*count += 1;
};
}
AggFunc::Max => {
let col = state.registers[*col].clone();
let Register::Aggregate(agg) = state.registers[*acc_reg].borrow_mut() else {
panic!(
"Unexpected value {:?} in AggStep at register {}",
state.registers[*acc_reg], *acc_reg
);
};
let AggContext::Max(acc) = agg.borrow_mut() else {
unreachable!();
};
let new_value = col.get_value();
if *new_value != Value::Null
&& acc.as_ref().is_none_or(|acc| {
use std::cmp::Ordering;
compare_with_collation(new_value, acc, state.current_collation)
== Ordering::Greater
})
{
*acc = Some(new_value.clone());
}
}
AggFunc::Min => {
let col = state.registers[*col].clone();
let Register::Aggregate(agg) = state.registers[*acc_reg].borrow_mut() else {
panic!(
"Unexpected value {:?} in AggStep",
state.registers[*acc_reg]
);
};
let AggContext::Min(acc) = agg.borrow_mut() else {
unreachable!();
};
let new_value = col.get_value();
if *new_value != Value::Null
&& acc.as_ref().is_none_or(|acc| {
use std::cmp::Ordering;
compare_with_collation(new_value, acc, state.current_collation)
== Ordering::Less
})
{
*acc = Some(new_value.clone());
}
}
AggFunc::GroupConcat | AggFunc::StringAgg => {
let col = state.registers[*col].get_value().clone();
let delimiter = state.registers[*delimiter].clone();
let Register::Aggregate(agg) = state.registers[*acc_reg].borrow_mut() else {
unreachable!();
};
let AggContext::GroupConcat(acc) = agg.borrow_mut() else {
unreachable!();
};
if acc.to_string().is_empty() {
*acc = col;
} else {
match delimiter {
Register::Value(value) => {
*acc += value;
}
_ => unreachable!(),
}
*acc += col;
}
}
#[cfg(feature = "json")]
AggFunc::JsonGroupObject | AggFunc::JsonbGroupObject => {
let key = state.registers[*col].clone();
let value = state.registers[*delimiter].clone();
let Register::Aggregate(agg) = state.registers[*acc_reg].borrow_mut() else {
unreachable!();
};
let AggContext::GroupConcat(acc) = agg.borrow_mut() else {
unreachable!();
};
let mut key_vec = convert_dbtype_to_raw_jsonb(key.get_value())?;
let mut val_vec = convert_dbtype_to_raw_jsonb(value.get_value())?;
match acc {
Value::Blob(vec) => {
if vec.is_empty() {
// bits for obj header
vec.push(12);
vec.append(&mut key_vec);
vec.append(&mut val_vec);
} else {
vec.append(&mut key_vec);
vec.append(&mut val_vec);
}
}
_ => unreachable!(),
};
}
#[cfg(feature = "json")]
AggFunc::JsonGroupArray | AggFunc::JsonbGroupArray => {
let col = state.registers[*col].clone();
let Register::Aggregate(agg) = state.registers[*acc_reg].borrow_mut() else {
unreachable!();
};
let AggContext::GroupConcat(acc) = agg.borrow_mut() else {
unreachable!();
};
let mut data = convert_dbtype_to_raw_jsonb(col.get_value())?;
match acc {
Value::Blob(vec) => {
if vec.is_empty() {
vec.push(11);
vec.append(&mut data)
} else {
vec.append(&mut data);
}
}
_ => unreachable!(),
};
}
AggFunc::External(_) => {
let (step_fn, state_ptr, argc) = {
let Register::Aggregate(agg) = &state.registers[*acc_reg] else {
unreachable!();
};
let AggContext::External(agg_state) = agg else {
unreachable!();
};
(agg_state.step_fn, agg_state.state, agg_state.argc)
};
if argc == 0 {
unsafe { step_fn(state_ptr, 0, std::ptr::null()) };
} else {
let register_slice = &state.registers[*col..*col + argc];
let mut ext_values: Vec<ExtValue> = Vec::with_capacity(argc);
for ov in register_slice.iter() {
ext_values.push(ov.get_value().to_ffi());
}
let argv_ptr = ext_values.as_ptr();
unsafe { step_fn(state_ptr, argc as i32, argv_ptr) };
for ext_value in ext_values {
unsafe { ext_value.__free_internal_type() };
}
}
}
};
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_agg_final(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(AggFinal { register, func }, insn);
match state.registers[*register].borrow_mut() {
Register::Aggregate(agg) => match func {
AggFunc::Avg => {
let AggContext::Avg(acc, count) = agg.borrow_mut() else {
unreachable!();
};
*acc /= count.clone();
state.registers[*register] = Register::Value(acc.clone());
}
AggFunc::Sum => {
let AggContext::Sum(acc, sum_state) = agg.borrow_mut() else {
unreachable!();
};
let value = match acc {
Value::Null => match sum_state.approx {
true => Value::Float(0.0),
false => Value::Null,
},
Value::Integer(i) if !sum_state.approx && !sum_state.ovrfl => {
Value::Integer(*i)
}
_ => Value::Float(acc.as_float() + sum_state.r_err),
};
state.registers[*register] = Register::Value(value);
}
AggFunc::Total => {
let AggContext::Sum(acc, _) = agg.borrow_mut() else {
unreachable!();
};
let value = match acc {
Value::Null => Value::Float(0.0),
Value::Integer(i) => Value::Float(*i as f64),
Value::Float(f) => Value::Float(*f),
_ => unreachable!(),
};
state.registers[*register] = Register::Value(value);
}
AggFunc::Count | AggFunc::Count0 => {
let AggContext::Count(count) = agg.borrow_mut() else {
unreachable!();
};
state.registers[*register] = Register::Value(count.clone());
}
AggFunc::Max => {
let AggContext::Max(acc) = agg.borrow_mut() else {
unreachable!();
};
match acc {
Some(value) => state.registers[*register] = Register::Value(value.clone()),
None => state.registers[*register] = Register::Value(Value::Null),
}
}
AggFunc::Min => {
let AggContext::Min(acc) = agg.borrow_mut() else {
unreachable!();
};
match acc {
Some(value) => state.registers[*register] = Register::Value(value.clone()),
None => state.registers[*register] = Register::Value(Value::Null),
}
}
AggFunc::GroupConcat | AggFunc::StringAgg => {
let AggContext::GroupConcat(acc) = agg.borrow_mut() else {
unreachable!();
};
state.registers[*register] = Register::Value(acc.clone());
}
#[cfg(feature = "json")]
AggFunc::JsonGroupObject => {
let AggContext::GroupConcat(acc) = agg.borrow_mut() else {
unreachable!();
};
let data = acc.to_blob().expect("Should be blob");
state.registers[*register] = Register::Value(json_from_raw_bytes_agg(data, false)?);
}
#[cfg(feature = "json")]
AggFunc::JsonbGroupObject => {
let AggContext::GroupConcat(acc) = agg.borrow_mut() else {
unreachable!();
};
let data = acc.to_blob().expect("Should be blob");
state.registers[*register] = Register::Value(json_from_raw_bytes_agg(data, true)?);
}
#[cfg(feature = "json")]
AggFunc::JsonGroupArray => {
let AggContext::GroupConcat(acc) = agg.borrow_mut() else {
unreachable!();
};
let data = acc.to_blob().expect("Should be blob");
state.registers[*register] = Register::Value(json_from_raw_bytes_agg(data, false)?);
}
#[cfg(feature = "json")]
AggFunc::JsonbGroupArray => {
let AggContext::GroupConcat(acc) = agg.borrow_mut() else {
unreachable!();
};
let data = acc.to_blob().expect("Should be blob");
state.registers[*register] = Register::Value(json_from_raw_bytes_agg(data, true)?);
}
AggFunc::External(_) => {
agg.compute_external()?;
let AggContext::External(agg_state) = agg else {
unreachable!();
};
match &agg_state.finalized_value {
Some(value) => state.registers[*register] = Register::Value(value.clone()),
None => state.registers[*register] = Register::Value(Value::Null),
}
}
},
Register::Value(Value::Null) => {
// when the set is empty
match func {
AggFunc::Total => {
state.registers[*register] = Register::Value(Value::Float(0.0));
}
AggFunc::Count | AggFunc::Count0 => {
state.registers[*register] = Register::Value(Value::Integer(0));
}
_ => {}
}
}
other => {
panic!("Unexpected value {other:?} in AggFinal");
}
};
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_sorter_open(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
SorterOpen {
cursor_id,
columns: _,
order,
collations,
},
insn
);
let cache_size = program.connection.get_cache_size();
// Set the buffer size threshold to be roughly the same as the limit configured for the page-cache.
let page_size = pager
.io
.block(|| pager.with_header(|header| header.page_size))
.unwrap_or_default()
.get() as usize;
let max_buffer_size_bytes = if cache_size < 0 {
(cache_size.abs() * 1024) as usize
} else {
(cache_size as usize) * page_size
};
let cursor = Sorter::new(
order,
collations
.iter()
.map(|collation| collation.unwrap_or_default())
.collect(),
max_buffer_size_bytes,
page_size,
pager.io.clone(),
);
let mut cursors = state.cursors.borrow_mut();
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_sorter(cursor));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_sorter_data(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
SorterData {
cursor_id,
dest_reg,
pseudo_cursor,
},
insn
);
let record = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_sorter_mut();
cursor.record().cloned()
};
let record = match record {
Some(record) => record,
None => {
state.pc += 1;
return Ok(InsnFunctionStepResult::Step);
}
};
state.registers[*dest_reg] = Register::Record(record.clone());
{
let mut pseudo_cursor = state.get_cursor(*pseudo_cursor);
pseudo_cursor.as_pseudo_mut().insert(record);
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_sorter_insert(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
SorterInsert {
cursor_id,
record_reg,
},
insn
);
{
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_sorter_mut();
let record = match &state.registers[*record_reg] {
Register::Record(record) => record,
_ => unreachable!("SorterInsert on non-record register"),
};
return_if_io!(cursor.insert(record));
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_sorter_sort(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
SorterSort {
cursor_id,
pc_if_empty,
},
insn
);
let (is_empty, did_sort) = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_sorter_mut();
let is_empty = cursor.is_empty();
if !is_empty {
return_if_io!(cursor.sort());
}
(is_empty, !is_empty)
};
// Increment metrics for sort operation after cursor is dropped
if did_sort {
state.metrics.sort_operations = state.metrics.sort_operations.saturating_add(1);
}
if is_empty {
state.pc = pc_if_empty.as_offset_int();
} else {
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_sorter_next(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
SorterNext {
cursor_id,
pc_if_next,
},
insn
);
assert!(pc_if_next.is_offset());
let has_more = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_sorter_mut();
return_if_io!(cursor.next());
cursor.has_more()
};
if has_more {
state.pc = pc_if_next.as_offset_int();
} else {
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_function(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Function {
constant_mask,
func,
start_reg,
dest,
},
insn
);
let arg_count = func.arg_count;
match &func.func {
#[cfg(feature = "json")]
crate::function::Func::Json(json_func) => match json_func {
JsonFunc::Json => {
let json_value = &state.registers[*start_reg];
let json_str = get_json(json_value.get_value(), None);
match json_str {
Ok(json) => state.registers[*dest] = Register::Value(json),
Err(e) => return Err(e),
}
}
JsonFunc::Jsonb => {
let json_value = &state.registers[*start_reg];
let json_blob = jsonb(json_value.get_value(), &state.json_cache);
match json_blob {
Ok(json) => state.registers[*dest] = Register::Value(json),
Err(e) => return Err(e),
}
}
JsonFunc::JsonArray
| JsonFunc::JsonObject
| JsonFunc::JsonbArray
| JsonFunc::JsonbObject => {
let reg_values = &state.registers[*start_reg..*start_reg + arg_count];
let json_func = match json_func {
JsonFunc::JsonArray => json_array,
JsonFunc::JsonObject => json_object,
JsonFunc::JsonbArray => jsonb_array,
JsonFunc::JsonbObject => jsonb_object,
_ => unreachable!(),
};
let json_result = json_func(reg_values);
match json_result {
Ok(json) => state.registers[*dest] = Register::Value(json),
Err(e) => return Err(e),
}
}
JsonFunc::JsonExtract => {
let result = match arg_count {
0 => Ok(Value::Null),
_ => {
let val = &state.registers[*start_reg];
let reg_values = &state.registers[*start_reg + 1..*start_reg + arg_count];
json_extract(val.get_value(), reg_values, &state.json_cache)
}
};
match result {
Ok(json) => state.registers[*dest] = Register::Value(json),
Err(e) => return Err(e),
}
}
JsonFunc::JsonbExtract => {
let result = match arg_count {
0 => Ok(Value::Null),
_ => {
let val = &state.registers[*start_reg];
let reg_values = &state.registers[*start_reg + 1..*start_reg + arg_count];
jsonb_extract(val.get_value(), reg_values, &state.json_cache)
}
};
match result {
Ok(json) => state.registers[*dest] = Register::Value(json),
Err(e) => return Err(e),
}
}
JsonFunc::JsonArrowExtract | JsonFunc::JsonArrowShiftExtract => {
assert_eq!(arg_count, 2);
let json = &state.registers[*start_reg];
let path = &state.registers[*start_reg + 1];
let json_func = match json_func {
JsonFunc::JsonArrowExtract => json_arrow_extract,
JsonFunc::JsonArrowShiftExtract => json_arrow_shift_extract,
_ => unreachable!(),
};
let json_str = json_func(json.get_value(), path.get_value(), &state.json_cache);
match json_str {
Ok(json) => state.registers[*dest] = Register::Value(json),
Err(e) => return Err(e),
}
}
JsonFunc::JsonArrayLength | JsonFunc::JsonType => {
let json_value = &state.registers[*start_reg];
let path_value = if arg_count > 1 {
Some(&state.registers[*start_reg + 1])
} else {
None
};
let func_result = match json_func {
JsonFunc::JsonArrayLength => json_array_length(
json_value.get_value(),
path_value.map(|x| x.get_value()),
&state.json_cache,
),
JsonFunc::JsonType => {
json_type(json_value.get_value(), path_value.map(|x| x.get_value()))
}
_ => unreachable!(),
};
match func_result {
Ok(result) => state.registers[*dest] = Register::Value(result),
Err(e) => return Err(e),
}
}
JsonFunc::JsonErrorPosition => {
let json_value = &state.registers[*start_reg];
match json_error_position(json_value.get_value()) {
Ok(pos) => state.registers[*dest] = Register::Value(pos),
Err(e) => return Err(e),
}
}
JsonFunc::JsonValid => {
let json_value = &state.registers[*start_reg];
state.registers[*dest] = Register::Value(is_json_valid(json_value.get_value()));
}
JsonFunc::JsonPatch => {
assert_eq!(arg_count, 2);
assert!(*start_reg + 1 < state.registers.len());
let target = &state.registers[*start_reg];
let patch = &state.registers[*start_reg + 1];
state.registers[*dest] = Register::Value(json_patch(
target.get_value(),
patch.get_value(),
&state.json_cache,
)?);
}
JsonFunc::JsonbPatch => {
assert_eq!(arg_count, 2);
assert!(*start_reg + 1 < state.registers.len());
let target = &state.registers[*start_reg];
let patch = &state.registers[*start_reg + 1];
state.registers[*dest] = Register::Value(jsonb_patch(
target.get_value(),
patch.get_value(),
&state.json_cache,
)?);
}
JsonFunc::JsonRemove => {
if let Ok(json) = json_remove(
&state.registers[*start_reg..*start_reg + arg_count],
&state.json_cache,
) {
state.registers[*dest] = Register::Value(json);
} else {
state.registers[*dest] = Register::Value(Value::Null);
}
}
JsonFunc::JsonbRemove => {
if let Ok(json) = jsonb_remove(
&state.registers[*start_reg..*start_reg + arg_count],
&state.json_cache,
) {
state.registers[*dest] = Register::Value(json);
} else {
state.registers[*dest] = Register::Value(Value::Null);
}
}
JsonFunc::JsonReplace => {
if let Ok(json) = json_replace(
&state.registers[*start_reg..*start_reg + arg_count],
&state.json_cache,
) {
state.registers[*dest] = Register::Value(json);
} else {
state.registers[*dest] = Register::Value(Value::Null);
}
}
JsonFunc::JsonbReplace => {
if let Ok(json) = jsonb_replace(
&state.registers[*start_reg..*start_reg + arg_count],
&state.json_cache,
) {
state.registers[*dest] = Register::Value(json);
} else {
state.registers[*dest] = Register::Value(Value::Null);
}
}
JsonFunc::JsonInsert => {
if let Ok(json) = json_insert(
&state.registers[*start_reg..*start_reg + arg_count],
&state.json_cache,
) {
state.registers[*dest] = Register::Value(json);
} else {
state.registers[*dest] = Register::Value(Value::Null);
}
}
JsonFunc::JsonbInsert => {
if let Ok(json) = jsonb_insert(
&state.registers[*start_reg..*start_reg + arg_count],
&state.json_cache,
) {
state.registers[*dest] = Register::Value(json);
} else {
state.registers[*dest] = Register::Value(Value::Null);
}
}
JsonFunc::JsonPretty => {
let json_value = &state.registers[*start_reg];
let indent = if arg_count > 1 {
Some(&state.registers[*start_reg + 1])
} else {
None
};
// Blob should be converted to Ascii in a lossy way
// However, Rust strings uses utf-8
// so the behavior at the moment is slightly different
// To the way blobs are parsed here in SQLite.
let indent = match indent {
Some(value) => match value.get_value() {
Value::Text(text) => text.as_str(),
Value::Integer(val) => &val.to_string(),
Value::Float(val) => &val.to_string(),
Value::Blob(val) => &String::from_utf8_lossy(val),
_ => " ",
},
// If the second argument is omitted or is NULL, then indentation is four spaces per level
None => " ",
};
let json_str = get_json(json_value.get_value(), Some(indent))?;
state.registers[*dest] = Register::Value(json_str);
}
JsonFunc::JsonSet => {
if arg_count % 2 == 0 {
bail_constraint_error!("json_set() needs an odd number of arguments")
}
let reg_values = &state.registers[*start_reg..*start_reg + arg_count];
let json_result = json_set(reg_values, &state.json_cache);
match json_result {
Ok(json) => state.registers[*dest] = Register::Value(json),
Err(e) => return Err(e),
}
}
JsonFunc::JsonbSet => {
if arg_count % 2 == 0 {
bail_constraint_error!("json_set() needs an odd number of arguments")
}
let reg_values = &state.registers[*start_reg..*start_reg + arg_count];
let json_result = jsonb_set(reg_values, &state.json_cache);
match json_result {
Ok(json) => state.registers[*dest] = Register::Value(json),
Err(e) => return Err(e),
}
}
JsonFunc::JsonQuote => {
let json_value = &state.registers[*start_reg];
match json_quote(json_value.get_value()) {
Ok(result) => state.registers[*dest] = Register::Value(result),
Err(e) => return Err(e),
}
}
},
crate::function::Func::Scalar(scalar_func) => match scalar_func {
ScalarFunc::Cast => {
assert_eq!(arg_count, 2);
assert!(*start_reg + 1 < state.registers.len());
let reg_value_argument = state.registers[*start_reg].clone();
let Value::Text(reg_value_type) =
state.registers[*start_reg + 1].get_value().clone()
else {
unreachable!("Cast with non-text type");
};
let result = reg_value_argument
.get_value()
.exec_cast(reg_value_type.as_str());
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::Changes => {
let res = &program.connection.last_change;
let changes = res.get();
state.registers[*dest] = Register::Value(Value::Integer(changes));
}
ScalarFunc::Char => {
let reg_values = &state.registers[*start_reg..*start_reg + arg_count];
state.registers[*dest] = Register::Value(exec_char(reg_values));
}
ScalarFunc::Coalesce => {}
ScalarFunc::Concat => {
let reg_values = &state.registers[*start_reg..*start_reg + arg_count];
let result = exec_concat_strings(reg_values);
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::ConcatWs => {
let reg_values = &state.registers[*start_reg..*start_reg + arg_count];
let result = exec_concat_ws(reg_values);
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::Glob => {
let pattern = &state.registers[*start_reg];
let text = &state.registers[*start_reg + 1];
let result = match (pattern.get_value(), text.get_value()) {
(Value::Null, _) | (_, Value::Null) => Value::Null,
(Value::Text(pattern), Value::Text(text)) => {
let cache = if *constant_mask > 0 {
Some(&mut state.regex_cache.glob)
} else {
None
};
Value::Integer(exec_glob(cache, pattern.as_str(), text.as_str()) as i64)
}
// Convert any other value types to text for GLOB comparison
(pattern_val, text_val) => {
let pattern_str = pattern_val.to_string();
let text_str = text_val.to_string();
let cache = if *constant_mask > 0 {
Some(&mut state.regex_cache.glob)
} else {
None
};
Value::Integer(exec_glob(cache, &pattern_str, &text_str) as i64)
}
};
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::IfNull => {}
ScalarFunc::Iif => {}
ScalarFunc::Instr => {
let reg_value = &state.registers[*start_reg];
let pattern_value = &state.registers[*start_reg + 1];
let result = reg_value.get_value().exec_instr(pattern_value.get_value());
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::LastInsertRowid => {
state.registers[*dest] =
Register::Value(Value::Integer(program.connection.last_insert_rowid()));
}
ScalarFunc::Like => {
let pattern = &state.registers[*start_reg];
let match_expression = &state.registers[*start_reg + 1];
let pattern = match pattern.get_value() {
Value::Text(_) => pattern.get_value(),
_ => &pattern.get_value().exec_cast("TEXT"),
};
let match_expression = match match_expression.get_value() {
Value::Text(_) => match_expression.get_value(),
_ => &match_expression.get_value().exec_cast("TEXT"),
};
let result = match (pattern, match_expression) {
(Value::Text(pattern), Value::Text(match_expression)) if arg_count == 3 => {
let escape =
construct_like_escape_arg(state.registers[*start_reg + 2].get_value())?;
Value::Integer(exec_like_with_escape(
pattern.as_str(),
match_expression.as_str(),
escape,
) as i64)
}
(Value::Text(pattern), Value::Text(match_expression)) => {
let cache = if *constant_mask > 0 {
Some(&mut state.regex_cache.like)
} else {
None
};
Value::Integer(Value::exec_like(
cache,
pattern.as_str(),
match_expression.as_str(),
) as i64)
}
(Value::Null, _) | (_, Value::Null) => Value::Null,
_ => {
unreachable!("Like failed");
}
};
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::Abs
| ScalarFunc::Lower
| ScalarFunc::Upper
| ScalarFunc::Length
| ScalarFunc::OctetLength
| ScalarFunc::Typeof
| ScalarFunc::Unicode
| ScalarFunc::Quote
| ScalarFunc::RandomBlob
| ScalarFunc::Sign
| ScalarFunc::Soundex
| ScalarFunc::ZeroBlob => {
let reg_value = state.registers[*start_reg].borrow_mut().get_value();
let result = match scalar_func {
ScalarFunc::Sign => reg_value.exec_sign(),
ScalarFunc::Abs => Some(reg_value.exec_abs()?),
ScalarFunc::Lower => reg_value.exec_lower(),
ScalarFunc::Upper => reg_value.exec_upper(),
ScalarFunc::Length => Some(reg_value.exec_length()),
ScalarFunc::OctetLength => Some(reg_value.exec_octet_length()),
ScalarFunc::Typeof => Some(reg_value.exec_typeof()),
ScalarFunc::Unicode => Some(reg_value.exec_unicode()),
ScalarFunc::Quote => Some(reg_value.exec_quote()),
ScalarFunc::RandomBlob => Some(reg_value.exec_randomblob()),
ScalarFunc::ZeroBlob => Some(reg_value.exec_zeroblob()),
ScalarFunc::Soundex => Some(reg_value.exec_soundex()),
_ => unreachable!(),
};
state.registers[*dest] = Register::Value(result.unwrap_or(Value::Null));
}
ScalarFunc::Hex => {
let reg_value = state.registers[*start_reg].borrow_mut();
let result = reg_value.get_value().exec_hex();
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::Unhex => {
let reg_value = &state.registers[*start_reg];
let ignored_chars = state.registers.get(*start_reg + 1);
let result = reg_value
.get_value()
.exec_unhex(ignored_chars.map(|x| x.get_value()));
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::Random => {
state.registers[*dest] = Register::Value(Value::exec_random());
}
ScalarFunc::Trim => {
let reg_value = &state.registers[*start_reg];
let pattern_value = if func.arg_count == 2 {
state.registers.get(*start_reg + 1)
} else {
None
};
let result = reg_value
.get_value()
.exec_trim(pattern_value.map(|x| x.get_value()));
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::LTrim => {
let reg_value = &state.registers[*start_reg];
let pattern_value = if func.arg_count == 2 {
state.registers.get(*start_reg + 1)
} else {
None
};
let result = reg_value
.get_value()
.exec_ltrim(pattern_value.map(|x| x.get_value()));
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::RTrim => {
let reg_value = &state.registers[*start_reg];
let pattern_value = if func.arg_count == 2 {
state.registers.get(*start_reg + 1)
} else {
None
};
let result = reg_value
.get_value()
.exec_rtrim(pattern_value.map(|x| x.get_value()));
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::Round => {
let reg_value = &state.registers[*start_reg];
assert!(arg_count == 1 || arg_count == 2);
let precision_value = if arg_count > 1 {
state.registers.get(*start_reg + 1)
} else {
None
};
let result = reg_value
.get_value()
.exec_round(precision_value.map(|x| x.get_value()));
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::Min => {
let reg_values = &state.registers[*start_reg..*start_reg + arg_count];
state.registers[*dest] =
Register::Value(Value::exec_min(reg_values.iter().map(|v| v.get_value())));
}
ScalarFunc::Max => {
let reg_values = &state.registers[*start_reg..*start_reg + arg_count];
state.registers[*dest] =
Register::Value(Value::exec_max(reg_values.iter().map(|v| v.get_value())));
}
ScalarFunc::Nullif => {
let first_value = &state.registers[*start_reg];
let second_value = &state.registers[*start_reg + 1];
state.registers[*dest] = Register::Value(Value::exec_nullif(
first_value.get_value(),
second_value.get_value(),
));
}
ScalarFunc::Substr | ScalarFunc::Substring => {
let str_value = &state.registers[*start_reg];
let start_value = &state.registers[*start_reg + 1];
let length_value = if func.arg_count == 3 {
Some(&state.registers[*start_reg + 2])
} else {
None
};
let result = Value::exec_substring(
str_value.get_value(),
start_value.get_value(),
length_value.map(|x| x.get_value()),
);
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::Date => {
let result = exec_date(&state.registers[*start_reg..*start_reg + arg_count]);
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::Time => {
let values = &state.registers[*start_reg..*start_reg + arg_count];
let result = exec_time(values);
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::TimeDiff => {
if arg_count != 2 {
state.registers[*dest] = Register::Value(Value::Null);
} else {
let start = state.registers[*start_reg].get_value().clone();
let end = state.registers[*start_reg + 1].get_value().clone();
let result = crate::functions::datetime::exec_timediff(&[
Register::Value(start),
Register::Value(end),
]);
state.registers[*dest] = Register::Value(result);
}
}
ScalarFunc::TotalChanges => {
let res = &program.connection.total_changes;
let total_changes = res.get();
state.registers[*dest] = Register::Value(Value::Integer(total_changes));
}
ScalarFunc::DateTime => {
let result =
exec_datetime_full(&state.registers[*start_reg..*start_reg + arg_count]);
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::JulianDay => {
let result = exec_julianday(&state.registers[*start_reg..*start_reg + arg_count]);
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::UnixEpoch => {
if *start_reg == 0 {
let result = exec_unixepoch(&Value::build_text("now"))?;
state.registers[*dest] = Register::Value(result);
} else {
let datetime_value = &state.registers[*start_reg];
let unixepoch = exec_unixepoch(datetime_value.get_value());
match unixepoch {
Ok(time) => state.registers[*dest] = Register::Value(time),
Err(e) => {
return Err(LimboError::ParseError(format!(
"Error encountered while parsing datetime value: {e}"
)));
}
}
}
}
ScalarFunc::SqliteVersion => {
if !program.connection.is_db_initialized() {
state.registers[*dest] =
Register::Value(Value::build_text(info::build::PKG_VERSION));
} else {
let version_integer =
return_if_io!(pager.with_header(|header| header.version_number)).get()
as i64;
let version = execute_sqlite_version(version_integer);
state.registers[*dest] = Register::Value(Value::build_text(version));
}
}
ScalarFunc::SqliteSourceId => {
let src_id = format!(
"{} {}",
info::build::BUILT_TIME_SQLITE,
info::build::GIT_COMMIT_HASH.unwrap_or("unknown")
);
state.registers[*dest] = Register::Value(Value::build_text(src_id));
}
ScalarFunc::Replace => {
assert_eq!(arg_count, 3);
let source = &state.registers[*start_reg];
let pattern = &state.registers[*start_reg + 1];
let replacement = &state.registers[*start_reg + 2];
state.registers[*dest] = Register::Value(Value::exec_replace(
source.get_value(),
pattern.get_value(),
replacement.get_value(),
));
}
#[cfg(feature = "fs")]
#[cfg(not(target_family = "wasm"))]
ScalarFunc::LoadExtension => {
let extension = &state.registers[*start_reg];
let ext = resolve_ext_path(&extension.get_value().to_string())?;
program.connection.load_extension(ext)?;
}
ScalarFunc::StrfTime => {
let result = exec_strftime(&state.registers[*start_reg..*start_reg + arg_count]);
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::Printf => {
let result = exec_printf(&state.registers[*start_reg..*start_reg + arg_count])?;
state.registers[*dest] = Register::Value(result);
}
ScalarFunc::TableColumnsJsonArray => {
assert_eq!(arg_count, 1);
#[cfg(not(feature = "json"))]
{
return Err(LimboError::InvalidArgument(
"table_columns_json_array: turso must be compiled with JSON support"
.to_string(),
));
}
#[cfg(feature = "json")]
{
use crate::types::{TextRef, TextSubtype};
let table = state.registers[*start_reg].get_value();
let Value::Text(table) = table else {
return Err(LimboError::InvalidArgument(
"table_columns_json_array: function argument must be of type TEXT"
.to_string(),
));
};
let table = {
let schema = program.connection.schema.borrow();
match schema.get_table(table.as_str()) {
Some(table) => table,
None => {
return Err(LimboError::InvalidArgument(format!(
"table_columns_json_array: table {table} doesn't exists"
)))
}
}
};
let mut json = json::jsonb::Jsonb::make_empty_array(table.columns().len() * 10);
for column in table.columns() {
let name = column.name.as_ref().unwrap();
let name_json = json::convert_ref_dbtype_to_jsonb(
&RefValue::Text(TextRef::create_from(
name.as_str().as_bytes(),
TextSubtype::Text,
)),
json::Conv::ToString,
)?;
json.append_jsonb_to_end(name_json.data());
}
json.finalize_unsafe(json::jsonb::ElementType::ARRAY)?;
state.registers[*dest] = Register::Value(json::json_string_to_db_type(
json,
json::jsonb::ElementType::ARRAY,
json::OutputVariant::String,
)?);
}
}
ScalarFunc::BinRecordJsonObject => {
assert_eq!(arg_count, 2);
#[cfg(not(feature = "json"))]
{
return Err(LimboError::InvalidArgument(
"bin_record_json_object: turso must be compiled with JSON support"
.to_string(),
));
}
#[cfg(feature = "json")]
'outer: {
use crate::types::RecordCursor;
use std::str::FromStr;
let columns_str = state.registers[*start_reg].get_value();
let bin_record = state.registers[*start_reg + 1].get_value();
let Value::Text(columns_str) = columns_str else {
return Err(LimboError::InvalidArgument(
"bin_record_json_object: function arguments must be of type TEXT and BLOB correspondingly".to_string()
));
};
if let Value::Null = bin_record {
state.registers[*dest] = Register::Value(Value::Null);
break 'outer;
}
let Value::Blob(bin_record) = bin_record else {
return Err(LimboError::InvalidArgument(
"bin_record_json_object: function arguments must be of type TEXT and BLOB correspondingly".to_string()
));
};
let mut columns_json_array =
json::jsonb::Jsonb::from_str(columns_str.as_str())?;
let columns_len = columns_json_array.array_len()?;
let mut record = ImmutableRecord::new(bin_record.len());
record.start_serialization(bin_record);
let mut record_cursor = RecordCursor::new();
let mut json = json::jsonb::Jsonb::make_empty_obj(columns_len);
for i in 0..columns_len {
let mut op = json::jsonb::SearchOperation::new(0);
let path = json::path::JsonPath {
elements: vec![
json::path::PathElement::Root(),
json::path::PathElement::ArrayLocator(Some(i as i32)),
],
};
columns_json_array.operate_on_path(&path, &mut op)?;
let column_name = op.result();
json.append_jsonb_to_end(column_name.data());
let val = record_cursor.get_value(&record, i)?;
if let RefValue::Blob(..) = val {
return Err(LimboError::InvalidArgument(
"bin_record_json_object: formatting of BLOB values stored in binary record is not supported".to_string()
));
}
let val_json =
json::convert_ref_dbtype_to_jsonb(&val, json::Conv::NotStrict)?;
json.append_jsonb_to_end(val_json.data());
}
json.finalize_unsafe(json::jsonb::ElementType::OBJECT)?;
state.registers[*dest] = Register::Value(json::json_string_to_db_type(
json,
json::jsonb::ElementType::OBJECT,
json::OutputVariant::String,
)?);
}
}
ScalarFunc::Attach => {
assert_eq!(arg_count, 3);
let filename = state.registers[*start_reg].get_value();
let dbname = state.registers[*start_reg + 1].get_value();
let _key = state.registers[*start_reg + 2].get_value(); // Not used in read-only implementation
let Value::Text(filename_str) = filename else {
return Err(LimboError::InvalidArgument(
"attach: filename argument must be text".to_string(),
));
};
let Value::Text(dbname_str) = dbname else {
return Err(LimboError::InvalidArgument(
"attach: database name argument must be text".to_string(),
));
};
program
.connection
.attach_database(filename_str.as_str(), dbname_str.as_str())?;
state.registers[*dest] = Register::Value(Value::Null);
}
ScalarFunc::Detach => {
assert_eq!(arg_count, 1);
let dbname = state.registers[*start_reg].get_value();
let Value::Text(dbname_str) = dbname else {
return Err(LimboError::InvalidArgument(
"detach: database name argument must be text".to_string(),
));
};
// Call the detach_database method on the connection
program.connection.detach_database(dbname_str.as_str())?;
// Set result to NULL (detach doesn't return a value)
state.registers[*dest] = Register::Value(Value::Null);
}
ScalarFunc::Unlikely | ScalarFunc::Likely | ScalarFunc::Likelihood => {
panic!(
"{scalar_func:?} should be stripped during expression translation and never reach VDBE",
);
}
},
crate::function::Func::Vector(vector_func) => match vector_func {
VectorFunc::Vector => {
let result = vector32(&state.registers[*start_reg..*start_reg + arg_count])?;
state.registers[*dest] = Register::Value(result);
}
VectorFunc::Vector32 => {
let result = vector32(&state.registers[*start_reg..*start_reg + arg_count])?;
state.registers[*dest] = Register::Value(result);
}
VectorFunc::Vector64 => {
let result = vector64(&state.registers[*start_reg..*start_reg + arg_count])?;
state.registers[*dest] = Register::Value(result);
}
VectorFunc::VectorExtract => {
let result = vector_extract(&state.registers[*start_reg..*start_reg + arg_count])?;
state.registers[*dest] = Register::Value(result);
}
VectorFunc::VectorDistanceCos => {
let result =
vector_distance_cos(&state.registers[*start_reg..*start_reg + arg_count])?;
state.registers[*dest] = Register::Value(result);
}
VectorFunc::VectorDistanceEuclidean => {
let result =
vector_distance_l2(&state.registers[*start_reg..*start_reg + arg_count])?;
state.registers[*dest] = Register::Value(result);
}
VectorFunc::VectorConcat => {
let result = vector_concat(&state.registers[*start_reg..*start_reg + arg_count])?;
state.registers[*dest] = Register::Value(result);
}
VectorFunc::VectorSlice => {
let result = vector_slice(&state.registers[*start_reg..*start_reg + arg_count])?;
state.registers[*dest] = Register::Value(result)
}
},
crate::function::Func::External(f) => match f.func {
ExtFunc::Scalar(f) => {
if arg_count == 0 {
let result_c_value: ExtValue = unsafe { (f)(0, std::ptr::null()) };
match Value::from_ffi(result_c_value) {
Ok(result_ov) => {
state.registers[*dest] = Register::Value(result_ov);
}
Err(e) => {
return Err(e);
}
}
} else {
let register_slice = &state.registers[*start_reg..*start_reg + arg_count];
let mut ext_values: Vec<ExtValue> = Vec::with_capacity(arg_count);
for ov in register_slice.iter() {
let val = ov.get_value().to_ffi();
ext_values.push(val);
}
let argv_ptr = ext_values.as_ptr();
let result_c_value: ExtValue = unsafe { (f)(arg_count as i32, argv_ptr) };
match Value::from_ffi(result_c_value) {
Ok(result_ov) => {
state.registers[*dest] = Register::Value(result_ov);
}
Err(e) => {
return Err(e);
}
}
}
}
_ => unreachable!("aggregate called in scalar context"),
},
crate::function::Func::Math(math_func) => match math_func.arity() {
MathFuncArity::Nullary => match math_func {
MathFunc::Pi => {
state.registers[*dest] = Register::Value(Value::Float(std::f64::consts::PI));
}
_ => {
unreachable!("Unexpected mathematical Nullary function {:?}", math_func);
}
},
MathFuncArity::Unary => {
let reg_value = &state.registers[*start_reg];
let result = reg_value.get_value().exec_math_unary(math_func);
state.registers[*dest] = Register::Value(result);
}
MathFuncArity::Binary => {
let lhs = &state.registers[*start_reg];
let rhs = &state.registers[*start_reg + 1];
let result = lhs.get_value().exec_math_binary(rhs.get_value(), math_func);
state.registers[*dest] = Register::Value(result);
}
MathFuncArity::UnaryOrBinary => match math_func {
MathFunc::Log => {
let result = match arg_count {
1 => {
let arg = &state.registers[*start_reg];
arg.get_value().exec_math_log(None)
}
2 => {
let base = &state.registers[*start_reg];
let arg = &state.registers[*start_reg + 1];
arg.get_value().exec_math_log(Some(base.get_value()))
}
_ => unreachable!(
"{:?} function with unexpected number of arguments",
math_func
),
};
state.registers[*dest] = Register::Value(result);
}
_ => unreachable!(
"Unexpected mathematical UnaryOrBinary function {:?}",
math_func
),
},
},
crate::function::Func::AlterTable(alter_func) => {
let r#type = &state.registers[*start_reg].get_value().clone();
let Value::Text(name) = &state.registers[*start_reg + 1].get_value() else {
panic!("sqlite_schema.name should be TEXT")
};
let name = name.to_string();
let Value::Text(tbl_name) = &state.registers[*start_reg + 2].get_value() else {
panic!("sqlite_schema.tbl_name should be TEXT")
};
let tbl_name = tbl_name.to_string();
let Value::Integer(root_page) = &state.registers[*start_reg + 3].get_value().clone()
else {
panic!("sqlite_schema.root_page should be INTEGER")
};
let sql = &state.registers[*start_reg + 4].get_value().clone();
let (new_name, new_tbl_name, new_sql) = match alter_func {
AlterTableFunc::RenameTable => {
let rename_from = {
match &state.registers[*start_reg + 5].get_value() {
Value::Text(rename_from) => normalize_ident(rename_from.as_str()),
_ => panic!("rename_from parameter should be TEXT"),
}
};
let rename_to = {
match &state.registers[*start_reg + 6].get_value() {
Value::Text(rename_to) => normalize_ident(rename_to.as_str()),
_ => panic!("rename_to parameter should be TEXT"),
}
};
let new_name = if let Some(column) =
&name.strip_prefix(&format!("sqlite_autoindex_{rename_from}_"))
{
format!("sqlite_autoindex_{rename_to}_{column}")
} else if name == rename_from {
rename_to.clone()
} else {
name
};
let new_tbl_name = if tbl_name == rename_from {
rename_to.clone()
} else {
tbl_name
};
let new_sql = 'sql: {
let Value::Text(sql) = sql else {
break 'sql None;
};
let mut parser = Parser::new(sql.as_str().as_bytes());
let ast::Cmd::Stmt(stmt) = parser.next().unwrap().unwrap() else {
todo!()
};
match stmt {
ast::Stmt::CreateIndex {
tbl_name,
unique,
if_not_exists,
idx_name,
columns,
where_clause,
} => {
let table_name = normalize_ident(tbl_name.as_str());
if rename_from != table_name {
break 'sql None;
}
Some(
ast::Stmt::CreateIndex {
tbl_name: ast::Name::new(&rename_to),
unique,
if_not_exists,
idx_name,
columns,
where_clause,
}
.to_string(),
)
}
ast::Stmt::CreateTable {
tbl_name,
temporary,
if_not_exists,
body,
} => {
let table_name = normalize_ident(tbl_name.name.as_str());
if rename_from != table_name {
break 'sql None;
}
Some(
ast::Stmt::CreateTable {
tbl_name: ast::QualifiedName {
db_name: None,
name: ast::Name::new(&rename_to),
alias: None,
},
temporary,
if_not_exists,
body,
}
.to_string(),
)
}
_ => todo!(),
}
};
(new_name, new_tbl_name, new_sql)
}
AlterTableFunc::AlterColumn | AlterTableFunc::RenameColumn => {
let table = {
match &state.registers[*start_reg + 5].get_value() {
Value::Text(rename_to) => normalize_ident(rename_to.as_str()),
_ => panic!("table parameter should be TEXT"),
}
};
let rename_from = {
match &state.registers[*start_reg + 6].get_value() {
Value::Text(rename_from) => normalize_ident(rename_from.as_str()),
_ => panic!("rename_from parameter should be TEXT"),
}
};
let column_def = {
match &state.registers[*start_reg + 7].get_value() {
Value::Text(column_def) => column_def.as_str(),
_ => panic!("rename_to parameter should be TEXT"),
}
};
let column_def = Parser::new(column_def.as_bytes())
.parse_column_definition(true)
.unwrap();
let new_sql = 'sql: {
if table != tbl_name {
break 'sql None;
}
let Value::Text(sql) = sql else {
break 'sql None;
};
let mut parser = Parser::new(sql.as_str().as_bytes());
let ast::Cmd::Stmt(stmt) = parser.next().unwrap().unwrap() else {
todo!()
};
match stmt {
ast::Stmt::CreateIndex {
tbl_name,
mut columns,
unique,
if_not_exists,
idx_name,
where_clause,
} => {
if table != normalize_ident(tbl_name.as_str()) {
break 'sql None;
}
for column in &mut columns {
match column.expr.as_mut() {
ast::Expr::Id(ast::Name::Ident(id))
if normalize_ident(id) == rename_from =>
{
*id = column_def.col_name.as_str().to_owned();
}
_ => {}
}
}
Some(
ast::Stmt::CreateIndex {
tbl_name,
columns,
unique,
if_not_exists,
idx_name,
where_clause,
}
.to_string(),
)
}
ast::Stmt::CreateTable {
tbl_name,
body,
temporary,
if_not_exists,
} => {
if table != normalize_ident(tbl_name.name.as_str()) {
break 'sql None;
}
let ast::CreateTableBody::ColumnsAndConstraints {
mut columns,
constraints,
options,
} = body
else {
todo!()
};
let column = columns
.iter_mut()
.find(|column| column.col_name == ast::Name::new(&rename_from))
.expect("column being renamed should be present");
match alter_func {
AlterTableFunc::AlterColumn => *column = column_def,
AlterTableFunc::RenameColumn => {
column.col_name = column_def.col_name
}
_ => unreachable!(),
}
Some(
ast::Stmt::CreateTable {
tbl_name,
body: ast::CreateTableBody::ColumnsAndConstraints {
columns,
constraints,
options,
},
temporary,
if_not_exists,
}
.to_string(),
)
}
_ => todo!(),
}
};
(name, tbl_name, new_sql)
}
};
state.registers[*dest] = Register::Value(r#type.clone());
state.registers[*dest + 1] = Register::Value(Value::Text(Text::from(new_name)));
state.registers[*dest + 2] = Register::Value(Value::Text(Text::from(new_tbl_name)));
state.registers[*dest + 3] = Register::Value(Value::Integer(*root_page));
if let Some(new_sql) = new_sql {
state.registers[*dest + 4] = Register::Value(Value::Text(Text::from(new_sql)));
} else {
state.registers[*dest + 4] = Register::Value(sql.clone());
}
}
crate::function::Func::Agg(_) => {
unreachable!("Aggregate functions should not be handled here")
}
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_init_coroutine(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
InitCoroutine {
yield_reg,
jump_on_definition,
start_offset,
},
insn
);
assert!(jump_on_definition.is_offset());
let start_offset = start_offset.as_offset_int();
state.registers[*yield_reg] = Register::Value(Value::Integer(start_offset as i64));
state.ended_coroutine.unset(*yield_reg);
let jump_on_definition = jump_on_definition.as_offset_int();
state.pc = if jump_on_definition == 0 {
state.pc + 1
} else {
jump_on_definition
};
Ok(InsnFunctionStepResult::Step)
}
pub fn op_end_coroutine(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(EndCoroutine { yield_reg }, insn);
if let Value::Integer(pc) = state.registers[*yield_reg].get_value() {
state.ended_coroutine.set(*yield_reg);
let pc: u32 = (*pc)
.try_into()
.unwrap_or_else(|_| panic!("EndCoroutine: pc overflow: {pc}"));
state.pc = pc - 1; // yield jump is always next to yield. Here we subtract 1 to go back to yield instruction
} else {
unreachable!();
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_yield(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Yield {
yield_reg,
end_offset,
},
insn
);
if let Value::Integer(pc) = state.registers[*yield_reg].get_value() {
if state.ended_coroutine.get(*yield_reg) {
state.pc = end_offset.as_offset_int();
} else {
let pc: u32 = (*pc)
.try_into()
.unwrap_or_else(|_| panic!("Yield: pc overflow: {pc}"));
// swap the program counter with the value in the yield register
// this is the mechanism that allows jumping back and forth between the coroutine and the caller
(state.pc, state.registers[*yield_reg]) =
(pc, Register::Value(Value::Integer((state.pc + 1) as i64)));
}
} else {
unreachable!(
"yield_reg {} contains non-integer value: {:?}",
*yield_reg, state.registers[*yield_reg]
);
}
Ok(InsnFunctionStepResult::Step)
}
pub struct OpInsertState {
pub sub_state: OpInsertSubState,
pub old_record: Option<(i64, Vec<Value>)>,
}
#[derive(Debug, PartialEq)]
pub enum OpInsertSubState {
/// If this insert overwrites a record, capture the old record for incremental view maintenance.
MaybeCaptureRecord,
/// Seek to the correct position if needed.
/// In a table insert, if the caller does not pass InsertFlags::REQUIRE_SEEK, they must ensure that a seek has already happened to the correct location.
/// This typically happens by invoking either Insn::NewRowid or Insn::NotExists, because:
/// 1. op_new_rowid() seeks to the end of the table, which is the correct insertion position.
/// 2. op_not_exists() seeks to the position in the table where the target rowid would be inserted.
Seek,
/// Insert the row into the table.
Insert,
/// Updating last_insert_rowid may return IO, so we need a separate state for it so that we don't
/// start inserting the same row multiple times.
UpdateLastRowid,
/// If there are dependent incremental views, apply the change.
ApplyViewChange,
}
pub fn op_insert(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Insert {
cursor: cursor_id,
key_reg,
record_reg,
flag,
table_name,
},
insn
);
loop {
match &state.op_insert_state.sub_state {
OpInsertSubState::MaybeCaptureRecord => {
let schema = program.connection.schema.borrow();
let dependent_views = schema.get_dependent_materialized_views(table_name);
// If there are no dependent views, we don't need to capture the old record.
// We also don't need to do it if the rowid of the UPDATEd row was changed, because that means
// we deleted it earlier and `op_delete` already captured the change.
if dependent_views.is_empty() || flag.has(InsertFlags::UPDATE_ROWID_CHANGE) {
if flag.has(InsertFlags::REQUIRE_SEEK) {
state.op_insert_state.sub_state = OpInsertSubState::Seek;
} else {
state.op_insert_state.sub_state = OpInsertSubState::Insert;
}
continue;
}
turso_assert!(!flag.has(InsertFlags::REQUIRE_SEEK), "to capture old record accurately, we must be located at the correct position in the table");
let old_record = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
// Get the current key - for INSERT operations, there may not be a current row
let maybe_key = return_if_io!(cursor.rowid());
if let Some(key) = maybe_key {
// Get the current record before deletion and extract values
let maybe_record = return_if_io!(cursor.record());
if let Some(record) = maybe_record {
let mut values = record
.get_values()
.into_iter()
.map(|v| v.to_owned())
.collect::<Vec<_>>();
// Fix rowid alias columns: replace Null with actual rowid value
if let Some(table) = schema.get_table(table_name) {
for (i, col) in table.columns().iter().enumerate() {
if col.is_rowid_alias && i < values.len() {
values[i] = Value::Integer(key);
}
}
}
Some((key, values))
} else {
None
}
} else {
// No current row - this is a fresh INSERT, not an UPDATE
None
}
};
state.op_insert_state.old_record = old_record;
if flag.has(InsertFlags::REQUIRE_SEEK) {
state.op_insert_state.sub_state = OpInsertSubState::Seek;
} else {
state.op_insert_state.sub_state = OpInsertSubState::Insert;
}
continue;
}
OpInsertSubState::Seek => {
if let SeekInternalResult::IO(io) = seek_internal(
program,
state,
pager,
mv_store,
RecordSource::Unpacked {
start_reg: *key_reg,
num_regs: 1,
},
*cursor_id,
false,
SeekOp::GE { eq_only: true },
)? {
return Ok(InsnFunctionStepResult::IO(io));
}
state.op_insert_state.sub_state = OpInsertSubState::Insert;
}
OpInsertSubState::Insert => {
let key = match &state.registers[*key_reg].get_value() {
Value::Integer(i) => *i,
_ => unreachable!("expected integer key"),
};
let record = match &state.registers[*record_reg] {
Register::Record(r) => std::borrow::Cow::Borrowed(r),
Register::Value(value) => {
let x = 1;
let regs = &state.registers[*record_reg..*record_reg + 1];
let new_regs = [&state.registers[*record_reg]];
let record = ImmutableRecord::from_registers(new_regs, new_regs.len());
std::borrow::Cow::Owned(record)
}
Register::Aggregate(..) => unreachable!("Cannot insert an aggregate value."),
};
{
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.insert(&BTreeKey::new_table_rowid(key, Some(&record))));
}
// Increment metrics for row write
state.metrics.rows_written = state.metrics.rows_written.saturating_add(1);
// Only update last_insert_rowid for regular table inserts, not schema modifications
let root_page = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
cursor.root_page()
};
if root_page != 1 {
state.op_insert_state.sub_state = OpInsertSubState::UpdateLastRowid;
} else {
let schema = program.connection.schema.borrow();
let dependent_views = schema.get_dependent_materialized_views(table_name);
if !dependent_views.is_empty() {
state.op_insert_state.sub_state = OpInsertSubState::ApplyViewChange;
} else {
break;
}
}
}
OpInsertSubState::UpdateLastRowid => {
let maybe_rowid = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.rowid())
};
if let Some(rowid) = maybe_rowid {
program.connection.update_last_rowid(rowid);
let prev_changes = program.n_change.get();
program.n_change.set(prev_changes + 1);
}
let schema = program.connection.schema.borrow();
let dependent_views = schema.get_dependent_materialized_views(table_name);
if !dependent_views.is_empty() {
state.op_insert_state.sub_state = OpInsertSubState::ApplyViewChange;
continue;
}
break;
}
OpInsertSubState::ApplyViewChange => {
let schema = program.connection.schema.borrow();
let dependent_views = schema.get_dependent_materialized_views(table_name);
assert!(!dependent_views.is_empty());
let (key, values) = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
let key = match &state.registers[*key_reg].get_value() {
Value::Integer(i) => *i,
_ => unreachable!("expected integer key"),
};
let record = match &state.registers[*record_reg] {
Register::Record(r) => std::borrow::Cow::Borrowed(r),
Register::Value(value) => {
let x = 1;
let regs = &state.registers[*record_reg..*record_reg + 1];
let new_regs = [&state.registers[*record_reg]];
let record = ImmutableRecord::from_registers(new_regs, new_regs.len());
std::borrow::Cow::Owned(record)
}
Register::Aggregate(..) => {
unreachable!("Cannot insert an aggregate value.")
}
};
// Add insertion of new row to view deltas
let mut new_values = record
.get_values()
.into_iter()
.map(|v| v.to_owned())
.collect::<Vec<_>>();
// Fix rowid alias columns: replace Null with actual rowid value
let schema = program.connection.schema.borrow();
if let Some(table) = schema.get_table(table_name) {
for (i, col) in table.columns().iter().enumerate() {
if col.is_rowid_alias && i < new_values.len() {
new_values[i] = Value::Integer(key);
}
}
}
(key, new_values)
};
if let Some((key, values)) = state.op_insert_state.old_record.take() {
for view_name in dependent_views.iter() {
let tx_state = program
.connection
.view_transaction_states
.get_or_create(view_name);
tx_state.delete(key, values.clone());
}
}
for view_name in dependent_views.iter() {
let tx_state = program
.connection
.view_transaction_states
.get_or_create(view_name);
tx_state.insert(key, values.clone());
}
break;
}
}
}
state.op_insert_state.sub_state = OpInsertSubState::MaybeCaptureRecord;
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_int_64(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Int64 {
_p1,
out_reg,
_p3,
value,
},
insn
);
state.registers[*out_reg] = Register::Value(Value::Integer(*value));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub struct OpDeleteState {
pub sub_state: OpDeleteSubState,
pub deleted_record: Option<(i64, Vec<Value>)>,
}
pub enum OpDeleteSubState {
/// Capture the record before deletion, if the are dependent views.
MaybeCaptureRecord,
/// Delete the record.
Delete,
/// Apply the change to the dependent views.
ApplyViewChange,
}
pub fn op_delete(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Delete {
cursor_id,
table_name
},
insn
);
loop {
match &state.op_delete_state.sub_state {
OpDeleteSubState::MaybeCaptureRecord => {
let schema = program.connection.schema.borrow();
let dependent_views = schema.get_dependent_materialized_views(table_name);
if dependent_views.is_empty() {
state.op_delete_state.sub_state = OpDeleteSubState::Delete;
continue;
}
let deleted_record = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
// Get the current key
let maybe_key = return_if_io!(cursor.rowid());
let key = maybe_key.ok_or_else(|| {
LimboError::InternalError("Cannot delete: no current row".to_string())
})?;
// Get the current record before deletion and extract values
let maybe_record = return_if_io!(cursor.record());
if let Some(record) = maybe_record {
let mut values = record
.get_values()
.into_iter()
.map(|v| v.to_owned())
.collect::<Vec<_>>();
// Fix rowid alias columns: replace Null with actual rowid value
if let Some(table) = schema.get_table(table_name) {
for (i, col) in table.columns().iter().enumerate() {
if col.is_rowid_alias && i < values.len() {
values[i] = Value::Integer(key);
}
}
}
Some((key, values))
} else {
None
}
};
state.op_delete_state.deleted_record = deleted_record;
state.op_delete_state.sub_state = OpDeleteSubState::Delete;
continue;
}
OpDeleteSubState::Delete => {
{
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.delete());
}
// Increment metrics for row write (DELETE is a write operation)
state.metrics.rows_written = state.metrics.rows_written.saturating_add(1);
let schema = program.connection.schema.borrow();
let dependent_views = schema.get_dependent_materialized_views(table_name);
if dependent_views.is_empty() {
break;
}
state.op_delete_state.sub_state = OpDeleteSubState::ApplyViewChange;
continue;
}
OpDeleteSubState::ApplyViewChange => {
let schema = program.connection.schema.borrow();
let dependent_views = schema.get_dependent_materialized_views(table_name);
assert!(!dependent_views.is_empty());
let maybe_deleted_record = state.op_delete_state.deleted_record.take();
if let Some((key, values)) = maybe_deleted_record {
for view_name in dependent_views {
let tx_state = program
.connection
.view_transaction_states
.get_or_create(&view_name);
tx_state.delete(key, values.clone());
}
}
break;
}
}
}
state.op_delete_state.sub_state = OpDeleteSubState::MaybeCaptureRecord;
let prev_changes = program.n_change.get();
program.n_change.set(prev_changes + 1);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
#[derive(Debug)]
pub enum OpIdxDeleteState {
Seeking,
Verifying,
Deleting,
}
pub fn op_idx_delete(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
IdxDelete {
cursor_id,
start_reg,
num_regs,
raise_error_if_no_matching_entry,
},
insn
);
loop {
tracing::debug!(
"op_idx_delete(cursor_id={}, start_reg={}, num_regs={}, rootpage={}, state={:?})",
cursor_id,
start_reg,
num_regs,
state.get_cursor(*cursor_id).as_btree_mut().root_page(),
state.op_idx_delete_state
);
match &state.op_idx_delete_state {
Some(OpIdxDeleteState::Seeking) => {
let found = match seek_internal(
program,
state,
pager,
mv_store,
RecordSource::Unpacked {
start_reg: *start_reg,
num_regs: *num_regs,
},
*cursor_id,
true,
SeekOp::GE { eq_only: true },
) {
Ok(SeekInternalResult::Found) => true,
Ok(SeekInternalResult::NotFound) => false,
Ok(SeekInternalResult::IO(io)) => return Ok(InsnFunctionStepResult::IO(io)),
Err(e) => return Err(e),
};
if !found {
// If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error if no matching index entry is found
// Also, do not raise this (self-correcting and non-critical) error if in writable_schema mode.
if *raise_error_if_no_matching_entry {
let record = make_record(&state.registers, start_reg, num_regs);
return Err(LimboError::Corrupt(format!(
"IdxDelete: no matching index entry found for record {record:?}"
)));
}
state.pc += 1;
state.op_idx_delete_state = None;
return Ok(InsnFunctionStepResult::Step);
}
state.op_idx_delete_state = Some(OpIdxDeleteState::Verifying);
}
Some(OpIdxDeleteState::Verifying) => {
let rowid = {
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.rowid())
};
if rowid.is_none() && *raise_error_if_no_matching_entry {
return Err(LimboError::Corrupt(format!(
"IdxDelete: no matching index entry found for record {:?}",
make_record(&state.registers, start_reg, num_regs)
)));
}
state.op_idx_delete_state = Some(OpIdxDeleteState::Deleting);
}
Some(OpIdxDeleteState::Deleting) => {
{
let mut cursor = state.get_cursor(*cursor_id);
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.delete());
}
// Increment metrics for index write (delete is a write operation)
state.metrics.rows_written = state.metrics.rows_written.saturating_add(1);
let n_change = program.n_change.get();
program.n_change.set(n_change + 1);
state.pc += 1;
state.op_idx_delete_state = None;
return Ok(InsnFunctionStepResult::Step);
}
None => {
state.op_idx_delete_state = Some(OpIdxDeleteState::Seeking);
}
}
}
}
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum OpIdxInsertState {
/// Optional seek step done before an unique constraint check or if the caller indicates a seek is required.
MaybeSeek,
/// Optional unique constraint check done before an insert.
UniqueConstraintCheck,
/// Main insert step. This is always performed.
Insert,
}
pub fn op_idx_insert(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
IdxInsert {
cursor_id,
record_reg,
flags,
..
},
*insn
);
let record_to_insert = match &state.registers[record_reg] {
Register::Record(ref r) => r,
o => {
return Err(LimboError::InternalError(format!(
"expected record, got {o:?}"
)));
}
};
match state.op_idx_insert_state {
OpIdxInsertState::MaybeSeek => {
let (_, cursor_type) = program.cursor_ref.get(cursor_id).unwrap();
let CursorType::BTreeIndex(index_meta) = cursor_type else {
panic!("IdxInsert: not a BTreeIndex cursor");
};
// TODO: currently we never pass USE_SEEK, so this other check is a bit redundant and we always seek,
// but I guess it's FutureProofed™®
if !index_meta.unique && flags.has(IdxInsertFlags::USE_SEEK) {
state.op_idx_insert_state = OpIdxInsertState::Insert;
return Ok(InsnFunctionStepResult::Step);
}
match seek_internal(
program,
state,
pager,
mv_store,
RecordSource::Packed { record_reg },
cursor_id,
true,
SeekOp::GE { eq_only: true },
)? {
SeekInternalResult::Found => {
state.op_idx_insert_state = if index_meta.unique {
OpIdxInsertState::UniqueConstraintCheck
} else {
OpIdxInsertState::Insert
};
Ok(InsnFunctionStepResult::Step)
}
SeekInternalResult::NotFound => {
state.op_idx_insert_state = OpIdxInsertState::Insert;
Ok(InsnFunctionStepResult::Step)
}
SeekInternalResult::IO(io) => Ok(InsnFunctionStepResult::IO(io)),
}
}
OpIdxInsertState::UniqueConstraintCheck => {
let ignore_conflict = 'i: {
let mut cursor = state.get_cursor(cursor_id);
let cursor = cursor.as_btree_mut();
let record_opt = return_if_io!(cursor.record());
let Some(record) = record_opt.as_ref() else {
// Cursor not pointing at a record — table is empty or past last
break 'i false;
};
// Cursor is pointing at a record; if the index has a rowid, exclude it from the comparison since it's a pointer to the table row;
// UNIQUE indexes disallow duplicates like (a=1,b=2,rowid=1) and (a=1,b=2,rowid=2).
let existing_key = if cursor.has_rowid() {
let count = cursor.record_cursor.borrow_mut().count(record);
record.get_values()[..count.saturating_sub(1)].to_vec()
} else {
record.get_values().to_vec()
};
let inserted_key_vals = &record_to_insert.get_values();
if existing_key.len() != inserted_key_vals.len() {
break 'i false;
}
let conflict = compare_immutable(
existing_key.as_slice(),
inserted_key_vals,
&cursor.index_info.as_ref().unwrap().key_info,
) == std::cmp::Ordering::Equal;
if conflict {
if flags.has(IdxInsertFlags::NO_OP_DUPLICATE) {
break 'i true;
}
return Err(LimboError::Constraint(
"UNIQUE constraint failed: duplicate key".into(),
));
}
false
};
state.op_idx_insert_state = if ignore_conflict {
state.pc += 1;
OpIdxInsertState::MaybeSeek
} else {
OpIdxInsertState::Insert
};
Ok(InsnFunctionStepResult::Step)
}
OpIdxInsertState::Insert => {
{
let mut cursor = state.get_cursor(cursor_id);
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.insert(&BTreeKey::new_index_key(record_to_insert)));
}
// Increment metrics for index write
if flags.has(IdxInsertFlags::NCHANGE) {
state.metrics.rows_written = state.metrics.rows_written.saturating_add(1);
}
state.op_idx_insert_state = OpIdxInsertState::MaybeSeek;
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
}
}
#[derive(Debug)]
pub enum OpNewRowidState {
Start,
SeekingToLast,
ReadingMaxRowid,
GeneratingRandom {
attempts: u32,
},
VerifyingCandidate {
attempts: u32,
candidate: i64,
},
/// In case a rowid was generated and not provided by the user, we need to call next() on the cursor
/// after generating the rowid. This is because the rowid was generated by seeking to the last row in the
/// table, and we need to insert _after_ that row.
GoNext,
}
pub fn op_new_rowid(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
NewRowid {
cursor,
rowid_reg,
..
},
insn
);
if let Some(mv_store) = mv_store {
let rowid = {
let mut cursor = state.get_cursor(*cursor);
let cursor = cursor.as_btree_mut();
let mvcc_cursor = cursor.get_mvcc_cursor();
let mut mvcc_cursor = RefCell::borrow_mut(&mvcc_cursor);
mvcc_cursor.get_next_rowid()
};
state.registers[*rowid_reg] = Register::Value(Value::Integer(rowid));
state.pc += 1;
return Ok(InsnFunctionStepResult::Step);
}
const MAX_ROWID: i64 = i64::MAX;
const MAX_ATTEMPTS: u32 = 100;
loop {
match &state.op_new_rowid_state {
OpNewRowidState::Start => {
state.op_new_rowid_state = OpNewRowidState::SeekingToLast;
}
OpNewRowidState::SeekingToLast => {
{
let mut cursor = state.get_cursor(*cursor);
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.seek_to_last());
}
state.op_new_rowid_state = OpNewRowidState::ReadingMaxRowid;
}
OpNewRowidState::ReadingMaxRowid => {
let current_max = {
let mut cursor = state.get_cursor(*cursor);
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.rowid())
};
match current_max {
Some(rowid) if rowid < MAX_ROWID => {
// Can use sequential
state.registers[*rowid_reg] = Register::Value(Value::Integer(rowid + 1));
state.op_new_rowid_state = OpNewRowidState::GoNext;
continue;
}
Some(_) => {
// Must use random (rowid == MAX_ROWID)
state.op_new_rowid_state =
OpNewRowidState::GeneratingRandom { attempts: 0 };
}
None => {
// Empty table
state.registers[*rowid_reg] = Register::Value(Value::Integer(1));
state.op_new_rowid_state = OpNewRowidState::GoNext;
continue;
}
}
}
OpNewRowidState::GeneratingRandom { attempts } => {
if *attempts >= MAX_ATTEMPTS {
return Err(LimboError::DatabaseFull("Unable to find an unused rowid after 100 attempts - database is probably full".to_string()));
}
// Generate a random i64 and constrain it to the lower half of the rowid range.
// We use the lower half (1 to MAX_ROWID/2) because we're in random mode only
// when sequential allocation reached MAX_ROWID, meaning the upper range is full.
let mut rng = thread_rng();
let mut random_rowid: i64 = rng.gen();
random_rowid &= MAX_ROWID >> 1; // Mask to keep value in range [0, MAX_ROWID/2]
random_rowid += 1; // Ensure positive
state.op_new_rowid_state = OpNewRowidState::VerifyingCandidate {
attempts: *attempts,
candidate: random_rowid,
};
}
OpNewRowidState::VerifyingCandidate {
attempts,
candidate,
} => {
let exists = {
let mut cursor = state.get_cursor(*cursor);
let cursor = cursor.as_btree_mut();
let seek_result = return_if_io!(cursor.seek(
SeekKey::TableRowId(*candidate),
SeekOp::GE { eq_only: true }
));
matches!(seek_result, SeekResult::Found)
};
if !exists {
// Found unused rowid!
state.registers[*rowid_reg] = Register::Value(Value::Integer(*candidate));
state.op_new_rowid_state = OpNewRowidState::Start;
state.pc += 1;
return Ok(InsnFunctionStepResult::Step);
} else {
// Collision, try again
state.op_new_rowid_state = OpNewRowidState::GeneratingRandom {
attempts: attempts + 1,
};
}
}
OpNewRowidState::GoNext => {
{
let mut cursor = state.get_cursor(*cursor);
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.next());
}
state.op_new_rowid_state = OpNewRowidState::Start;
state.pc += 1;
return Ok(InsnFunctionStepResult::Step);
}
}
}
}
pub fn op_must_be_int(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(MustBeInt { reg }, insn);
match &state.registers[*reg].get_value() {
Value::Integer(_) => {}
Value::Float(f) => match cast_real_to_integer(*f) {
Ok(i) => state.registers[*reg] = Register::Value(Value::Integer(i)),
Err(_) => crate::bail_parse_error!(
"MustBeInt: the value in register cannot be cast to integer"
),
},
Value::Text(text) => match checked_cast_text_to_numeric(text.as_str()) {
Ok(Value::Integer(i)) => state.registers[*reg] = Register::Value(Value::Integer(i)),
Ok(Value::Float(f)) => {
state.registers[*reg] = Register::Value(Value::Integer(f as i64))
}
_ => crate::bail_parse_error!(
"MustBeInt: the value in register cannot be cast to integer"
),
},
_ => {
crate::bail_parse_error!("MustBeInt: the value in register cannot be cast to integer");
}
};
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_soft_null(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(SoftNull { reg }, insn);
state.registers[*reg] = Register::Value(Value::Null);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub enum OpNoConflictState {
Start,
Seeking(RecordSource),
}
/// If a matching record is not found in the btree ("no conflict"), jump to the target PC.
/// Otherwise, continue execution.
pub fn op_no_conflict(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
NoConflict {
cursor_id,
target_pc,
record_reg,
num_regs,
},
insn
);
loop {
match &state.op_no_conflict_state {
OpNoConflictState::Start => {
let mut cursor_ref = state.get_cursor(*cursor_id);
let cursor = cursor_ref.as_btree_mut();
let record_source = if *num_regs == 0 {
RecordSource::Packed {
record_reg: *record_reg,
}
} else {
RecordSource::Unpacked {
start_reg: *record_reg,
num_regs: *num_regs,
}
};
// If there is at least one NULL in the index record, there cannot be a conflict so we can immediately jump.
let contains_nulls = match &record_source {
RecordSource::Packed { record_reg } => {
let Register::Record(record) = &state.registers[*record_reg] else {
return Err(LimboError::InternalError(
"NoConflict: expected a record in the register".into(),
));
};
record
.get_values()
.iter()
.any(|val| matches!(val, RefValue::Null))
}
RecordSource::Unpacked {
start_reg,
num_regs,
} => (0..*num_regs).any(|i| {
matches!(
&state.registers[start_reg + i],
Register::Value(Value::Null)
)
}),
};
drop(cursor_ref);
if contains_nulls {
state.pc = target_pc.as_offset_int();
state.op_no_conflict_state = OpNoConflictState::Start;
return Ok(InsnFunctionStepResult::Step);
} else {
state.op_no_conflict_state = OpNoConflictState::Seeking(record_source);
}
}
OpNoConflictState::Seeking(record_source) => {
return match seek_internal(
program,
state,
pager,
mv_store,
record_source.clone(),
*cursor_id,
true,
SeekOp::GE { eq_only: true },
)? {
SeekInternalResult::Found => {
state.pc += 1;
state.op_no_conflict_state = OpNoConflictState::Start;
Ok(InsnFunctionStepResult::Step)
}
SeekInternalResult::NotFound => {
state.pc = target_pc.as_offset_int();
state.op_no_conflict_state = OpNoConflictState::Start;
Ok(InsnFunctionStepResult::Step)
}
SeekInternalResult::IO(io) => Ok(InsnFunctionStepResult::IO(io)),
};
}
}
}
}
pub fn op_not_exists(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
NotExists {
cursor,
rowid_reg,
target_pc,
},
insn
);
let exists = if let Some(mv_store) = mv_store {
let mut cursor = must_be_btree_cursor!(*cursor, program.cursor_ref, state, "NotExists");
let cursor = cursor.as_btree_mut();
let mvcc_cursor = cursor.get_mvcc_cursor();
false
} else {
let mut cursor = must_be_btree_cursor!(*cursor, program.cursor_ref, state, "NotExists");
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.exists(state.registers[*rowid_reg].get_value()))
};
if exists {
state.pc += 1;
} else {
state.pc = target_pc.as_offset_int();
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_offset_limit(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
OffsetLimit {
limit_reg,
combined_reg,
offset_reg,
},
insn
);
let limit_val = match state.registers[*limit_reg].get_value() {
Value::Integer(val) => val,
_ => {
return Err(LimboError::InternalError(
"OffsetLimit: the value in limit_reg is not an integer".into(),
));
}
};
let offset_val = match state.registers[*offset_reg].get_value() {
Value::Integer(val) if *val < 0 => 0,
Value::Integer(val) if *val >= 0 => *val,
_ => {
return Err(LimboError::InternalError(
"OffsetLimit: the value in offset_reg is not an integer".into(),
));
}
};
let offset_limit_sum = limit_val.overflowing_add(offset_val);
if *limit_val <= 0 || offset_limit_sum.1 {
state.registers[*combined_reg] = Register::Value(Value::Integer(-1));
} else {
state.registers[*combined_reg] = Register::Value(Value::Integer(offset_limit_sum.0));
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
// this cursor may be reused for next insert
// Update: tablemoveto is used to travers on not exists, on insert depending on flags if nonseek it traverses again.
// If not there might be some optimizations obviously.
pub fn op_open_write(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
_pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
OpenWrite {
cursor_id,
root_page,
db,
},
insn
);
if program.connection.is_readonly(*db) {
return Err(LimboError::ReadOnly);
}
let pager = program.get_pager_from_database_index(db);
let root_page = match root_page {
RegisterOrLiteral::Literal(lit) => *lit as u64,
RegisterOrLiteral::Register(reg) => match &state.registers[*reg].get_value() {
Value::Integer(val) => *val as u64,
_ => {
return Err(LimboError::InternalError(
"OpenWrite: the value in root_page is not an integer".into(),
));
}
},
};
let (_, cursor_type) = program.cursor_ref.get(*cursor_id).unwrap();
let mut cursors = state.cursors.borrow_mut();
let maybe_index = match cursor_type {
CursorType::BTreeIndex(index) => Some(index),
_ => None,
};
let mv_cursor = match program.connection.mv_tx_id.get() {
Some(tx_id) => {
let table_id = root_page;
let mv_store = mv_store.unwrap().clone();
let mv_cursor = Rc::new(RefCell::new(
MvCursor::new(mv_store.clone(), tx_id, table_id, pager.clone()).unwrap(),
));
Some(mv_cursor)
}
None => None,
};
if let Some(index) = maybe_index {
let conn = program.connection.clone();
let schema = conn.schema.borrow();
let table = schema
.get_table(&index.table_name)
.and_then(|table| table.btree());
let num_columns = index.columns.len();
let cursor = BTreeCursor::new_index(
mv_cursor,
pager.clone(),
root_page as usize,
index.as_ref(),
num_columns,
);
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_btree(cursor));
} else {
let num_columns = match cursor_type {
CursorType::BTreeTable(table_rc) => table_rc.columns.len(),
CursorType::MaterializedView(table_rc, _) => table_rc.columns.len(),
_ => unreachable!(
"Expected BTreeTable or MaterializedView. This should not have happened."
),
};
let cursor =
BTreeCursor::new_table(mv_cursor, pager.clone(), root_page as usize, num_columns);
cursors
.get_mut(*cursor_id)
.unwrap()
.replace(Cursor::new_btree(cursor));
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_copy(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Copy {
src_reg,
dst_reg,
extra_amount,
},
insn
);
for i in 0..=*extra_amount {
state.registers[*dst_reg + i] = state.registers[*src_reg + i].clone();
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_create_btree(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(CreateBtree { db, root, flags }, insn);
assert_eq!(*db, 0);
if program.connection.is_readonly(*db) {
return Err(LimboError::ReadOnly);
}
if *db > 0 {
// TODO: implement temp databases
todo!("temp databases not implemented yet");
}
// FIXME: handle page cache is full
let root_page = return_if_io!(pager.btree_create(flags));
state.registers[*root] = Register::Value(Value::Integer(root_page as i64));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_destroy(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Destroy {
root,
former_root_reg,
is_temp,
},
insn
);
if *is_temp == 1 {
todo!("temp databases not implemented yet.");
}
// TODO not sure if should be BTreeCursor::new_table or BTreeCursor::new_index here or neither and just pass an emtpy vec
let mut cursor = BTreeCursor::new(None, pager.clone(), *root, 0);
let former_root_page_result = cursor.btree_destroy()?;
if let IOResult::Done(former_root_page) = former_root_page_result {
state.registers[*former_root_reg] =
Register::Value(Value::Integer(former_root_page.unwrap_or(0) as i64));
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_drop_table(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(DropTable { db, table_name, .. }, insn);
if *db > 0 {
todo!("temp databases not implemented yet");
}
let conn = program.connection.clone();
{
conn.with_schema_mut(|schema| {
schema.remove_indices_for_table(table_name);
schema.remove_table(table_name);
});
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_drop_view(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
_pager: &Rc<Pager>,
_mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(DropView { db, view_name }, insn);
if *db > 0 {
todo!("temp databases not implemented yet");
}
let conn = program.connection.clone();
conn.with_schema_mut(|schema| {
schema.remove_view(view_name)?;
Ok::<(), crate::LimboError>(())
})?;
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_close(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Close { cursor_id }, insn);
let mut cursors = state.cursors.borrow_mut();
cursors.get_mut(*cursor_id).unwrap().take();
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_is_null(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(IsNull { reg, target_pc }, insn);
if matches!(state.registers[*reg], Register::Value(Value::Null)) {
state.pc = target_pc.as_offset_int();
} else {
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_coll_seq(
_program: &Program,
state: &mut ProgramState,
insn: &Insn,
_pager: &Rc<Pager>,
_mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
let Insn::CollSeq { reg, collation } = insn else {
unreachable!("unexpected Insn {:?}", insn)
};
// Set the current collation sequence for use by subsequent functions
state.current_collation = Some(*collation);
// If P1 is not zero, initialize that register to 0
if let Some(reg_idx) = reg {
state.registers[*reg_idx] = Register::Value(Value::Integer(0));
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_page_count(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(PageCount { db, dest }, insn);
if *db > 0 {
// TODO: implement temp databases
todo!("temp databases not implemented yet");
}
let count = match pager.with_header(|header| header.database_size.get()) {
Err(_) => 0.into(),
Ok(IOResult::Done(v)) => v.into(),
Ok(IOResult::IO(io)) => return Ok(InsnFunctionStepResult::IO(io)),
};
state.registers[*dest] = Register::Value(Value::Integer(count));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_parse_schema(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
ParseSchema {
db: _,
where_clause,
},
insn
);
let conn = program.connection.clone();
// set auto commit to false in order for parse schema to not commit changes as transaction state is stored in connection,
// and we use the same connection for nested query.
let previous_auto_commit = conn.auto_commit.get();
conn.auto_commit.set(false);
let maybe_nested_stmt_err = if let Some(where_clause) = where_clause {
let stmt = conn.prepare(format!("SELECT * FROM sqlite_schema WHERE {where_clause}"))?;
conn.with_schema_mut(|schema| {
// TODO: This function below is synchronous, make it async
let existing_views = schema.incremental_views.clone();
conn.is_nested_stmt.set(true);
parse_schema_rows(
stmt,
schema,
&conn.syms.borrow(),
program.connection.mv_tx_id.get(),
existing_views,
)
})
} else {
let stmt = conn.prepare("SELECT * FROM sqlite_schema")?;
conn.with_schema_mut(|schema| {
// TODO: This function below is synchronous, make it async
let existing_views = schema.incremental_views.clone();
conn.is_nested_stmt.set(true);
parse_schema_rows(
stmt,
schema,
&conn.syms.borrow(),
program.connection.mv_tx_id.get(),
existing_views,
)
})
};
conn.is_nested_stmt.set(false);
conn.auto_commit.set(previous_auto_commit);
maybe_nested_stmt_err?;
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_populate_materialized_views(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
_mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(PopulateMaterializedViews { cursors }, insn);
let conn = program.connection.clone();
// For each view, get its cursor and root page
let mut view_info = Vec::new();
{
let cursors_ref = state.cursors.borrow();
for (view_name, cursor_id) in cursors {
// Get the cursor to find the root page
let cursor = cursors_ref
.get(*cursor_id)
.and_then(|c| c.as_ref())
.ok_or_else(|| {
LimboError::InternalError(format!("Cursor {cursor_id} not found"))
})?;
let root_page = match cursor {
crate::types::Cursor::BTree(btree_cursor) => btree_cursor.root_page(),
_ => {
return Err(LimboError::InternalError(
"Expected BTree cursor for materialized view".into(),
))
}
};
view_info.push((view_name.clone(), root_page, *cursor_id));
}
}
// Now populate the views (after releasing the schema borrow)
for (view_name, _root_page, cursor_id) in view_info {
let schema = conn.schema.borrow();
if let Some(view) = schema.get_materialized_view(&view_name) {
let mut view = view.lock().unwrap();
// Drop the schema borrow before calling populate_from_table
drop(schema);
// Get the cursor for writing
// Get a mutable reference to the cursor
let mut cursors_ref = state.cursors.borrow_mut();
let cursor = cursors_ref
.get_mut(cursor_id)
.and_then(|c| c.as_mut())
.ok_or_else(|| {
LimboError::InternalError(format!(
"Cursor {cursor_id} not found for population"
))
})?;
// Extract the BTreeCursor
let btree_cursor = match cursor {
crate::types::Cursor::BTree(btree_cursor) => btree_cursor,
_ => {
return Err(LimboError::InternalError(
"Expected BTree cursor for materialized view population".into(),
))
}
};
// Now populate it with the cursor for writing
return_if_io!(view.populate_from_table(&conn, pager, btree_cursor.as_mut()));
}
}
// All views populated, advance to next instruction
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_read_cookie(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(ReadCookie { db, dest, cookie }, insn);
if *db > 0 {
// TODO: implement temp databases
todo!("temp databases not implemented yet");
}
let cookie_value = match pager.with_header(|header| match cookie {
Cookie::ApplicationId => header.application_id.get().into(),
Cookie::UserVersion => header.user_version.get().into(),
Cookie::SchemaVersion => header.schema_cookie.get().into(),
Cookie::LargestRootPageNumber => header.vacuum_mode_largest_root_page.get().into(),
cookie => todo!("{cookie:?} is not yet implement for ReadCookie"),
}) {
Err(_) => 0.into(),
Ok(IOResult::Done(v)) => v,
Ok(IOResult::IO(io)) => return Ok(InsnFunctionStepResult::IO(io)),
};
state.registers[*dest] = Register::Value(Value::Integer(cookie_value));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_set_cookie(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
SetCookie {
db,
cookie,
value,
p5,
},
insn
);
if *db > 0 {
todo!("temp databases not implemented yet");
}
return_if_io!(pager.with_header_mut(|header| {
match cookie {
Cookie::ApplicationId => header.application_id = (*value).into(),
Cookie::UserVersion => header.user_version = (*value).into(),
Cookie::LargestRootPageNumber => {
header.vacuum_mode_largest_root_page = (*value as u32).into();
}
Cookie::IncrementalVacuum => {
header.incremental_vacuum_enabled = (*value as u32).into()
}
Cookie::SchemaVersion => {
// we update transaction state to indicate that the schema has changed
match program.connection.transaction_state.get() {
TransactionState::Write { schema_did_change } => {
program.connection.transaction_state.set(TransactionState::Write { schema_did_change: true });
},
TransactionState::Read => unreachable!("invalid transaction state for SetCookie: TransactionState::Read, should be write"),
TransactionState::None => unreachable!("invalid transaction state for SetCookie: TransactionState::None, should be write"),
TransactionState::PendingUpgrade => unreachable!("invalid transaction state for SetCookie: TransactionState::PendingUpgrade, should be write"),
}
program
.connection
.with_schema_mut(|schema| schema.schema_version = *value as u32);
header.schema_cookie = (*value as u32).into();
}
cookie => todo!("{cookie:?} is not yet implement for SetCookie"),
};
}));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_shift_right(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(ShiftRight { lhs, rhs, dest }, insn);
state.registers[*dest] = Register::Value(
state.registers[*lhs]
.get_value()
.exec_shift_right(state.registers[*rhs].get_value()),
);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_shift_left(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(ShiftLeft { lhs, rhs, dest }, insn);
state.registers[*dest] = Register::Value(
state.registers[*lhs]
.get_value()
.exec_shift_left(state.registers[*rhs].get_value()),
);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_add_imm(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(AddImm { register, value }, insn);
let current = &state.registers[*register];
let current_value = match current {
Register::Value(val) => val,
Register::Aggregate(_) => &Value::Null,
Register::Record(_) => &Value::Null,
};
let int_val = match current_value {
Value::Integer(i) => i + value,
Value::Float(f) => (*f as i64) + value,
Value::Text(s) => s.as_str().parse::<i64>().unwrap_or(0) + value,
Value::Blob(_) => *value, // BLOB becomes the added value
Value::Null => *value, // NULL becomes the added value
};
state.registers[*register] = Register::Value(Value::Integer(int_val));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_variable(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Variable { index, dest }, insn);
state.registers[*dest] = Register::Value(state.get_parameter(*index));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_zero_or_null(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(ZeroOrNull { rg1, rg2, dest }, insn);
if state.registers[*rg1].is_null() || state.registers[*rg2].is_null() {
state.registers[*dest] = Register::Value(Value::Null)
} else {
state.registers[*dest] = Register::Value(Value::Integer(0));
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_not(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Not { reg, dest }, insn);
state.registers[*dest] = Register::Value(state.registers[*reg].get_value().exec_boolean_not());
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_concat(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Concat { lhs, rhs, dest }, insn);
state.registers[*dest] = Register::Value(
state.registers[*lhs]
.get_value()
.exec_concat(state.registers[*rhs].get_value()),
);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_and(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(And { lhs, rhs, dest }, insn);
state.registers[*dest] = Register::Value(
state.registers[*lhs]
.get_value()
.exec_and(state.registers[*rhs].get_value()),
);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_or(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Or { lhs, rhs, dest }, insn);
state.registers[*dest] = Register::Value(
state.registers[*lhs]
.get_value()
.exec_or(state.registers[*rhs].get_value()),
);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_noop(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
// Do nothing
// Advance the program counter for the next opcode
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
#[derive(Default)]
pub enum OpOpenEphemeralState {
#[default]
Start,
StartingTxn {
pager: Rc<Pager>,
},
CreateBtree {
pager: Rc<Pager>,
},
// clippy complains this variant is too big when compared to the rest of the variants
// so it says we need to box it here
Rewind {
cursor: Box<BTreeCursor>,
},
}
pub fn op_open_ephemeral(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
let (cursor_id, is_table) = match insn {
Insn::OpenEphemeral {
cursor_id,
is_table,
} => (*cursor_id, *is_table),
Insn::OpenAutoindex { cursor_id } => (*cursor_id, false),
_ => unreachable!("unexpected Insn {:?}", insn),
};
match &mut state.op_open_ephemeral_state {
OpOpenEphemeralState::Start => {
tracing::trace!("Start");
let conn = program.connection.clone();
let io = conn.pager.borrow().io.clone();
let rand_num = io.generate_random_number();
let temp_dir = temp_dir();
let rand_path =
std::path::Path::new(&temp_dir).join(format!("tursodb-ephemeral-{rand_num}"));
let Some(rand_path_str) = rand_path.to_str() else {
return Err(LimboError::InternalError(
"Failed to convert path to string".to_string(),
));
};
let file = io.open_file(rand_path_str, OpenFlags::Create, false)?;
let db_file = Arc::new(DatabaseFile::new(file));
let page_size = pager
.io
.block(|| pager.with_header(|header| header.page_size))?
.get();
let buffer_pool = program.connection._db.buffer_pool.clone();
let page_cache = Arc::new(RwLock::new(DumbLruPageCache::default()));
let pager = Rc::new(Pager::new(
db_file,
None,
io,
page_cache,
buffer_pool.clone(),
Arc::new(AtomicDbState::new(DbState::Uninitialized)),
Arc::new(Mutex::new(())),
)?);
let page_size = pager
.io
.block(|| pager.with_header(|header| header.page_size))
.unwrap_or_default();
pager.page_size.set(Some(page_size));
state.op_open_ephemeral_state = OpOpenEphemeralState::StartingTxn { pager };
}
OpOpenEphemeralState::StartingTxn { pager } => {
tracing::trace!("StartingTxn");
pager
.begin_read_tx() // we have to begin a read tx before beginning a write
.expect("Failed to start read transaction");
return_if_io!(pager.begin_write_tx());
state.op_open_ephemeral_state = OpOpenEphemeralState::CreateBtree {
pager: pager.clone(),
};
}
OpOpenEphemeralState::CreateBtree { pager } => {
tracing::trace!("CreateBtree");
// FIXME: handle page cache is full
let flag = if is_table {
&CreateBTreeFlags::new_table()
} else {
&CreateBTreeFlags::new_index()
};
let root_page = return_if_io!(pager.btree_create(flag));
let (_, cursor_type) = program.cursor_ref.get(cursor_id).unwrap();
let mv_cursor = match program.connection.mv_tx_id.get() {
Some(tx_id) => {
let table_id = root_page as u64;
let mv_store = mv_store.unwrap().clone();
let mv_cursor = Rc::new(RefCell::new(
MvCursor::new(mv_store.clone(), tx_id, table_id, pager.clone()).unwrap(),
));
Some(mv_cursor)
}
None => None,
};
let num_columns = match cursor_type {
CursorType::BTreeTable(table_rc) => table_rc.columns.len(),
CursorType::BTreeIndex(index_arc) => index_arc.columns.len(),
_ => unreachable!("This should not have happened"),
};
let cursor = if let CursorType::BTreeIndex(index) = cursor_type {
BTreeCursor::new_index(
mv_cursor,
pager.clone(),
root_page as usize,
index,
num_columns,
)
} else {
BTreeCursor::new_table(mv_cursor, pager.clone(), root_page as usize, num_columns)
};
state.op_open_ephemeral_state = OpOpenEphemeralState::Rewind {
cursor: Box::new(cursor),
};
}
OpOpenEphemeralState::Rewind { cursor } => {
return_if_io!(cursor.rewind());
let mut cursors: std::cell::RefMut<'_, Vec<Option<Cursor>>> =
state.cursors.borrow_mut();
let (_, cursor_type) = program.cursor_ref.get(cursor_id).unwrap();
let OpOpenEphemeralState::Rewind { cursor } =
std::mem::take(&mut state.op_open_ephemeral_state)
else {
unreachable!()
};
// Table content is erased if the cursor already exists
match cursor_type {
CursorType::BTreeTable(_) => {
cursors
.get_mut(cursor_id)
.unwrap()
.replace(Cursor::new_btree(*cursor));
}
CursorType::BTreeIndex(_) => {
cursors
.get_mut(cursor_id)
.unwrap()
.replace(Cursor::new_btree(*cursor));
}
CursorType::Pseudo(_) => {
panic!("OpenEphemeral on pseudo cursor");
}
CursorType::Sorter => {
panic!("OpenEphemeral on sorter cursor");
}
CursorType::VirtualTable(_) => {
panic!("OpenEphemeral on virtual table cursor, use Insn::VOpen instead");
}
CursorType::MaterializedView(_, _) => {
panic!("OpenEphemeral on materialized view cursor");
}
}
state.pc += 1;
state.op_open_ephemeral_state = OpOpenEphemeralState::Start;
}
}
Ok(InsnFunctionStepResult::Step)
}
/// Execute the [Insn::Once] instruction.
///
/// This instruction is used to execute a block of code only once.
/// If the instruction is executed again, it will jump to the target program counter.
pub fn op_once(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Once {
target_pc_when_reentered,
},
insn
);
assert!(target_pc_when_reentered.is_offset());
let offset = state.pc;
if state.once.iter().any(|o| o == offset) {
state.pc = target_pc_when_reentered.as_offset_int();
return Ok(InsnFunctionStepResult::Step);
}
state.once.push(offset);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_found(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
let (cursor_id, target_pc, record_reg, num_regs) = match insn {
Insn::NotFound {
cursor_id,
target_pc,
record_reg,
num_regs,
} => (cursor_id, target_pc, record_reg, num_regs),
Insn::Found {
cursor_id,
target_pc,
record_reg,
num_regs,
} => (cursor_id, target_pc, record_reg, num_regs),
_ => unreachable!("unexpected Insn {:?}", insn),
};
let not = matches!(insn, Insn::NotFound { .. });
let record_source = if *num_regs == 0 {
RecordSource::Packed {
record_reg: *record_reg,
}
} else {
RecordSource::Unpacked {
start_reg: *record_reg,
num_regs: *num_regs,
}
};
let seek_result = match seek_internal(
program,
state,
pager,
mv_store,
record_source,
*cursor_id,
true,
SeekOp::GE { eq_only: true },
) {
Ok(SeekInternalResult::Found) => SeekResult::Found,
Ok(SeekInternalResult::NotFound) => SeekResult::NotFound,
Ok(SeekInternalResult::IO(io)) => return Ok(InsnFunctionStepResult::IO(io)),
Err(e) => return Err(e),
};
let found = matches!(seek_result, SeekResult::Found);
let do_jump = (!found && not) || (found && !not);
if do_jump {
state.pc = target_pc.as_offset_int();
} else {
state.pc += 1;
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_affinity(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Affinity {
start_reg,
count,
affinities,
},
insn
);
if affinities.len() != count.get() {
return Err(LimboError::InternalError(
"Affinity: the length of affinities does not match the count".into(),
));
}
for (i, affinity_char) in affinities.chars().enumerate().take(count.get()) {
let reg_index = *start_reg + i;
let affinity = Affinity::from_char(affinity_char)?;
apply_affinity_char(&mut state.registers[reg_index], affinity);
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_count(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
Count {
cursor_id,
target_reg,
exact,
},
insn
);
let count = {
let mut cursor = must_be_btree_cursor!(*cursor_id, program.cursor_ref, state, "Count");
let cursor = cursor.as_btree_mut();
return_if_io!(cursor.count())
};
state.registers[*target_reg] = Register::Value(Value::Integer(count as i64));
// For optimized COUNT(*) queries, the count represents rows that would be read
// SQLite tracks this differently (as pages read), but for consistency we track as rows
if *exact {
state.metrics.rows_read = state.metrics.rows_read.saturating_add(count as u64);
}
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
#[derive(Debug)]
pub enum OpIntegrityCheckState {
Start,
Checking {
errors: Vec<IntegrityCheckError>,
current_root_idx: usize,
state: IntegrityCheckState,
},
}
pub fn op_integrity_check(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
IntegrityCk {
max_errors,
roots,
message_register,
},
insn
);
match &mut state.op_integrity_check_state {
OpIntegrityCheckState::Start => {
let freelist_trunk_page =
return_if_io!(pager.with_header(|header| header.freelist_trunk_page.get()));
let mut errors = Vec::new();
let mut integrity_check_state = IntegrityCheckState::new();
let mut current_root_idx = 0;
// check freelist pages first, if there are any for database
if freelist_trunk_page > 0 {
integrity_check_state.start(
freelist_trunk_page as usize,
PageCategory::FreeListTrunk,
&mut errors,
);
} else {
integrity_check_state.start(roots[0], PageCategory::Normal, &mut errors);
current_root_idx += 1;
}
state.op_integrity_check_state = OpIntegrityCheckState::Checking {
errors,
state: integrity_check_state,
current_root_idx,
};
}
OpIntegrityCheckState::Checking {
errors,
current_root_idx,
state: integrity_check_state,
} => {
return_if_io!(integrity_check(integrity_check_state, errors, pager));
if *current_root_idx < roots.len() {
integrity_check_state.start(roots[*current_root_idx], PageCategory::Normal, errors);
*current_root_idx += 1;
return Ok(InsnFunctionStepResult::Step);
} else {
let message = if errors.is_empty() {
"ok".to_string()
} else {
errors
.iter()
.map(|e| e.to_string())
.collect::<Vec<String>>()
.join("\n")
};
state.registers[*message_register] = Register::Value(Value::build_text(message));
state.op_integrity_check_state = OpIntegrityCheckState::Start;
state.pc += 1;
}
}
}
Ok(InsnFunctionStepResult::Step)
}
pub fn op_cast(
_program: &Program,
state: &mut ProgramState,
insn: &Insn,
_pager: &Rc<Pager>,
_mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(Cast { reg, affinity }, insn);
let value = state.registers[*reg].get_value().clone();
let result = match affinity {
Affinity::Blob => value.exec_cast("BLOB"),
Affinity::Text => value.exec_cast("TEXT"),
Affinity::Numeric => value.exec_cast("NUMERIC"),
Affinity::Integer => value.exec_cast("INTEGER"),
Affinity::Real => value.exec_cast("REAL"),
};
state.registers[*reg] = Register::Value(result);
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_rename_table(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(RenameTable { from, to }, insn);
let conn = program.connection.clone();
conn.with_schema_mut(|schema| {
if let Some(mut indexes) = schema.indexes.remove(from) {
indexes.iter_mut().for_each(|index| {
let index = Arc::make_mut(index);
index.table_name = to.to_owned();
});
schema.indexes.insert(to.to_owned(), indexes);
};
let mut table = schema
.tables
.remove(from)
.expect("table being renamed should be in schema");
{
let table = Arc::make_mut(&mut table);
let Table::BTree(btree) = table else {
panic!("only btree tables can be renamed");
};
let btree = Arc::make_mut(btree);
btree.name = to.to_owned();
}
schema.tables.insert(to.to_owned(), table);
});
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_drop_column(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
DropColumn {
table,
column_index
},
insn
);
let conn = program.connection.clone();
conn.with_schema_mut(|schema| {
let table = schema
.tables
.get_mut(table)
.expect("table being renamed should be in schema");
let table = Arc::make_mut(table);
let Table::BTree(btree) = table else {
panic!("only btree tables can be renamed");
};
let btree = Arc::make_mut(btree);
btree.columns.remove(*column_index)
});
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_add_column(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(AddColumn { table, column }, insn);
let conn = program.connection.clone();
conn.with_schema_mut(|schema| {
let table = schema
.tables
.get_mut(table)
.expect("table being renamed should be in schema");
let table = Arc::make_mut(table);
let Table::BTree(btree) = table else {
panic!("only btree tables can be renamed");
};
let btree = Arc::make_mut(btree);
btree.columns.push(column.clone())
});
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_alter_column(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(
AlterColumn {
table: table_name,
column_index,
definition,
rename,
},
insn
);
let conn = program.connection.clone();
let new_column = crate::schema::Column::from(definition);
conn.with_schema_mut(|schema| {
let table = schema
.tables
.get_mut(table_name)
.expect("table being renamed should be in schema");
let table = Arc::make_mut(table);
let Table::BTree(btree) = table else {
panic!("only btree tables can be renamed");
};
let btree = Arc::make_mut(btree);
let column = btree
.columns
.get_mut(*column_index)
.expect("renamed column should be in schema");
if let Some(indexes) = schema.indexes.get_mut(table_name) {
for index in indexes {
let index = Arc::make_mut(index);
for index_column in &mut index.columns {
if index_column.name
== *column.name.as_ref().expect("btree column should be named")
{
index_column.name = definition.col_name.as_str().to_owned();
}
}
}
}
if *rename {
column.name = new_column.name;
} else {
*column = new_column;
}
});
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_if_neg(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(IfNeg { reg, target_pc }, insn);
match &state.registers[*reg] {
Register::Value(Value::Integer(i)) if *i < 0 => {
state.pc = target_pc.as_offset_int();
}
Register::Value(Value::Float(f)) if *f < 0.0 => {
state.pc = target_pc.as_offset_int();
}
Register::Value(Value::Null) => {
state.pc += 1;
}
_ => {
state.pc += 1;
}
}
Ok(InsnFunctionStepResult::Step)
}
impl Value {
pub fn exec_lower(&self) -> Option<Self> {
match self {
Value::Text(t) => Some(Value::build_text(t.as_str().to_lowercase())),
t => Some(t.to_owned()),
}
}
pub fn exec_length(&self) -> Self {
match self {
Value::Text(t) => {
// Count Unicode scalar values (characters)
Value::Integer(t.as_str().chars().count() as i64)
}
Value::Integer(_) | Value::Float(_) => {
// For numbers, SQLite returns the length of the string representation
Value::Integer(self.to_string().chars().count() as i64)
}
Value::Blob(blob) => Value::Integer(blob.len() as i64),
_ => self.to_owned(),
}
}
pub fn exec_octet_length(&self) -> Self {
match self {
Value::Text(_) | Value::Integer(_) | Value::Float(_) => {
Value::Integer(self.to_string().into_bytes().len() as i64)
}
Value::Blob(blob) => Value::Integer(blob.len() as i64),
_ => self.to_owned(),
}
}
pub fn exec_upper(&self) -> Option<Self> {
match self {
Value::Text(t) => Some(Value::build_text(t.as_str().to_uppercase())),
t => Some(t.to_owned()),
}
}
pub fn exec_sign(&self) -> Option<Value> {
let num = match self {
Value::Integer(i) => *i as f64,
Value::Float(f) => *f,
Value::Text(s) => {
if let Ok(i) = s.as_str().parse::<i64>() {
i as f64
} else if let Ok(f) = s.as_str().parse::<f64>() {
f
} else {
return Some(Value::Null);
}
}
Value::Blob(b) => match std::str::from_utf8(b) {
Ok(s) => {
if let Ok(i) = s.parse::<i64>() {
i as f64
} else if let Ok(f) = s.parse::<f64>() {
f
} else {
return Some(Value::Null);
}
}
Err(_) => return Some(Value::Null),
},
_ => return Some(Value::Null),
};
let sign = if num > 0.0 {
1
} else if num < 0.0 {
-1
} else {
0
};
Some(Value::Integer(sign))
}
/// Generates the Soundex code for a given word
pub fn exec_soundex(&self) -> Value {
let s = match self {
Value::Null => return Value::build_text("?000"),
Value::Text(s) => {
// return ?000 if non ASCII alphabet character is found
if !s.as_str().chars().all(|c| c.is_ascii_alphabetic()) {
return Value::build_text("?000");
}
s.clone()
}
_ => return Value::build_text("?000"), // For unsupported types, return NULL
};
// Remove numbers and spaces
let word: String = s
.as_str()
.chars()
.filter(|c| !c.is_ascii_digit())
.collect::<String>()
.replace(" ", "");
if word.is_empty() {
return Value::build_text("0000");
}
let soundex_code = |c| match c {
'b' | 'f' | 'p' | 'v' => Some('1'),
'c' | 'g' | 'j' | 'k' | 'q' | 's' | 'x' | 'z' => Some('2'),
'd' | 't' => Some('3'),
'l' => Some('4'),
'm' | 'n' => Some('5'),
'r' => Some('6'),
_ => None,
};
// Convert the word to lowercase for consistent lookups
let word = word.to_lowercase();
let first_letter = word.chars().next().unwrap();
// Remove all occurrences of 'h' and 'w' except the first letter
let code: String = word
.chars()
.skip(1)
.filter(|&ch| ch != 'h' && ch != 'w')
.fold(first_letter.to_string(), |mut acc, ch| {
acc.push(ch);
acc
});
// Replace consonants with digits based on Soundex mapping
let tmp: String = code
.chars()
.map(|ch| match soundex_code(ch) {
Some(code) => code.to_string(),
None => ch.to_string(),
})
.collect();
// Remove adjacent same digits
let tmp = tmp.chars().fold(String::new(), |mut acc, ch| {
if !acc.ends_with(ch) {
acc.push(ch);
}
acc
});
// Remove all occurrences of a, e, i, o, u, y except the first letter
let mut result = tmp
.chars()
.enumerate()
.filter(|(i, ch)| *i == 0 || !matches!(ch, 'a' | 'e' | 'i' | 'o' | 'u' | 'y'))
.map(|(_, ch)| ch)
.collect::<String>();
// If the first symbol is a digit, replace it with the saved first letter
if let Some(first_digit) = result.chars().next() {
if first_digit.is_ascii_digit() {
result.replace_range(0..1, &first_letter.to_string());
}
}
// Append zeros if the result contains less than 4 characters
while result.len() < 4 {
result.push('0');
}
// Retain the first 4 characters and convert to uppercase
result.truncate(4);
Value::build_text(result.to_uppercase())
}
pub fn exec_abs(&self) -> Result<Self> {
match self {
Value::Integer(x) => {
match i64::checked_abs(*x) {
Some(y) => Ok(Value::Integer(y)),
// Special case: if we do the abs of "-9223372036854775808", it causes overflow.
// return IntegerOverflow error
None => Err(LimboError::IntegerOverflow),
}
}
Value::Float(x) => {
if x < &0.0 {
Ok(Value::Float(-x))
} else {
Ok(Value::Float(*x))
}
}
Value::Null => Ok(Value::Null),
_ => Ok(Value::Float(0.0)),
}
}
pub fn exec_random() -> Self {
let mut buf = [0u8; 8];
getrandom::getrandom(&mut buf).unwrap();
let random_number = i64::from_ne_bytes(buf);
Value::Integer(random_number)
}
pub fn exec_randomblob(&self) -> Value {
let length = match self {
Value::Integer(i) => *i,
Value::Float(f) => *f as i64,
Value::Text(t) => t.as_str().parse().unwrap_or(1),
_ => 1,
}
.max(1) as usize;
let mut blob: Vec<u8> = vec![0; length];
getrandom::getrandom(&mut blob).expect("Failed to generate random blob");
Value::Blob(blob)
}
pub fn exec_quote(&self) -> Self {
match self {
Value::Null => Value::build_text("NULL"),
Value::Integer(_) | Value::Float(_) => self.to_owned(),
Value::Blob(_) => todo!(),
Value::Text(s) => {
let mut quoted = String::with_capacity(s.as_str().len() + 2);
quoted.push('\'');
for c in s.as_str().chars() {
if c == '\0' {
break;
} else if c == '\'' {
quoted.push('\'');
quoted.push(c);
} else {
quoted.push(c);
}
}
quoted.push('\'');
Value::build_text(quoted)
}
}
}
pub fn exec_nullif(&self, second_value: &Self) -> Self {
if self != second_value {
self.clone()
} else {
Value::Null
}
}
pub fn exec_substring(
str_value: &Value,
start_value: &Value,
length_value: Option<&Value>,
) -> Value {
if let (Value::Text(str), Value::Integer(start)) = (str_value, start_value) {
let str_len = str.as_str().len() as i64;
// The left-most character of X is number 1.
// If Y is negative then the first character of the substring is found by counting from the right rather than the left.
let first_position = if *start < 0 {
str_len.saturating_sub((*start).abs())
} else {
*start - 1
};
// If Z is negative then the abs(Z) characters preceding the Y-th character are returned.
let last_position = match length_value {
Some(Value::Integer(length)) => first_position + *length,
_ => str_len,
};
let (start, end) = if first_position <= last_position {
(first_position, last_position)
} else {
(last_position, first_position)
};
Value::build_text(
&str.as_str()[start.clamp(-0, str_len) as usize..end.clamp(0, str_len) as usize],
)
} else {
Value::Null
}
}
pub fn exec_instr(&self, pattern: &Value) -> Value {
if self == &Value::Null || pattern == &Value::Null {
return Value::Null;
}
if let (Value::Blob(reg), Value::Blob(pattern)) = (self, pattern) {
let result = reg
.windows(pattern.len())
.position(|window| window == *pattern)
.map_or(0, |i| i + 1);
return Value::Integer(result as i64);
}
let reg_str;
let reg = match self {
Value::Text(s) => s.as_str(),
_ => {
reg_str = self.to_string();
reg_str.as_str()
}
};
let pattern_str;
let pattern = match pattern {
Value::Text(s) => s.as_str(),
_ => {
pattern_str = pattern.to_string();
pattern_str.as_str()
}
};
match reg.find(pattern) {
Some(position) => Value::Integer(position as i64 + 1),
None => Value::Integer(0),
}
}
pub fn exec_typeof(&self) -> Value {
match self {
Value::Null => Value::build_text("null"),
Value::Integer(_) => Value::build_text("integer"),
Value::Float(_) => Value::build_text("real"),
Value::Text(_) => Value::build_text("text"),
Value::Blob(_) => Value::build_text("blob"),
}
}
pub fn exec_hex(&self) -> Value {
match self {
Value::Text(_) | Value::Integer(_) | Value::Float(_) => {
let text = self.to_string();
Value::build_text(hex::encode_upper(text))
}
Value::Blob(blob_bytes) => Value::build_text(hex::encode_upper(blob_bytes)),
_ => Value::Null,
}
}
pub fn exec_unhex(&self, ignored_chars: Option<&Value>) -> Value {
match self {
Value::Null => Value::Null,
_ => match ignored_chars {
None => match hex::decode(self.to_string()) {
Ok(bytes) => Value::Blob(bytes),
Err(_) => Value::Null,
},
Some(ignore) => match ignore {
Value::Text(_) => {
let pat = ignore.to_string();
let trimmed = self
.to_string()
.trim_start_matches(|x| pat.contains(x))
.trim_end_matches(|x| pat.contains(x))
.to_string();
match hex::decode(trimmed) {
Ok(bytes) => Value::Blob(bytes),
Err(_) => Value::Null,
}
}
_ => Value::Null,
},
},
}
}
pub fn exec_unicode(&self) -> Value {
match self {
Value::Text(_) | Value::Integer(_) | Value::Float(_) | Value::Blob(_) => {
let text = self.to_string();
if let Some(first_char) = text.chars().next() {
Value::Integer(first_char as u32 as i64)
} else {
Value::Null
}
}
_ => Value::Null,
}
}
fn _to_float(&self) -> f64 {
match self {
Value::Text(x) => match cast_text_to_numeric(x.as_str()) {
Value::Integer(i) => i as f64,
Value::Float(f) => f,
_ => unreachable!(),
},
Value::Integer(x) => *x as f64,
Value::Float(x) => *x,
_ => 0.0,
}
}
pub fn exec_round(&self, precision: Option<&Value>) -> Value {
let reg = self._to_float();
let round = |reg: f64, f: f64| {
let precision = if f < 1.0 { 0.0 } else { f };
Value::Float(reg.round_to_precision(precision as i32))
};
match precision {
Some(Value::Text(x)) => match cast_text_to_numeric(x.as_str()) {
Value::Integer(i) => round(reg, i as f64),
Value::Float(f) => round(reg, f),
_ => unreachable!(),
},
Some(Value::Integer(i)) => round(reg, *i as f64),
Some(Value::Float(f)) => round(reg, *f),
None => round(reg, 0.0),
_ => Value::Null,
}
}
// Implements TRIM pattern matching.
pub fn exec_trim(&self, pattern: Option<&Value>) -> Value {
match (self, pattern) {
(reg, Some(pattern)) => match reg {
Value::Text(_) | Value::Integer(_) | Value::Float(_) => {
let pattern_chars: Vec<char> = pattern.to_string().chars().collect();
Value::build_text(reg.to_string().trim_matches(&pattern_chars[..]))
}
_ => reg.to_owned(),
},
(Value::Text(t), None) => Value::build_text(t.as_str().trim()),
(reg, _) => reg.to_owned(),
}
}
// Implements RTRIM pattern matching.
pub fn exec_rtrim(&self, pattern: Option<&Value>) -> Value {
match (self, pattern) {
(reg, Some(pattern)) => match reg {
Value::Text(_) | Value::Integer(_) | Value::Float(_) => {
let pattern_chars: Vec<char> = pattern.to_string().chars().collect();
Value::build_text(reg.to_string().trim_end_matches(&pattern_chars[..]))
}
_ => reg.to_owned(),
},
(Value::Text(t), None) => Value::build_text(t.as_str().trim_end()),
(reg, _) => reg.to_owned(),
}
}
// Implements LTRIM pattern matching.
pub fn exec_ltrim(&self, pattern: Option<&Value>) -> Value {
match (self, pattern) {
(reg, Some(pattern)) => match reg {
Value::Text(_) | Value::Integer(_) | Value::Float(_) => {
let pattern_chars: Vec<char> = pattern.to_string().chars().collect();
Value::build_text(reg.to_string().trim_start_matches(&pattern_chars[..]))
}
_ => reg.to_owned(),
},
(Value::Text(t), None) => Value::build_text(t.as_str().trim_start()),
(reg, _) => reg.to_owned(),
}
}
pub fn exec_zeroblob(&self) -> Value {
let length: i64 = match self {
Value::Integer(i) => *i,
Value::Float(f) => *f as i64,
Value::Text(s) => s.as_str().parse().unwrap_or(0),
_ => 0,
};
Value::Blob(vec![0; length.max(0) as usize])
}
// exec_if returns whether you should jump
pub fn exec_if(&self, jump_if_null: bool, not: bool) -> bool {
Numeric::from(self)
.try_into_bool()
.map(|jump| if not { !jump } else { jump })
.unwrap_or(jump_if_null)
}
pub fn exec_cast(&self, datatype: &str) -> Value {
if matches!(self, Value::Null) {
return Value::Null;
}
match affinity(datatype) {
// NONE Casting a value to a type-name with no affinity causes the value to be converted into a BLOB. Casting to a BLOB consists of first casting the value to TEXT in the encoding of the database connection, then interpreting the resulting byte sequence as a BLOB instead of as TEXT.
// Historically called NONE, but it's the same as BLOB
Affinity::Blob => {
// Convert to TEXT first, then interpret as BLOB
// TODO: handle encoding
let text = self.to_string();
Value::Blob(text.into_bytes())
}
// TEXT To cast a BLOB value to TEXT, the sequence of bytes that make up the BLOB is interpreted as text encoded using the database encoding.
// Casting an INTEGER or REAL value into TEXT renders the value as if via sqlite3_snprintf() except that the resulting TEXT uses the encoding of the database connection.
Affinity::Text => {
// Convert everything to text representation
// TODO: handle encoding and whatever sqlite3_snprintf does
Value::build_text(self.to_string())
}
Affinity::Real => match self {
Value::Blob(b) => {
// Convert BLOB to TEXT first
let text = String::from_utf8_lossy(b);
cast_text_to_real(&text)
}
Value::Text(t) => cast_text_to_real(t.as_str()),
Value::Integer(i) => Value::Float(*i as f64),
Value::Float(f) => Value::Float(*f),
_ => Value::Float(0.0),
},
Affinity::Integer => match self {
Value::Blob(b) => {
// Convert BLOB to TEXT first
let text = String::from_utf8_lossy(b);
cast_text_to_integer(&text)
}
Value::Text(t) => cast_text_to_integer(t.as_str()),
Value::Integer(i) => Value::Integer(*i),
// A cast of a REAL value into an INTEGER results in the integer between the REAL value and zero
// that is closest to the REAL value. If a REAL is greater than the greatest possible signed integer (+9223372036854775807)
// then the result is the greatest possible signed integer and if the REAL is less than the least possible signed integer (-9223372036854775808)
// then the result is the least possible signed integer.
Value::Float(f) => {
let i = f.trunc() as i128;
if i > i64::MAX as i128 {
Value::Integer(i64::MAX)
} else if i < i64::MIN as i128 {
Value::Integer(i64::MIN)
} else {
Value::Integer(i as i64)
}
}
_ => Value::Integer(0),
},
Affinity::Numeric => match self {
Value::Blob(b) => {
let text = String::from_utf8_lossy(b);
cast_text_to_numeric(&text)
}
Value::Text(t) => cast_text_to_numeric(t.as_str()),
Value::Integer(i) => Value::Integer(*i),
Value::Float(f) => Value::Float(*f),
_ => self.clone(), // TODO probably wrong
},
}
}
pub fn exec_replace(source: &Value, pattern: &Value, replacement: &Value) -> Value {
// The replace(X,Y,Z) function returns a string formed by substituting string Z for every occurrence of
// string Y in string X. The BINARY collating sequence is used for comparisons. If Y is an empty string
// then return X unchanged. If Z is not initially a string, it is cast to a UTF-8 string prior to processing.
// If any of the arguments is NULL, the result is NULL.
if matches!(source, Value::Null)
|| matches!(pattern, Value::Null)
|| matches!(replacement, Value::Null)
{
return Value::Null;
}
let source = source.exec_cast("TEXT");
let pattern = pattern.exec_cast("TEXT");
let replacement = replacement.exec_cast("TEXT");
// If any of the casts failed, panic as text casting is not expected to fail.
match (&source, &pattern, &replacement) {
(Value::Text(source), Value::Text(pattern), Value::Text(replacement)) => {
if pattern.as_str().is_empty() {
return Value::Text(source.clone());
}
let result = source
.as_str()
.replace(pattern.as_str(), replacement.as_str());
Value::build_text(result)
}
_ => unreachable!("text cast should never fail"),
}
}
fn to_f64(&self) -> Option<f64> {
match self {
Value::Integer(i) => Some(*i as f64),
Value::Float(f) => Some(*f),
Value::Text(t) => t.as_str().parse::<f64>().ok(),
_ => None,
}
}
fn exec_math_unary(&self, function: &MathFunc) -> Value {
// In case of some functions and integer input, return the input as is
if let Value::Integer(_) = self {
if matches! { function, MathFunc::Ceil | MathFunc::Ceiling | MathFunc::Floor | MathFunc::Trunc }
{
return self.clone();
}
}
let f = match self.to_f64() {
Some(f) => f,
None => return Value::Null,
};
let result = match function {
MathFunc::Acos => libm::acos(f),
MathFunc::Acosh => libm::acosh(f),
MathFunc::Asin => libm::asin(f),
MathFunc::Asinh => libm::asinh(f),
MathFunc::Atan => libm::atan(f),
MathFunc::Atanh => libm::atanh(f),
MathFunc::Ceil | MathFunc::Ceiling => libm::ceil(f),
MathFunc::Cos => libm::cos(f),
MathFunc::Cosh => libm::cosh(f),
MathFunc::Degrees => f.to_degrees(),
MathFunc::Exp => libm::exp(f),
MathFunc::Floor => libm::floor(f),
MathFunc::Ln => libm::log(f),
MathFunc::Log10 => libm::log10(f),
MathFunc::Log2 => libm::log2(f),
MathFunc::Radians => f.to_radians(),
MathFunc::Sin => libm::sin(f),
MathFunc::Sinh => libm::sinh(f),
MathFunc::Sqrt => libm::sqrt(f),
MathFunc::Tan => libm::tan(f),
MathFunc::Tanh => libm::tanh(f),
MathFunc::Trunc => libm::trunc(f),
_ => unreachable!("Unexpected mathematical unary function {:?}", function),
};
if result.is_nan() {
Value::Null
} else {
Value::Float(result)
}
}
fn exec_math_binary(&self, rhs: &Value, function: &MathFunc) -> Value {
let lhs = match self.to_f64() {
Some(f) => f,
None => return Value::Null,
};
let rhs = match rhs.to_f64() {
Some(f) => f,
None => return Value::Null,
};
let result = match function {
MathFunc::Atan2 => libm::atan2(lhs, rhs),
MathFunc::Mod => libm::fmod(lhs, rhs),
MathFunc::Pow | MathFunc::Power => libm::pow(lhs, rhs),
_ => unreachable!("Unexpected mathematical binary function {:?}", function),
};
if result.is_nan() {
Value::Null
} else {
Value::Float(result)
}
}
fn exec_math_log(&self, base: Option<&Value>) -> Value {
let f = match self.to_f64() {
Some(f) => f,
None => return Value::Null,
};
let base = match base {
Some(base) => match base.to_f64() {
Some(f) => f,
None => return Value::Null,
},
None => 10.0,
};
if base == 2.0 {
return Value::Float(libm::log2(f));
} else if base == 10.0 {
return Value::Float(libm::log10(f));
};
if f <= 0.0 || base <= 0.0 || base == 1.0 {
return Value::Null;
}
let log_x = libm::log(f);
let log_base = libm::log(base);
let result = log_x / log_base;
Value::Float(result)
}
pub fn exec_add(&self, rhs: &Value) -> Value {
(Numeric::from(self) + Numeric::from(rhs)).into()
}
pub fn exec_subtract(&self, rhs: &Value) -> Value {
(Numeric::from(self) - Numeric::from(rhs)).into()
}
pub fn exec_multiply(&self, rhs: &Value) -> Value {
(Numeric::from(self) * Numeric::from(rhs)).into()
}
pub fn exec_divide(&self, rhs: &Value) -> Value {
(Numeric::from(self) / Numeric::from(rhs)).into()
}
pub fn exec_bit_and(&self, rhs: &Value) -> Value {
(NullableInteger::from(self) & NullableInteger::from(rhs)).into()
}
pub fn exec_bit_or(&self, rhs: &Value) -> Value {
(NullableInteger::from(self) | NullableInteger::from(rhs)).into()
}
pub fn exec_remainder(&self, rhs: &Value) -> Value {
let convert_to_float = matches!(Numeric::from(self), Numeric::Float(_))
|| matches!(Numeric::from(rhs), Numeric::Float(_));
match NullableInteger::from(self) % NullableInteger::from(rhs) {
NullableInteger::Null => Value::Null,
NullableInteger::Integer(v) => {
if convert_to_float {
Value::Float(v as f64)
} else {
Value::Integer(v)
}
}
}
}
pub fn exec_bit_not(&self) -> Value {
(!NullableInteger::from(self)).into()
}
pub fn exec_shift_left(&self, rhs: &Value) -> Value {
(NullableInteger::from(self) << NullableInteger::from(rhs)).into()
}
pub fn exec_shift_right(&self, rhs: &Value) -> Value {
(NullableInteger::from(self) >> NullableInteger::from(rhs)).into()
}
pub fn exec_boolean_not(&self) -> Value {
match Numeric::from(self).try_into_bool() {
None => Value::Null,
Some(v) => Value::Integer(!v as i64),
}
}
pub fn exec_concat(&self, rhs: &Value) -> Value {
match (self, rhs) {
(Value::Text(lhs_text), Value::Text(rhs_text)) => {
Value::build_text(lhs_text.as_str().to_string() + rhs_text.as_str())
}
(Value::Text(lhs_text), Value::Integer(rhs_int)) => {
Value::build_text(lhs_text.as_str().to_string() + &rhs_int.to_string())
}
(Value::Text(lhs_text), Value::Float(rhs_float)) => {
Value::build_text(lhs_text.as_str().to_string() + &rhs_float.to_string())
}
(Value::Integer(lhs_int), Value::Text(rhs_text)) => {
Value::build_text(lhs_int.to_string() + rhs_text.as_str())
}
(Value::Integer(lhs_int), Value::Integer(rhs_int)) => {
Value::build_text(lhs_int.to_string() + &rhs_int.to_string())
}
(Value::Integer(lhs_int), Value::Float(rhs_float)) => {
Value::build_text(lhs_int.to_string() + &rhs_float.to_string())
}
(Value::Float(lhs_float), Value::Text(rhs_text)) => {
Value::build_text(lhs_float.to_string() + rhs_text.as_str())
}
(Value::Float(lhs_float), Value::Integer(rhs_int)) => {
Value::build_text(lhs_float.to_string() + &rhs_int.to_string())
}
(Value::Float(lhs_float), Value::Float(rhs_float)) => {
Value::build_text(lhs_float.to_string() + &rhs_float.to_string())
}
(Value::Null, _) | (_, Value::Null) => Value::Null,
(Value::Blob(_), _) | (_, Value::Blob(_)) => {
todo!("TODO: Handle Blob conversion to String")
}
}
}
pub fn exec_and(&self, rhs: &Value) -> Value {
match (
Numeric::from(self).try_into_bool(),
Numeric::from(rhs).try_into_bool(),
) {
(Some(false), _) | (_, Some(false)) => Value::Integer(0),
(None, _) | (_, None) => Value::Null,
_ => Value::Integer(1),
}
}
pub fn exec_or(&self, rhs: &Value) -> Value {
match (
Numeric::from(self).try_into_bool(),
Numeric::from(rhs).try_into_bool(),
) {
(Some(true), _) | (_, Some(true)) => Value::Integer(1),
(None, _) | (_, None) => Value::Null,
_ => Value::Integer(0),
}
}
// Implements LIKE pattern matching. Caches the constructed regex if a cache is provided
pub fn exec_like(
regex_cache: Option<&mut HashMap<String, Regex>>,
pattern: &str,
text: &str,
) -> bool {
if let Some(cache) = regex_cache {
match cache.get(pattern) {
Some(re) => re.is_match(text),
None => {
let re = construct_like_regex(pattern);
let res = re.is_match(text);
cache.insert(pattern.to_string(), re);
res
}
}
} else {
let re = construct_like_regex(pattern);
re.is_match(text)
}
}
pub fn exec_min<'a, T: Iterator<Item = &'a Value>>(regs: T) -> Value {
regs.min().map(|v| v.to_owned()).unwrap_or(Value::Null)
}
pub fn exec_max<'a, T: Iterator<Item = &'a Value>>(regs: T) -> Value {
regs.max().map(|v| v.to_owned()).unwrap_or(Value::Null)
}
}
fn exec_concat_strings(registers: &[Register]) -> Value {
let mut result = String::new();
for reg in registers {
match reg.get_value() {
Value::Null => continue,
Value::Blob(_) => todo!("TODO concat blob"),
v => result.push_str(&format!("{v}")),
}
}
Value::build_text(result)
}
fn exec_concat_ws(registers: &[Register]) -> Value {
if registers.is_empty() {
return Value::Null;
}
let separator = match registers[0].get_value() {
Value::Null | Value::Blob(_) => return Value::Null,
v => format!("{v}"),
};
let parts = registers[1..]
.iter()
.filter_map(|reg| match reg.get_value() {
Value::Text(_) | Value::Integer(_) | Value::Float(_) => {
Some(format!("{}", reg.get_value()))
}
_ => None,
});
let result = parts.collect::<Vec<_>>().join(&separator);
Value::build_text(result)
}
fn exec_char(values: &[Register]) -> Value {
let result: String = values
.iter()
.filter_map(|x| {
if let Value::Integer(i) = x.get_value() {
Some(*i as u8 as char)
} else {
None
}
})
.collect();
Value::build_text(result)
}
fn construct_like_regex(pattern: &str) -> Regex {
let mut regex_pattern = String::with_capacity(pattern.len() * 2);
regex_pattern.push('^');
for c in pattern.chars() {
match c {
'\\' => regex_pattern.push_str("\\\\"),
'%' => regex_pattern.push_str(".*"),
'_' => regex_pattern.push('.'),
ch => {
if regex_syntax::is_meta_character(c) {
regex_pattern.push('\\');
}
regex_pattern.push(ch);
}
}
}
regex_pattern.push('$');
RegexBuilder::new(&regex_pattern)
.case_insensitive(true)
.dot_matches_new_line(true)
.build()
.unwrap()
}
fn apply_affinity_char(target: &mut Register, affinity: Affinity) -> bool {
if let Register::Value(value) = target {
if matches!(value, Value::Blob(_)) {
return true;
}
match affinity {
Affinity::Blob => return true,
Affinity::Text => {
if matches!(value, Value::Text(_) | Value::Null) {
return true;
}
let text = value.to_string();
*value = Value::Text(text.into());
return true;
}
Affinity::Integer | Affinity::Numeric => {
if matches!(value, Value::Integer(_)) {
return true;
}
if !matches!(value, Value::Text(_) | Value::Float(_)) {
return true;
}
if let Value::Float(fl) = *value {
// For floats, try to convert to integer if it's exact
// This is similar to sqlite3VdbeIntegerAffinity
return try_float_to_integer_affinity(value, fl);
}
if let Value::Text(t) = value {
let text = t.as_str();
// Handle hex numbers - they shouldn't be converted
if text.starts_with("0x") {
return false;
}
// Try to parse as number (similar to applyNumericAffinity)
let Ok(num) = checked_cast_text_to_numeric(text) else {
return false;
};
match num {
Value::Integer(i) => {
*value = Value::Integer(i);
return true;
}
Value::Float(fl) => {
// For Numeric affinity, try to convert float to int if exact
if affinity == Affinity::Numeric {
return try_float_to_integer_affinity(value, fl);
} else {
*value = Value::Float(fl);
return true;
}
}
other => {
*value = other;
return true;
}
}
}
return false;
}
Affinity::Real => {
if let Value::Integer(i) = *value {
*value = Value::Float(i as f64);
return true;
}
if let Value::Text(t) = value {
let s = t.as_str();
if s.starts_with("0x") {
return false;
}
if let Ok(num) = checked_cast_text_to_numeric(s) {
*value = num;
return true;
} else {
return false;
}
}
return true;
}
}
}
true
}
fn try_float_to_integer_affinity(value: &mut Value, fl: f64) -> bool {
// Check if the float can be exactly represented as an integer
if let Ok(int_val) = cast_real_to_integer(fl) {
// Additional check: ensure round-trip conversion is exact
// and value is within safe bounds (similar to SQLite's checks)
if (int_val as f64) == fl && int_val > i64::MIN + 1 && int_val < i64::MAX - 1 {
*value = Value::Integer(int_val);
return true;
}
}
// If we can't convert to exact integer, keep as float for Numeric affinity
// but return false to indicate the conversion wasn't "complete"
*value = Value::Float(fl);
false
}
fn execute_sqlite_version(version_integer: i64) -> String {
let major = version_integer / 1_000_000;
let minor = (version_integer % 1_000_000) / 1_000;
let release = version_integer % 1_000;
format!("{major}.{minor}.{release}")
}
pub fn extract_int_value(value: &Value) -> i64 {
match value {
Value::Integer(i) => *i,
Value::Float(f) => {
// Use sqlite3RealToI64 equivalent
if *f < -9223372036854774784.0 {
i64::MIN
} else if *f > 9223372036854774784.0 {
i64::MAX
} else {
*f as i64
}
}
Value::Text(t) => {
// Try to parse as integer, return 0 if failed
t.as_str().parse::<i64>().unwrap_or(0)
}
Value::Blob(b) => {
// Try to parse blob as string then as integer
if let Ok(s) = std::str::from_utf8(b) {
s.parse::<i64>().unwrap_or(0)
} else {
0
}
}
Value::Null => 0,
}
}
#[derive(Debug, PartialEq)]
enum NumericParseResult {
NotNumeric, // not a valid number
PureInteger, // pure integer (entire string)
HasDecimalOrExp, // has decimal point or exponent (entire string)
ValidPrefixOnly, // valid prefix but not entire string
}
#[derive(Debug)]
enum ParsedNumber {
None,
Integer(i64),
Float(f64),
}
impl ParsedNumber {
fn as_integer(&self) -> Option<i64> {
match self {
ParsedNumber::Integer(i) => Some(*i),
_ => None,
}
}
fn as_float(&self) -> Option<f64> {
match self {
ParsedNumber::Float(f) => Some(*f),
_ => None,
}
}
}
fn try_for_float(text: &str) -> (NumericParseResult, ParsedNumber) {
let bytes = text.as_bytes();
if bytes.is_empty() {
return (NumericParseResult::NotNumeric, ParsedNumber::None);
}
let mut pos = 0;
let len = bytes.len();
while pos < len && is_space(bytes[pos]) {
pos += 1;
}
if pos >= len {
return (NumericParseResult::NotNumeric, ParsedNumber::None);
}
let start_pos = pos;
let mut sign = 1i64;
if bytes[pos] == b'-' {
sign = -1;
pos += 1;
} else if bytes[pos] == b'+' {
pos += 1;
}
if pos >= len {
return (NumericParseResult::NotNumeric, ParsedNumber::None);
}
let mut significand = 0u64;
let mut digit_count = 0;
let mut decimal_adjust = 0i32;
let mut has_digits = false;
// Parse digits before decimal point
while pos < len && bytes[pos].is_ascii_digit() {
has_digits = true;
let digit = (bytes[pos] - b'0') as u64;
if significand <= (u64::MAX - 9) / 10 {
significand = significand * 10 + digit;
digit_count += 1;
} else {
// Skip overflow digits but adjust exponent
decimal_adjust += 1;
}
pos += 1;
}
let mut has_decimal = false;
let mut has_exponent = false;
// Check for decimal point
if pos < len && bytes[pos] == b'.' {
has_decimal = true;
pos += 1;
// Parse fractional digits
while pos < len && bytes[pos].is_ascii_digit() {
has_digits = true;
let digit = (bytes[pos] - b'0') as u64;
if significand <= (u64::MAX - 9) / 10 {
significand = significand * 10 + digit;
digit_count += 1;
decimal_adjust -= 1;
}
pos += 1;
}
}
if !has_digits {
return (NumericParseResult::NotNumeric, ParsedNumber::None);
}
// Check for exponent
let mut exponent = 0i32;
if pos < len && (bytes[pos] == b'e' || bytes[pos] == b'E') {
has_exponent = true;
pos += 1;
if pos >= len {
// Incomplete exponent, but we have valid digits before
return create_result_from_significand(
significand,
sign,
decimal_adjust,
has_decimal,
has_exponent,
NumericParseResult::ValidPrefixOnly,
);
}
let mut exp_sign = 1i32;
if bytes[pos] == b'-' {
exp_sign = -1;
pos += 1;
} else if bytes[pos] == b'+' {
pos += 1;
}
if pos >= len || !bytes[pos].is_ascii_digit() {
// Incomplete exponent
return create_result_from_significand(
significand,
sign,
decimal_adjust,
has_decimal,
false,
NumericParseResult::ValidPrefixOnly,
);
}
// Parse exponent digits
while pos < len && bytes[pos].is_ascii_digit() {
let digit = (bytes[pos] - b'0') as i32;
if exponent < 10000 {
exponent = exponent * 10 + digit;
} else {
exponent = 10000; // Cap at large value
}
pos += 1;
}
exponent *= exp_sign;
}
// Skip trailing whitespace
while pos < len && is_space(bytes[pos]) {
pos += 1;
}
// Determine if we consumed the entire string
let consumed_all = pos >= len;
let final_exponent = decimal_adjust + exponent;
let parse_result = if !consumed_all {
NumericParseResult::ValidPrefixOnly
} else if has_decimal || has_exponent {
NumericParseResult::HasDecimalOrExp
} else {
NumericParseResult::PureInteger
};
create_result_from_significand(
significand,
sign,
final_exponent,
has_decimal,
has_exponent,
parse_result,
)
}
fn create_result_from_significand(
significand: u64,
sign: i64,
exponent: i32,
has_decimal: bool,
has_exponent: bool,
parse_result: NumericParseResult,
) -> (NumericParseResult, ParsedNumber) {
if significand == 0 {
match parse_result {
NumericParseResult::PureInteger => {
return (parse_result, ParsedNumber::Integer(0));
}
_ => {
return (parse_result, ParsedNumber::Float(0.0));
}
}
}
// For pure integers without exponent, try to return as integer
if !has_decimal && !has_exponent && exponent == 0 && significand <= i64::MAX as u64 {
let signed_val = (significand as i64).wrapping_mul(sign);
return (parse_result, ParsedNumber::Integer(signed_val));
}
// Convert to float
let mut result = significand as f64;
let mut exp = exponent;
match exp.cmp(&0) {
std::cmp::Ordering::Greater => {
while exp >= 100 {
result *= 1e100;
exp -= 100;
}
while exp >= 10 {
result *= 1e10;
exp -= 10;
}
while exp >= 1 {
result *= 10.0;
exp -= 1;
}
}
std::cmp::Ordering::Less => {
while exp <= -100 {
result *= 1e-100;
exp += 100;
}
while exp <= -10 {
result *= 1e-10;
exp += 10;
}
while exp <= -1 {
result *= 0.1;
exp += 1;
}
}
std::cmp::Ordering::Equal => {}
}
if sign < 0 {
result = -result;
}
(parse_result, ParsedNumber::Float(result))
}
pub fn is_space(byte: u8) -> bool {
matches!(byte, b' ' | b'\t' | b'\n' | b'\r' | b'\x0c')
}
fn real_to_i64(r: f64) -> i64 {
if r < -9223372036854774784.0 {
i64::MIN
} else if r > 9223372036854774784.0 {
i64::MAX
} else {
r as i64
}
}
fn apply_integer_affinity(register: &mut Register) -> bool {
let Register::Value(Value::Float(f)) = register else {
return false;
};
let ix = real_to_i64(*f);
// Only convert if round-trip is exact and not at extreme values
if *f == (ix as f64) && ix > i64::MIN && ix < i64::MAX {
*register = Register::Value(Value::Integer(ix));
true
} else {
false
}
}
/// Try to convert a value into a numeric representation if we can
/// do so without loss of information. In other words, if the string
/// looks like a number, convert it into a number. If it does not
/// look like a number, leave it alone.
pub fn apply_numeric_affinity(register: &mut Register, try_for_int: bool) -> bool {
let Register::Value(Value::Text(text)) = register else {
return false; // Only apply to text values
};
let text_str = text.as_str();
let (parse_result, parsed_value) = try_for_float(text_str);
// Only convert if we have a complete valid number (not just a prefix)
match parse_result {
NumericParseResult::NotNumeric | NumericParseResult::ValidPrefixOnly => {
false // Leave as text
}
NumericParseResult::PureInteger => {
if let Some(int_val) = parsed_value.as_integer() {
*register = Register::Value(Value::Integer(int_val));
true
} else if let Some(float_val) = parsed_value.as_float() {
*register = Register::Value(Value::Float(float_val));
if try_for_int {
apply_integer_affinity(register);
}
true
} else {
false
}
}
NumericParseResult::HasDecimalOrExp => {
if let Some(float_val) = parsed_value.as_float() {
*register = Register::Value(Value::Float(float_val));
// If try_for_int is true, try to convert float to int if exact
if try_for_int {
apply_integer_affinity(register);
}
true
} else {
false
}
}
}
}
fn is_numeric_value(reg: &Register) -> bool {
matches!(reg.get_value(), Value::Integer(_) | Value::Float(_))
}
fn stringify_register(reg: &mut Register) -> bool {
match reg.get_value() {
Value::Integer(i) => {
*reg = Register::Value(Value::build_text(i.to_string()));
true
}
Value::Float(f) => {
*reg = Register::Value(Value::build_text(f.to_string()));
true
}
Value::Text(_) | Value::Null | Value::Blob(_) => false,
}
}
pub fn op_max_pgcnt(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(MaxPgcnt { db, dest, new_max }, insn);
if *db > 0 {
return Err(LimboError::InternalError(
"temp/attached databases not implemented yet".to_string(),
));
}
let result_value = if *new_max == 0 {
// If new_max is 0, just return current maximum without changing it
pager.get_max_page_count()
} else {
// Set new maximum page count (will be clamped to current database size)
return_if_io!(pager.set_max_page_count(*new_max as u32))
};
state.registers[*dest] = Register::Value(Value::Integer(result_value.into()));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
pub fn op_journal_mode(
program: &Program,
state: &mut ProgramState,
insn: &Insn,
pager: &Rc<Pager>,
mv_store: Option<&Arc<MvStore>>,
) -> Result<InsnFunctionStepResult> {
load_insn!(JournalMode { db, dest, new_mode }, insn);
if *db > 0 {
return Err(LimboError::InternalError(
"temp/attached databases not implemented yet".to_string(),
));
}
// Currently, Turso only supports WAL mode
// If a new mode is specified, we validate it but always return "wal"
if let Some(mode) = new_mode {
let mode_bytes = mode.as_bytes();
// Valid journal modes in SQLite are: delete, truncate, persist, memory, wal, off
// We accept any valid mode but always use WAL
match_ignore_ascii_case!(match mode_bytes {
b"delete" | b"truncate" | b"persist" | b"memory" | b"wal" | b"off" => {
// Mode is valid, but we stay in WAL mode
}
_ => {
// Invalid journal mode
return Err(LimboError::ParseError(format!(
"Unknown journal mode: {mode}"
)));
}
})
}
// Always return "wal" as the current journal mode
state.registers[*dest] = Register::Value(Value::build_text("wal"));
state.pc += 1;
Ok(InsnFunctionStepResult::Step)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::types::Value;
#[test]
fn test_apply_numeric_affinity_partial_numbers() {
let mut reg = Register::Value(Value::Text("123abc".into()));
assert!(!apply_numeric_affinity(&mut reg, false));
assert!(matches!(reg, Register::Value(Value::Text(_))));
let mut reg = Register::Value(Value::Text("-53093015420544-15062897".into()));
assert!(!apply_numeric_affinity(&mut reg, false));
assert!(matches!(reg, Register::Value(Value::Text(_))));
let mut reg = Register::Value(Value::Text("123.45xyz".into()));
assert!(!apply_numeric_affinity(&mut reg, false));
assert!(matches!(reg, Register::Value(Value::Text(_))));
}
#[test]
fn test_apply_numeric_affinity_complete_numbers() {
let mut reg = Register::Value(Value::Text("123".into()));
assert!(apply_numeric_affinity(&mut reg, false));
assert_eq!(*reg.get_value(), Value::Integer(123));
let mut reg = Register::Value(Value::Text("123.45".into()));
assert!(apply_numeric_affinity(&mut reg, false));
assert_eq!(*reg.get_value(), Value::Float(123.45));
let mut reg = Register::Value(Value::Text(" -456 ".into()));
assert!(apply_numeric_affinity(&mut reg, false));
assert_eq!(*reg.get_value(), Value::Integer(-456));
let mut reg = Register::Value(Value::Text("0".into()));
assert!(apply_numeric_affinity(&mut reg, false));
assert_eq!(*reg.get_value(), Value::Integer(0));
}
#[test]
fn test_exec_add() {
let inputs = vec![
(Value::Integer(3), Value::Integer(1)),
(Value::Float(3.0), Value::Float(1.0)),
(Value::Float(3.0), Value::Integer(1)),
(Value::Integer(3), Value::Float(1.0)),
(Value::Null, Value::Null),
(Value::Null, Value::Integer(1)),
(Value::Null, Value::Float(1.0)),
(Value::Null, Value::Text("2".into())),
(Value::Integer(1), Value::Null),
(Value::Float(1.0), Value::Null),
(Value::Text("1".into()), Value::Null),
(Value::Text("1".into()), Value::Text("3".into())),
(Value::Text("1.0".into()), Value::Text("3.0".into())),
(Value::Text("1.0".into()), Value::Float(3.0)),
(Value::Text("1.0".into()), Value::Integer(3)),
(Value::Float(1.0), Value::Text("3.0".into())),
(Value::Integer(1), Value::Text("3".into())),
];
let outputs = [
Value::Integer(4),
Value::Float(4.0),
Value::Float(4.0),
Value::Float(4.0),
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Integer(4),
Value::Float(4.0),
Value::Float(4.0),
Value::Float(4.0),
Value::Float(4.0),
Value::Float(4.0),
];
assert_eq!(
inputs.len(),
outputs.len(),
"Inputs and Outputs should have same size"
);
for (i, (lhs, rhs)) in inputs.iter().enumerate() {
assert_eq!(
lhs.exec_add(rhs),
outputs[i],
"Wrong ADD for lhs: {lhs}, rhs: {rhs}"
);
}
}
#[test]
fn test_exec_subtract() {
let inputs = vec![
(Value::Integer(3), Value::Integer(1)),
(Value::Float(3.0), Value::Float(1.0)),
(Value::Float(3.0), Value::Integer(1)),
(Value::Integer(3), Value::Float(1.0)),
(Value::Null, Value::Null),
(Value::Null, Value::Integer(1)),
(Value::Null, Value::Float(1.0)),
(Value::Null, Value::Text("1".into())),
(Value::Integer(1), Value::Null),
(Value::Float(1.0), Value::Null),
(Value::Text("4".into()), Value::Null),
(Value::Text("1".into()), Value::Text("3".into())),
(Value::Text("1.0".into()), Value::Text("3.0".into())),
(Value::Text("1.0".into()), Value::Float(3.0)),
(Value::Text("1.0".into()), Value::Integer(3)),
(Value::Float(1.0), Value::Text("3.0".into())),
(Value::Integer(1), Value::Text("3".into())),
];
let outputs = [
Value::Integer(2),
Value::Float(2.0),
Value::Float(2.0),
Value::Float(2.0),
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Integer(-2),
Value::Float(-2.0),
Value::Float(-2.0),
Value::Float(-2.0),
Value::Float(-2.0),
Value::Float(-2.0),
];
assert_eq!(
inputs.len(),
outputs.len(),
"Inputs and Outputs should have same size"
);
for (i, (lhs, rhs)) in inputs.iter().enumerate() {
assert_eq!(
lhs.exec_subtract(rhs),
outputs[i],
"Wrong subtract for lhs: {lhs}, rhs: {rhs}"
);
}
}
#[test]
fn test_exec_multiply() {
let inputs = vec![
(Value::Integer(3), Value::Integer(2)),
(Value::Float(3.0), Value::Float(2.0)),
(Value::Float(3.0), Value::Integer(2)),
(Value::Integer(3), Value::Float(2.0)),
(Value::Null, Value::Null),
(Value::Null, Value::Integer(1)),
(Value::Null, Value::Float(1.0)),
(Value::Null, Value::Text("1".into())),
(Value::Integer(1), Value::Null),
(Value::Float(1.0), Value::Null),
(Value::Text("4".into()), Value::Null),
(Value::Text("2".into()), Value::Text("3".into())),
(Value::Text("2.0".into()), Value::Text("3.0".into())),
(Value::Text("2.0".into()), Value::Float(3.0)),
(Value::Text("2.0".into()), Value::Integer(3)),
(Value::Float(2.0), Value::Text("3.0".into())),
(Value::Integer(2), Value::Text("3.0".into())),
];
let outputs = [
Value::Integer(6),
Value::Float(6.0),
Value::Float(6.0),
Value::Float(6.0),
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Integer(6),
Value::Float(6.0),
Value::Float(6.0),
Value::Float(6.0),
Value::Float(6.0),
Value::Float(6.0),
];
assert_eq!(
inputs.len(),
outputs.len(),
"Inputs and Outputs should have same size"
);
for (i, (lhs, rhs)) in inputs.iter().enumerate() {
assert_eq!(
lhs.exec_multiply(rhs),
outputs[i],
"Wrong multiply for lhs: {lhs}, rhs: {rhs}"
);
}
}
#[test]
fn test_exec_divide() {
let inputs = vec![
(Value::Integer(1), Value::Integer(0)),
(Value::Float(1.0), Value::Float(0.0)),
(Value::Integer(i64::MIN), Value::Integer(-1)),
(Value::Float(6.0), Value::Float(2.0)),
(Value::Float(6.0), Value::Integer(2)),
(Value::Integer(6), Value::Integer(2)),
(Value::Null, Value::Integer(2)),
(Value::Integer(2), Value::Null),
(Value::Null, Value::Null),
(Value::Text("6".into()), Value::Text("2".into())),
(Value::Text("6".into()), Value::Integer(2)),
];
let outputs = [
Value::Null,
Value::Null,
Value::Float(9.223372036854776e18),
Value::Float(3.0),
Value::Float(3.0),
Value::Float(3.0),
Value::Null,
Value::Null,
Value::Null,
Value::Float(3.0),
Value::Float(3.0),
];
assert_eq!(
inputs.len(),
outputs.len(),
"Inputs and Outputs should have same size"
);
for (i, (lhs, rhs)) in inputs.iter().enumerate() {
assert_eq!(
lhs.exec_divide(rhs),
outputs[i],
"Wrong divide for lhs: {lhs}, rhs: {rhs}"
);
}
}
#[test]
fn test_exec_remainder() {
let inputs = vec![
(Value::Null, Value::Null),
(Value::Null, Value::Float(1.0)),
(Value::Null, Value::Integer(1)),
(Value::Null, Value::Text("1".into())),
(Value::Float(1.0), Value::Null),
(Value::Integer(1), Value::Null),
(Value::Integer(12), Value::Integer(0)),
(Value::Float(12.0), Value::Float(0.0)),
(Value::Float(12.0), Value::Integer(0)),
(Value::Integer(12), Value::Float(0.0)),
(Value::Integer(i64::MIN), Value::Integer(-1)),
(Value::Integer(12), Value::Integer(3)),
(Value::Float(12.0), Value::Float(3.0)),
(Value::Float(12.0), Value::Integer(3)),
(Value::Integer(12), Value::Float(3.0)),
(Value::Integer(12), Value::Integer(-3)),
(Value::Float(12.0), Value::Float(-3.0)),
(Value::Float(12.0), Value::Integer(-3)),
(Value::Integer(12), Value::Float(-3.0)),
(Value::Text("12.0".into()), Value::Text("3.0".into())),
(Value::Text("12.0".into()), Value::Float(3.0)),
(Value::Float(12.0), Value::Text("3.0".into())),
];
let outputs = vec![
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Null,
Value::Float(0.0),
Value::Integer(0),
Value::Float(0.0),
Value::Float(0.0),
Value::Float(0.0),
Value::Integer(0),
Value::Float(0.0),
Value::Float(0.0),
Value::Float(0.0),
Value::Float(0.0),
Value::Float(0.0),
Value::Float(0.0),
];
assert_eq!(
inputs.len(),
outputs.len(),
"Inputs and Outputs should have same size"
);
for (i, (lhs, rhs)) in inputs.iter().enumerate() {
assert_eq!(
lhs.exec_remainder(rhs),
outputs[i],
"Wrong remainder for lhs: {lhs}, rhs: {rhs}"
);
}
}
#[test]
fn test_exec_and() {
let inputs = vec![
(Value::Integer(0), Value::Null),
(Value::Null, Value::Integer(1)),
(Value::Null, Value::Null),
(Value::Float(0.0), Value::Null),
(Value::Integer(1), Value::Float(2.2)),
(Value::Integer(0), Value::Text("string".into())),
(Value::Integer(0), Value::Text("1".into())),
(Value::Integer(1), Value::Text("1".into())),
];
let outputs = [
Value::Integer(0),
Value::Null,
Value::Null,
Value::Integer(0),
Value::Integer(1),
Value::Integer(0),
Value::Integer(0),
Value::Integer(1),
];
assert_eq!(
inputs.len(),
outputs.len(),
"Inputs and Outputs should have same size"
);
for (i, (lhs, rhs)) in inputs.iter().enumerate() {
assert_eq!(
lhs.exec_and(rhs),
outputs[i],
"Wrong AND for lhs: {lhs}, rhs: {rhs}"
);
}
}
#[test]
fn test_exec_or() {
let inputs = vec![
(Value::Integer(0), Value::Null),
(Value::Null, Value::Integer(1)),
(Value::Null, Value::Null),
(Value::Float(0.0), Value::Null),
(Value::Integer(1), Value::Float(2.2)),
(Value::Float(0.0), Value::Integer(0)),
(Value::Integer(0), Value::Text("string".into())),
(Value::Integer(0), Value::Text("1".into())),
(Value::Integer(0), Value::Text("".into())),
];
let outputs = [
Value::Null,
Value::Integer(1),
Value::Null,
Value::Null,
Value::Integer(1),
Value::Integer(0),
Value::Integer(0),
Value::Integer(1),
Value::Integer(0),
];
assert_eq!(
inputs.len(),
outputs.len(),
"Inputs and Outputs should have same size"
);
for (i, (lhs, rhs)) in inputs.iter().enumerate() {
assert_eq!(
lhs.exec_or(rhs),
outputs[i],
"Wrong OR for lhs: {lhs}, rhs: {rhs}"
);
}
}
use crate::vdbe::{Bitfield, Register};
use super::{exec_char, execute_sqlite_version};
use std::collections::HashMap;
#[test]
fn test_length() {
let input_str = Value::build_text("bob");
let expected_len = Value::Integer(3);
assert_eq!(input_str.exec_length(), expected_len);
let input_integer = Value::Integer(123);
let expected_len = Value::Integer(3);
assert_eq!(input_integer.exec_length(), expected_len);
let input_float = Value::Float(123.456);
let expected_len = Value::Integer(7);
assert_eq!(input_float.exec_length(), expected_len);
let expected_blob = Value::Blob("example".as_bytes().to_vec());
let expected_len = Value::Integer(7);
assert_eq!(expected_blob.exec_length(), expected_len);
}
#[test]
fn test_quote() {
let input = Value::build_text("abc\0edf");
let expected = Value::build_text("'abc'");
assert_eq!(input.exec_quote(), expected);
let input = Value::Integer(123);
let expected = Value::Integer(123);
assert_eq!(input.exec_quote(), expected);
let input = Value::build_text("hello''world");
let expected = Value::build_text("'hello''''world'");
assert_eq!(input.exec_quote(), expected);
}
#[test]
fn test_typeof() {
let input = Value::Null;
let expected: Value = Value::build_text("null");
assert_eq!(input.exec_typeof(), expected);
let input = Value::Integer(123);
let expected: Value = Value::build_text("integer");
assert_eq!(input.exec_typeof(), expected);
let input = Value::Float(123.456);
let expected: Value = Value::build_text("real");
assert_eq!(input.exec_typeof(), expected);
let input = Value::build_text("hello");
let expected: Value = Value::build_text("text");
assert_eq!(input.exec_typeof(), expected);
let input = Value::Blob("limbo".as_bytes().to_vec());
let expected: Value = Value::build_text("blob");
assert_eq!(input.exec_typeof(), expected);
}
#[test]
fn test_unicode() {
assert_eq!(Value::build_text("a").exec_unicode(), Value::Integer(97));
assert_eq!(
Value::build_text("😊").exec_unicode(),
Value::Integer(128522)
);
assert_eq!(Value::build_text("").exec_unicode(), Value::Null);
assert_eq!(Value::Integer(23).exec_unicode(), Value::Integer(50));
assert_eq!(Value::Integer(0).exec_unicode(), Value::Integer(48));
assert_eq!(Value::Float(0.0).exec_unicode(), Value::Integer(48));
assert_eq!(Value::Float(23.45).exec_unicode(), Value::Integer(50));
assert_eq!(Value::Null.exec_unicode(), Value::Null);
assert_eq!(
Value::Blob("example".as_bytes().to_vec()).exec_unicode(),
Value::Integer(101)
);
}
#[test]
fn test_min_max() {
let input_int_vec = [
Register::Value(Value::Integer(-1)),
Register::Value(Value::Integer(10)),
];
assert_eq!(
Value::exec_min(input_int_vec.iter().map(|v| v.get_value())),
Value::Integer(-1)
);
assert_eq!(
Value::exec_max(input_int_vec.iter().map(|v| v.get_value())),
Value::Integer(10)
);
let str1 = Register::Value(Value::build_text("A"));
let str2 = Register::Value(Value::build_text("z"));
let input_str_vec = [str2, str1.clone()];
assert_eq!(
Value::exec_min(input_str_vec.iter().map(|v| v.get_value())),
Value::build_text("A")
);
assert_eq!(
Value::exec_max(input_str_vec.iter().map(|v| v.get_value())),
Value::build_text("z")
);
let input_null_vec = [Register::Value(Value::Null), Register::Value(Value::Null)];
assert_eq!(
Value::exec_min(input_null_vec.iter().map(|v| v.get_value())),
Value::Null
);
assert_eq!(
Value::exec_max(input_null_vec.iter().map(|v| v.get_value())),
Value::Null
);
let input_mixed_vec = [Register::Value(Value::Integer(10)), str1];
assert_eq!(
Value::exec_min(input_mixed_vec.iter().map(|v| v.get_value())),
Value::Integer(10)
);
assert_eq!(
Value::exec_max(input_mixed_vec.iter().map(|v| v.get_value())),
Value::build_text("A")
);
}
#[test]
fn test_trim() {
let input_str = Value::build_text(" Bob and Alice ");
let expected_str = Value::build_text("Bob and Alice");
assert_eq!(input_str.exec_trim(None), expected_str);
let input_str = Value::build_text(" Bob and Alice ");
let pattern_str = Value::build_text("Bob and");
let expected_str = Value::build_text("Alice");
assert_eq!(input_str.exec_trim(Some(&pattern_str)), expected_str);
}
#[test]
fn test_ltrim() {
let input_str = Value::build_text(" Bob and Alice ");
let expected_str = Value::build_text("Bob and Alice ");
assert_eq!(input_str.exec_ltrim(None), expected_str);
let input_str = Value::build_text(" Bob and Alice ");
let pattern_str = Value::build_text("Bob and");
let expected_str = Value::build_text("Alice ");
assert_eq!(input_str.exec_ltrim(Some(&pattern_str)), expected_str);
}
#[test]
fn test_rtrim() {
let input_str = Value::build_text(" Bob and Alice ");
let expected_str = Value::build_text(" Bob and Alice");
assert_eq!(input_str.exec_rtrim(None), expected_str);
let input_str = Value::build_text(" Bob and Alice ");
let pattern_str = Value::build_text("Bob and");
let expected_str = Value::build_text(" Bob and Alice");
assert_eq!(input_str.exec_rtrim(Some(&pattern_str)), expected_str);
let input_str = Value::build_text(" Bob and Alice ");
let pattern_str = Value::build_text("and Alice");
let expected_str = Value::build_text(" Bob");
assert_eq!(input_str.exec_rtrim(Some(&pattern_str)), expected_str);
}
#[test]
fn test_soundex() {
let input_str = Value::build_text("Pfister");
let expected_str = Value::build_text("P236");
assert_eq!(input_str.exec_soundex(), expected_str);
let input_str = Value::build_text("husobee");
let expected_str = Value::build_text("H210");
assert_eq!(input_str.exec_soundex(), expected_str);
let input_str = Value::build_text("Tymczak");
let expected_str = Value::build_text("T522");
assert_eq!(input_str.exec_soundex(), expected_str);
let input_str = Value::build_text("Ashcraft");
let expected_str = Value::build_text("A261");
assert_eq!(input_str.exec_soundex(), expected_str);
let input_str = Value::build_text("Robert");
let expected_str = Value::build_text("R163");
assert_eq!(input_str.exec_soundex(), expected_str);
let input_str = Value::build_text("Rupert");
let expected_str = Value::build_text("R163");
assert_eq!(input_str.exec_soundex(), expected_str);
let input_str = Value::build_text("Rubin");
let expected_str = Value::build_text("R150");
assert_eq!(input_str.exec_soundex(), expected_str);
let input_str = Value::build_text("Kant");
let expected_str = Value::build_text("K530");
assert_eq!(input_str.exec_soundex(), expected_str);
let input_str = Value::build_text("Knuth");
let expected_str = Value::build_text("K530");
assert_eq!(input_str.exec_soundex(), expected_str);
let input_str = Value::build_text("x");
let expected_str = Value::build_text("X000");
assert_eq!(input_str.exec_soundex(), expected_str);
let input_str = Value::build_text("闪电五连鞭");
let expected_str = Value::build_text("?000");
assert_eq!(input_str.exec_soundex(), expected_str);
}
#[test]
fn test_upper_case() {
let input_str = Value::build_text("Limbo");
let expected_str = Value::build_text("LIMBO");
assert_eq!(input_str.exec_upper().unwrap(), expected_str);
let input_int = Value::Integer(10);
assert_eq!(input_int.exec_upper().unwrap(), input_int);
assert_eq!(Value::Null.exec_upper().unwrap(), Value::Null)
}
#[test]
fn test_lower_case() {
let input_str = Value::build_text("Limbo");
let expected_str = Value::build_text("limbo");
assert_eq!(input_str.exec_lower().unwrap(), expected_str);
let input_int = Value::Integer(10);
assert_eq!(input_int.exec_lower().unwrap(), input_int);
assert_eq!(Value::Null.exec_lower().unwrap(), Value::Null)
}
#[test]
fn test_hex() {
let input_str = Value::build_text("limbo");
let expected_val = Value::build_text("6C696D626F");
assert_eq!(input_str.exec_hex(), expected_val);
let input_int = Value::Integer(100);
let expected_val = Value::build_text("313030");
assert_eq!(input_int.exec_hex(), expected_val);
let input_float = Value::Float(12.34);
let expected_val = Value::build_text("31322E3334");
assert_eq!(input_float.exec_hex(), expected_val);
let input_blob = Value::Blob(vec![0xff]);
let expected_val = Value::build_text("FF");
assert_eq!(input_blob.exec_hex(), expected_val);
}
#[test]
fn test_unhex() {
let input = Value::build_text("6f");
let expected = Value::Blob(vec![0x6f]);
assert_eq!(input.exec_unhex(None), expected);
let input = Value::build_text("6f");
let expected = Value::Blob(vec![0x6f]);
assert_eq!(input.exec_unhex(None), expected);
let input = Value::build_text("611");
let expected = Value::Null;
assert_eq!(input.exec_unhex(None), expected);
let input = Value::build_text("");
let expected = Value::Blob(vec![]);
assert_eq!(input.exec_unhex(None), expected);
let input = Value::build_text("61x");
let expected = Value::Null;
assert_eq!(input.exec_unhex(None), expected);
let input = Value::Null;
let expected = Value::Null;
assert_eq!(input.exec_unhex(None), expected);
}
#[test]
fn test_abs() {
let int_positive_reg = Value::Integer(10);
let int_negative_reg = Value::Integer(-10);
assert_eq!(int_positive_reg.exec_abs().unwrap(), int_positive_reg);
assert_eq!(int_negative_reg.exec_abs().unwrap(), int_positive_reg);
let float_positive_reg = Value::Integer(10);
let float_negative_reg = Value::Integer(-10);
assert_eq!(float_positive_reg.exec_abs().unwrap(), float_positive_reg);
assert_eq!(float_negative_reg.exec_abs().unwrap(), float_positive_reg);
assert_eq!(
Value::build_text("a").exec_abs().unwrap(),
Value::Float(0.0)
);
assert_eq!(Value::Null.exec_abs().unwrap(), Value::Null);
// ABS(i64::MIN) should return RuntimeError
assert!(Value::Integer(i64::MIN).exec_abs().is_err());
}
#[test]
fn test_char() {
assert_eq!(
exec_char(&[
Register::Value(Value::Integer(108)),
Register::Value(Value::Integer(105))
]),
Value::build_text("li")
);
assert_eq!(exec_char(&[]), Value::build_text(""));
assert_eq!(
exec_char(&[Register::Value(Value::Null)]),
Value::build_text("")
);
assert_eq!(
exec_char(&[Register::Value(Value::build_text("a"))]),
Value::build_text("")
);
}
#[test]
fn test_like_with_escape_or_regexmeta_chars() {
assert!(Value::exec_like(None, r#"\%A"#, r#"\A"#));
assert!(Value::exec_like(None, "%a%a", "aaaa"));
}
#[test]
fn test_like_no_cache() {
assert!(Value::exec_like(None, "a%", "aaaa"));
assert!(Value::exec_like(None, "%a%a", "aaaa"));
assert!(!Value::exec_like(None, "%a.a", "aaaa"));
assert!(!Value::exec_like(None, "a.a%", "aaaa"));
assert!(!Value::exec_like(None, "%a.ab", "aaaa"));
}
#[test]
fn test_like_with_cache() {
let mut cache = HashMap::new();
assert!(Value::exec_like(Some(&mut cache), "a%", "aaaa"));
assert!(Value::exec_like(Some(&mut cache), "%a%a", "aaaa"));
assert!(!Value::exec_like(Some(&mut cache), "%a.a", "aaaa"));
assert!(!Value::exec_like(Some(&mut cache), "a.a%", "aaaa"));
assert!(!Value::exec_like(Some(&mut cache), "%a.ab", "aaaa"));
// again after values have been cached
assert!(Value::exec_like(Some(&mut cache), "a%", "aaaa"));
assert!(Value::exec_like(Some(&mut cache), "%a%a", "aaaa"));
assert!(!Value::exec_like(Some(&mut cache), "%a.a", "aaaa"));
assert!(!Value::exec_like(Some(&mut cache), "a.a%", "aaaa"));
assert!(!Value::exec_like(Some(&mut cache), "%a.ab", "aaaa"));
}
#[test]
fn test_random() {
match Value::exec_random() {
Value::Integer(value) => {
// Check that the value is within the range of i64
assert!(
(i64::MIN..=i64::MAX).contains(&value),
"Random number out of range"
);
}
_ => panic!("exec_random did not return an Integer variant"),
}
}
#[test]
fn test_exec_randomblob() {
struct TestCase {
input: Value,
expected_len: usize,
}
let test_cases = vec![
TestCase {
input: Value::Integer(5),
expected_len: 5,
},
TestCase {
input: Value::Integer(0),
expected_len: 1,
},
TestCase {
input: Value::Integer(-1),
expected_len: 1,
},
TestCase {
input: Value::build_text(""),
expected_len: 1,
},
TestCase {
input: Value::build_text("5"),
expected_len: 5,
},
TestCase {
input: Value::build_text("0"),
expected_len: 1,
},
TestCase {
input: Value::build_text("-1"),
expected_len: 1,
},
TestCase {
input: Value::Float(2.9),
expected_len: 2,
},
TestCase {
input: Value::Float(-3.15),
expected_len: 1,
},
TestCase {
input: Value::Null,
expected_len: 1,
},
];
for test_case in &test_cases {
let result = test_case.input.exec_randomblob();
match result {
Value::Blob(blob) => {
assert_eq!(blob.len(), test_case.expected_len);
}
_ => panic!("exec_randomblob did not return a Blob variant"),
}
}
}
#[test]
fn test_exec_round() {
let input_val = Value::Float(123.456);
let expected_val = Value::Float(123.0);
assert_eq!(input_val.exec_round(None), expected_val);
let input_val = Value::Float(123.456);
let precision_val = Value::Integer(2);
let expected_val = Value::Float(123.46);
assert_eq!(input_val.exec_round(Some(&precision_val)), expected_val);
let input_val = Value::Float(123.456);
let precision_val = Value::build_text("1");
let expected_val = Value::Float(123.5);
assert_eq!(input_val.exec_round(Some(&precision_val)), expected_val);
let input_val = Value::build_text("123.456");
let precision_val = Value::Integer(2);
let expected_val = Value::Float(123.46);
assert_eq!(input_val.exec_round(Some(&precision_val)), expected_val);
let input_val = Value::Integer(123);
let precision_val = Value::Integer(1);
let expected_val = Value::Float(123.0);
assert_eq!(input_val.exec_round(Some(&precision_val)), expected_val);
let input_val = Value::Float(100.123);
let expected_val = Value::Float(100.0);
assert_eq!(input_val.exec_round(None), expected_val);
let input_val = Value::Float(100.123);
let expected_val = Value::Null;
assert_eq!(input_val.exec_round(Some(&Value::Null)), expected_val);
}
#[test]
fn test_exec_if() {
let reg = Value::Integer(0);
assert!(!reg.exec_if(false, false));
assert!(reg.exec_if(false, true));
let reg = Value::Integer(1);
assert!(reg.exec_if(false, false));
assert!(!reg.exec_if(false, true));
let reg = Value::Null;
assert!(!reg.exec_if(false, false));
assert!(!reg.exec_if(false, true));
let reg = Value::Null;
assert!(reg.exec_if(true, false));
assert!(reg.exec_if(true, true));
let reg = Value::Null;
assert!(!reg.exec_if(false, false));
assert!(!reg.exec_if(false, true));
}
#[test]
fn test_nullif() {
assert_eq!(
Value::Integer(1).exec_nullif(&Value::Integer(1)),
Value::Null
);
assert_eq!(
Value::Float(1.1).exec_nullif(&Value::Float(1.1)),
Value::Null
);
assert_eq!(
Value::build_text("limbo").exec_nullif(&Value::build_text("limbo")),
Value::Null
);
assert_eq!(
Value::Integer(1).exec_nullif(&Value::Integer(2)),
Value::Integer(1)
);
assert_eq!(
Value::Float(1.1).exec_nullif(&Value::Float(1.2)),
Value::Float(1.1)
);
assert_eq!(
Value::build_text("limbo").exec_nullif(&Value::build_text("limb")),
Value::build_text("limbo")
);
}
#[test]
fn test_substring() {
let str_value = Value::build_text("limbo");
let start_value = Value::Integer(1);
let length_value = Value::Integer(3);
let expected_val = Value::build_text("lim");
assert_eq!(
Value::exec_substring(&str_value, &start_value, Some(&length_value)),
expected_val
);
let str_value = Value::build_text("limbo");
let start_value = Value::Integer(1);
let length_value = Value::Integer(10);
let expected_val = Value::build_text("limbo");
assert_eq!(
Value::exec_substring(&str_value, &start_value, Some(&length_value)),
expected_val
);
let str_value = Value::build_text("limbo");
let start_value = Value::Integer(10);
let length_value = Value::Integer(3);
let expected_val = Value::build_text("");
assert_eq!(
Value::exec_substring(&str_value, &start_value, Some(&length_value)),
expected_val
);
let str_value = Value::build_text("limbo");
let start_value = Value::Integer(3);
let length_value = Value::Null;
let expected_val = Value::build_text("mbo");
assert_eq!(
Value::exec_substring(&str_value, &start_value, Some(&length_value)),
expected_val
);
let str_value = Value::build_text("limbo");
let start_value = Value::Integer(10);
let length_value = Value::Null;
let expected_val = Value::build_text("");
assert_eq!(
Value::exec_substring(&str_value, &start_value, Some(&length_value)),
expected_val
);
}
#[test]
fn test_exec_instr() {
let input = Value::build_text("limbo");
let pattern = Value::build_text("im");
let expected = Value::Integer(2);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::build_text("limbo");
let pattern = Value::build_text("limbo");
let expected = Value::Integer(1);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::build_text("limbo");
let pattern = Value::build_text("o");
let expected = Value::Integer(5);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::build_text("liiiiimbo");
let pattern = Value::build_text("ii");
let expected = Value::Integer(2);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::build_text("limbo");
let pattern = Value::build_text("limboX");
let expected = Value::Integer(0);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::build_text("limbo");
let pattern = Value::build_text("");
let expected = Value::Integer(1);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::build_text("");
let pattern = Value::build_text("limbo");
let expected = Value::Integer(0);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::build_text("");
let pattern = Value::build_text("");
let expected = Value::Integer(1);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::Null;
let pattern = Value::Null;
let expected = Value::Null;
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::build_text("limbo");
let pattern = Value::Null;
let expected = Value::Null;
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::Null;
let pattern = Value::build_text("limbo");
let expected = Value::Null;
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::Integer(123);
let pattern = Value::Integer(2);
let expected = Value::Integer(2);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::Integer(123);
let pattern = Value::Integer(5);
let expected = Value::Integer(0);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::Float(12.34);
let pattern = Value::Float(2.3);
let expected = Value::Integer(2);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::Float(12.34);
let pattern = Value::Float(5.6);
let expected = Value::Integer(0);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::Float(12.34);
let pattern = Value::build_text(".");
let expected = Value::Integer(3);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::Blob(vec![1, 2, 3, 4, 5]);
let pattern = Value::Blob(vec![3, 4]);
let expected = Value::Integer(3);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::Blob(vec![1, 2, 3, 4, 5]);
let pattern = Value::Blob(vec![3, 2]);
let expected = Value::Integer(0);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::Blob(vec![0x61, 0x62, 0x63, 0x64, 0x65]);
let pattern = Value::build_text("cd");
let expected = Value::Integer(3);
assert_eq!(input.exec_instr(&pattern), expected);
let input = Value::build_text("abcde");
let pattern = Value::Blob(vec![0x63, 0x64]);
let expected = Value::Integer(3);
assert_eq!(input.exec_instr(&pattern), expected);
}
#[test]
fn test_exec_sign() {
let input = Value::Integer(42);
let expected = Some(Value::Integer(1));
assert_eq!(input.exec_sign(), expected);
let input = Value::Integer(-42);
let expected = Some(Value::Integer(-1));
assert_eq!(input.exec_sign(), expected);
let input = Value::Integer(0);
let expected = Some(Value::Integer(0));
assert_eq!(input.exec_sign(), expected);
let input = Value::Float(0.0);
let expected = Some(Value::Integer(0));
assert_eq!(input.exec_sign(), expected);
let input = Value::Float(0.1);
let expected = Some(Value::Integer(1));
assert_eq!(input.exec_sign(), expected);
let input = Value::Float(42.0);
let expected = Some(Value::Integer(1));
assert_eq!(input.exec_sign(), expected);
let input = Value::Float(-42.0);
let expected = Some(Value::Integer(-1));
assert_eq!(input.exec_sign(), expected);
let input = Value::build_text("abc");
let expected = Some(Value::Null);
assert_eq!(input.exec_sign(), expected);
let input = Value::build_text("42");
let expected = Some(Value::Integer(1));
assert_eq!(input.exec_sign(), expected);
let input = Value::build_text("-42");
let expected = Some(Value::Integer(-1));
assert_eq!(input.exec_sign(), expected);
let input = Value::build_text("0");
let expected = Some(Value::Integer(0));
assert_eq!(input.exec_sign(), expected);
let input = Value::Blob(b"abc".to_vec());
let expected = Some(Value::Null);
assert_eq!(input.exec_sign(), expected);
let input = Value::Blob(b"42".to_vec());
let expected = Some(Value::Integer(1));
assert_eq!(input.exec_sign(), expected);
let input = Value::Blob(b"-42".to_vec());
let expected = Some(Value::Integer(-1));
assert_eq!(input.exec_sign(), expected);
let input = Value::Blob(b"0".to_vec());
let expected = Some(Value::Integer(0));
assert_eq!(input.exec_sign(), expected);
let input = Value::Null;
let expected = Some(Value::Null);
assert_eq!(input.exec_sign(), expected);
}
#[test]
fn test_exec_zeroblob() {
let input = Value::Integer(0);
let expected = Value::Blob(vec![]);
assert_eq!(input.exec_zeroblob(), expected);
let input = Value::Null;
let expected = Value::Blob(vec![]);
assert_eq!(input.exec_zeroblob(), expected);
let input = Value::Integer(4);
let expected = Value::Blob(vec![0; 4]);
assert_eq!(input.exec_zeroblob(), expected);
let input = Value::Integer(-1);
let expected = Value::Blob(vec![]);
assert_eq!(input.exec_zeroblob(), expected);
let input = Value::build_text("5");
let expected = Value::Blob(vec![0; 5]);
assert_eq!(input.exec_zeroblob(), expected);
let input = Value::build_text("-5");
let expected = Value::Blob(vec![]);
assert_eq!(input.exec_zeroblob(), expected);
let input = Value::build_text("text");
let expected = Value::Blob(vec![]);
assert_eq!(input.exec_zeroblob(), expected);
let input = Value::Float(2.6);
let expected = Value::Blob(vec![0; 2]);
assert_eq!(input.exec_zeroblob(), expected);
let input = Value::Blob(vec![1]);
let expected = Value::Blob(vec![]);
assert_eq!(input.exec_zeroblob(), expected);
}
#[test]
fn test_execute_sqlite_version() {
let version_integer = 3046001;
let expected = "3.46.1";
assert_eq!(execute_sqlite_version(version_integer), expected);
}
#[test]
fn test_replace() {
let input_str = Value::build_text("bob");
let pattern_str = Value::build_text("b");
let replace_str = Value::build_text("a");
let expected_str = Value::build_text("aoa");
assert_eq!(
Value::exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = Value::build_text("bob");
let pattern_str = Value::build_text("b");
let replace_str = Value::build_text("");
let expected_str = Value::build_text("o");
assert_eq!(
Value::exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = Value::build_text("bob");
let pattern_str = Value::build_text("b");
let replace_str = Value::build_text("abc");
let expected_str = Value::build_text("abcoabc");
assert_eq!(
Value::exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = Value::build_text("bob");
let pattern_str = Value::build_text("a");
let replace_str = Value::build_text("b");
let expected_str = Value::build_text("bob");
assert_eq!(
Value::exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = Value::build_text("bob");
let pattern_str = Value::build_text("");
let replace_str = Value::build_text("a");
let expected_str = Value::build_text("bob");
assert_eq!(
Value::exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = Value::build_text("bob");
let pattern_str = Value::Null;
let replace_str = Value::build_text("a");
let expected_str = Value::Null;
assert_eq!(
Value::exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = Value::build_text("bo5");
let pattern_str = Value::Integer(5);
let replace_str = Value::build_text("a");
let expected_str = Value::build_text("boa");
assert_eq!(
Value::exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = Value::build_text("bo5.0");
let pattern_str = Value::Float(5.0);
let replace_str = Value::build_text("a");
let expected_str = Value::build_text("boa");
assert_eq!(
Value::exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = Value::build_text("bo5");
let pattern_str = Value::Float(5.0);
let replace_str = Value::build_text("a");
let expected_str = Value::build_text("bo5");
assert_eq!(
Value::exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
let input_str = Value::build_text("bo5.0");
let pattern_str = Value::Float(5.0);
let replace_str = Value::Float(6.0);
let expected_str = Value::build_text("bo6.0");
assert_eq!(
Value::exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
// todo: change this test to use (0.1 + 0.2) instead of 0.3 when decimals are implemented.
let input_str = Value::build_text("tes3");
let pattern_str = Value::Integer(3);
let replace_str = Value::Float(0.3);
let expected_str = Value::build_text("tes0.3");
assert_eq!(
Value::exec_replace(&input_str, &pattern_str, &replace_str),
expected_str
);
}
#[test]
fn test_bitfield() {
let mut bitfield = Bitfield::<4>::new();
for i in 0..256 {
bitfield.set(i);
assert!(bitfield.get(i));
for j in 0..i {
assert!(bitfield.get(j));
}
for j in i + 1..256 {
assert!(!bitfield.get(j));
}
}
for i in 0..256 {
bitfield.unset(i);
assert!(!bitfield.get(i));
}
}
}