Files
turso/core/incremental/view.rs

1403 lines
53 KiB
Rust

use super::dbsp::{RowKeyStream, RowKeyZSet};
use super::operator::{
AggregateFunction, AggregateOperator, ComputationTracker, Delta, FilterOperator,
FilterPredicate, IncrementalOperator, ProjectColumn, ProjectOperator,
};
use crate::schema::{BTreeTable, Column, Schema};
use crate::types::{IOCompletions, IOResult, Value};
use crate::util::{extract_column_name_from_expr, extract_view_columns};
use crate::{Completion, LimboError, Result, Statement};
use fallible_iterator::FallibleIterator;
use std::collections::BTreeMap;
use std::fmt;
use std::sync::{Arc, Mutex};
use turso_sqlite3_parser::{
ast::{Cmd, Stmt},
lexer::sql::Parser,
};
/// State machine for populating a view from its source table
pub enum PopulateState {
/// Initial state - need to prepare the query
Start,
/// Actively processing rows from the query
Processing {
stmt: Box<Statement>,
rows_processed: usize,
},
/// Population complete
Done,
}
impl fmt::Debug for PopulateState {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
PopulateState::Start => write!(f, "Start"),
PopulateState::Processing { rows_processed, .. } => f
.debug_struct("Processing")
.field("rows_processed", rows_processed)
.finish(),
PopulateState::Done => write!(f, "Done"),
}
}
}
/// Per-connection transaction state for incremental views
#[derive(Debug, Clone, Default)]
pub struct ViewTransactionState {
// Per-connection delta for uncommitted changes (contains both weights and values)
pub delta: Delta,
}
/// Incremental view that maintains a stream of row keys using DBSP-style computation
/// The actual row data is stored as transformed Values
///
/// This version keeps everything in-memory. This is acceptable for small views, since DBSP
/// doesn't have to track the history of changes. Still for very large views (think of the result
/// of create view v as select * from tbl where x > 1; and that having 1B values.
///
/// We should have a version of this that materializes the results. Materializing will also be good
/// for large aggregations, because then we don't have to re-compute when opening the database
/// again.
///
/// Right now we are supporting the simplest views by keeping the operators in the view and
/// applying them in a sane order. But the general solution would turn this into a DBSP circuit.
#[derive(Debug)]
pub struct IncrementalView {
// Stream of row keys for this view
stream: RowKeyStream,
name: String,
// Store the actual row data as Values, keyed by row_key
// Using BTreeMap for ordered iteration
pub records: BTreeMap<i64, Vec<Value>>,
// WHERE clause predicate for filtering (kept for compatibility)
pub where_predicate: FilterPredicate,
// The SELECT statement that defines how to transform input data
pub select_stmt: Box<turso_sqlite3_parser::ast::Select>,
// Internal filter operator for predicate evaluation
filter_operator: Option<FilterOperator>,
// Internal project operator for value transformation
project_operator: Option<ProjectOperator>,
// Internal aggregate operator for GROUP BY and aggregations
aggregate_operator: Option<AggregateOperator>,
// Tables referenced by this view (extracted from FROM clause and JOINs)
base_table: Arc<BTreeTable>,
// The view's output columns with their types
pub columns: Vec<Column>,
// State machine for population
populate_state: PopulateState,
// Computation tracker for statistics
// We will use this one day to export rows_read, but for now, will just test that we're doing the expected amount of compute
#[cfg_attr(not(test), allow(dead_code))]
pub tracker: Arc<Mutex<ComputationTracker>>,
}
impl IncrementalView {
/// Validate that a CREATE MATERIALIZED VIEW statement can be handled by IncrementalView
/// This should be called early, before updating sqlite_master
pub fn can_create_view(
select: &turso_sqlite3_parser::ast::Select,
schema: &Schema,
) -> Result<()> {
// Check for aggregations
let (group_by_columns, aggregate_functions, _) = Self::extract_aggregation_info(select);
// Check for JOINs
let (join_tables, join_condition) = Self::extract_join_info(select);
if join_tables.is_some() || join_condition.is_some() {
return Err(LimboError::ParseError(
"JOINs in views are not yet supported".to_string(),
));
}
// Check that we have a base table
let base_table_name = Self::extract_base_table(select).ok_or_else(|| {
LimboError::ParseError("views without a base table not supported yet".to_string())
})?;
// Get the base table
let base_table = schema.get_btree_table(&base_table_name).ok_or_else(|| {
LimboError::ParseError(format!("Table '{base_table_name}' not found in schema"))
})?;
// Get base table column names for validation
let base_table_column_names: Vec<String> = base_table
.columns
.iter()
.enumerate()
.map(|(i, col)| col.name.clone().unwrap_or_else(|| format!("column_{i}")))
.collect();
// For non-aggregated views, validate columns are a strict subset
if group_by_columns.is_empty() && aggregate_functions.is_empty() {
Self::validate_view_columns(select, &base_table_column_names)?;
}
Ok(())
}
/// Get an iterator over column names, using enumerated naming for unnamed columns
pub fn column_names(&self) -> impl Iterator<Item = String> + '_ {
self.columns.iter().enumerate().map(|(i, col)| {
col.name
.clone()
.unwrap_or_else(|| format!("column{}", i + 1))
})
}
/// Check if this view has the same SQL definition as the provided SQL string
pub fn has_same_sql(&self, sql: &str) -> bool {
// Parse the SQL to extract just the SELECT statement
if let Ok(Some(Cmd::Stmt(Stmt::CreateMaterializedView { select, .. }))) =
Parser::new(sql.as_bytes()).next()
{
// Compare the SELECT statements as SQL strings
use turso_sqlite3_parser::ast::fmt::ToTokens;
// Format both SELECT statements and compare
if let (Ok(current_sql), Ok(provided_sql)) =
(self.select_stmt.format(), select.format())
{
return current_sql == provided_sql;
}
}
false
}
/// Apply filter operator to check if values pass the view's WHERE clause
fn apply_filter(&self, values: &[Value]) -> bool {
if let Some(ref filter_op) = self.filter_operator {
filter_op.evaluate_predicate(values)
} else {
true
}
}
pub fn from_sql(sql: &str, schema: &Schema) -> Result<Self> {
let mut parser = Parser::new(sql.as_bytes());
let cmd = parser.next()?;
let cmd = cmd.expect("View is an empty statement");
match cmd {
Cmd::Stmt(Stmt::CreateMaterializedView {
if_not_exists: _,
view_name,
columns: _,
select,
}) => IncrementalView::from_stmt(view_name, select, schema),
_ => Err(LimboError::ParseError(format!(
"View is not a CREATE MATERIALIZED VIEW statement: {sql}"
))),
}
}
pub fn from_stmt(
view_name: turso_sqlite3_parser::ast::QualifiedName,
select: Box<turso_sqlite3_parser::ast::Select>,
schema: &Schema,
) -> Result<Self> {
let name = view_name.name.as_str().to_string();
let where_predicate = FilterPredicate::from_select(&select)?;
// Extract output columns using the shared function
let view_columns = extract_view_columns(&select, schema);
// Extract GROUP BY columns and aggregate functions
let (group_by_columns, aggregate_functions, _old_output_names) =
Self::extract_aggregation_info(&select);
let (join_tables, join_condition) = Self::extract_join_info(&select);
if join_tables.is_some() || join_condition.is_some() {
return Err(LimboError::ParseError(
"JOINs in views are not yet supported".to_string(),
));
}
// Get the base table from FROM clause (when no joins)
let base_table = if let Some(base_table_name) = Self::extract_base_table(&select) {
if let Some(table) = schema.get_btree_table(&base_table_name) {
table.clone()
} else {
return Err(LimboError::ParseError(format!(
"Table '{base_table_name}' not found in schema"
)));
}
} else {
return Err(LimboError::ParseError(
"views without a base table not supported yet".to_string(),
));
};
let base_table_column_names = base_table
.columns
.iter()
.enumerate()
.map(|(i, col)| col.name.clone().unwrap_or_else(|| format!("column_{i}")))
.collect();
Self::new(
name,
Vec::new(), // Empty initial data
where_predicate,
select.clone(),
base_table,
base_table_column_names,
view_columns,
group_by_columns,
aggregate_functions,
)
}
#[allow(clippy::too_many_arguments)]
pub fn new(
name: String,
initial_data: Vec<(i64, Vec<Value>)>,
where_predicate: FilterPredicate,
select_stmt: Box<turso_sqlite3_parser::ast::Select>,
base_table: Arc<BTreeTable>,
base_table_column_names: Vec<String>,
columns: Vec<Column>,
group_by_columns: Vec<String>,
aggregate_functions: Vec<AggregateFunction>,
) -> Result<Self> {
let mut records = BTreeMap::new();
for (row_key, values) in initial_data {
records.insert(row_key, values);
}
// Create initial stream with row keys
let mut zset = RowKeyZSet::new();
for (row_key, values) in &records {
use crate::incremental::hashable_row::HashableRow;
let row = HashableRow::new(*row_key, values.clone());
zset.insert(row, 1);
}
// Create the tracker that will be shared by all operators
let tracker = Arc::new(Mutex::new(ComputationTracker::new()));
// Create filter operator if we have a predicate
let filter_operator = if !matches!(where_predicate, FilterPredicate::None) {
let mut filter_op =
FilterOperator::new(where_predicate.clone(), base_table_column_names.clone());
filter_op.set_tracker(tracker.clone());
Some(filter_op)
} else {
None
};
// Check if this is an aggregated view
let is_aggregated = !group_by_columns.is_empty() || !aggregate_functions.is_empty();
// Create aggregate operator if needed
let aggregate_operator = if is_aggregated {
let mut agg_op = AggregateOperator::new(
group_by_columns,
aggregate_functions,
base_table_column_names.clone(),
);
agg_op.set_tracker(tracker.clone());
Some(agg_op)
} else {
None
};
// Only create project operator for non-aggregated views
let project_operator = if !is_aggregated {
let columns = Self::extract_project_columns(&select_stmt, &base_table_column_names)
.unwrap_or_else(|| {
// If we can't extract columns, default to projecting all columns
base_table_column_names
.iter()
.map(|name| ProjectColumn::Column(name.to_string()))
.collect()
});
let mut proj_op = ProjectOperator::new(columns, base_table_column_names.clone());
proj_op.set_tracker(tracker.clone());
Some(proj_op)
} else {
None
};
Ok(Self {
stream: RowKeyStream::from_zset(zset),
name,
records,
where_predicate,
select_stmt,
filter_operator,
project_operator,
aggregate_operator,
base_table,
columns,
populate_state: PopulateState::Start,
tracker,
})
}
pub fn name(&self) -> &str {
&self.name
}
/// Get all table names referenced by this view
pub fn get_referenced_table_names(&self) -> Vec<String> {
vec![self.base_table.name.clone()]
}
/// Get all tables referenced by this view
pub fn get_referenced_tables(&self) -> Vec<Arc<BTreeTable>> {
vec![self.base_table.clone()]
}
/// Validate that view columns are a strict subset of the base table columns
/// No duplicates, no complex expressions, only simple column references
fn validate_view_columns(
select: &turso_sqlite3_parser::ast::Select,
base_table_column_names: &[String],
) -> Result<()> {
if let turso_sqlite3_parser::ast::OneSelect::Select(ref select_stmt) = &*select.body.select
{
let mut seen_columns = std::collections::HashSet::new();
for result_col in &select_stmt.columns {
match result_col {
turso_sqlite3_parser::ast::ResultColumn::Expr(
turso_sqlite3_parser::ast::Expr::Id(name),
_,
) => {
let col_name = name.as_str();
// Check for duplicates
if !seen_columns.insert(col_name) {
return Err(LimboError::ParseError(format!(
"Duplicate column '{col_name}' in view. Views must have columns as a strict subset of the base table (no duplicates)"
)));
}
// Check that column exists in base table
if !base_table_column_names.iter().any(|n| n == col_name) {
return Err(LimboError::ParseError(format!(
"Column '{col_name}' not found in base table. Views must have columns as a strict subset of the base table"
)));
}
}
turso_sqlite3_parser::ast::ResultColumn::Star => {
// SELECT * is allowed - it's the full set
}
_ => {
// Any other expression is not allowed
return Err(LimboError::ParseError("Complex expressions, functions, or computed columns are not supported in views. Views must have columns as a strict subset of the base table".to_string()));
}
}
}
}
Ok(())
}
/// Extract the base table name from a SELECT statement (for non-join cases)
fn extract_base_table(select: &turso_sqlite3_parser::ast::Select) -> Option<String> {
if let turso_sqlite3_parser::ast::OneSelect::Select(ref select_stmt) = &*select.body.select
{
if let Some(ref from) = &select_stmt.from {
if let Some(ref select_table) = &from.select {
if let turso_sqlite3_parser::ast::SelectTable::Table(name, _, _) =
&**select_table
{
return Some(name.name.as_str().to_string());
}
}
}
}
None
}
/// Generate the SQL query for populating the view from its source table
fn sql_for_populate(&self) -> crate::Result<String> {
// Get the base table from referenced tables
let table = &self.base_table;
// Build column list for SELECT clause
let select_columns = if let Some(ref project_op) = self.project_operator {
// Get the columns used by the projection operator
let mut columns = Vec::new();
for col in project_op.columns() {
match col {
ProjectColumn::Column(name) => {
columns.push(name.clone());
}
ProjectColumn::Expression { .. } => {
// For expressions, we need all columns (for now)
columns.clear();
columns.push("*".to_string());
break;
}
}
}
if columns.is_empty() || columns.contains(&"*".to_string()) {
"*".to_string()
} else {
// Add the columns and always include rowid
columns.join(", ").to_string()
}
} else {
// No projection, use all columns
"*".to_string()
};
// Build WHERE clause from filter operator
let where_clause = if let Some(ref filter_op) = self.filter_operator {
self.build_where_clause(filter_op.predicate())?
} else {
String::new()
};
// Construct the final query
let query = if where_clause.is_empty() {
format!("SELECT {}, rowid FROM {}", select_columns, table.name)
} else {
format!(
"SELECT {}, rowid FROM {} WHERE {}",
select_columns, table.name, where_clause
)
};
Ok(query)
}
/// Build a WHERE clause from a FilterPredicate
fn build_where_clause(&self, predicate: &FilterPredicate) -> crate::Result<String> {
match predicate {
FilterPredicate::None => Ok(String::new()),
FilterPredicate::Equals { column, value } => {
Ok(format!("{} = {}", column, self.value_to_sql(value)))
}
FilterPredicate::NotEquals { column, value } => {
Ok(format!("{} != {}", column, self.value_to_sql(value)))
}
FilterPredicate::GreaterThan { column, value } => {
Ok(format!("{} > {}", column, self.value_to_sql(value)))
}
FilterPredicate::GreaterThanOrEqual { column, value } => {
Ok(format!("{} >= {}", column, self.value_to_sql(value)))
}
FilterPredicate::LessThan { column, value } => {
Ok(format!("{} < {}", column, self.value_to_sql(value)))
}
FilterPredicate::LessThanOrEqual { column, value } => {
Ok(format!("{} <= {}", column, self.value_to_sql(value)))
}
FilterPredicate::And(left, right) => {
let left_clause = self.build_where_clause(left)?;
let right_clause = self.build_where_clause(right)?;
Ok(format!("({left_clause} AND {right_clause})"))
}
FilterPredicate::Or(left, right) => {
let left_clause = self.build_where_clause(left)?;
let right_clause = self.build_where_clause(right)?;
Ok(format!("({left_clause} OR {right_clause})"))
}
}
}
/// Convert a Value to SQL literal representation
fn value_to_sql(&self, value: &Value) -> String {
match value {
Value::Null => "NULL".to_string(),
Value::Integer(i) => i.to_string(),
Value::Float(f) => f.to_string(),
Value::Text(t) => format!("'{}'", t.as_str().replace('\'', "''")),
Value::Blob(_) => "NULL".to_string(), // Blob literals not supported in WHERE clause yet
}
}
/// Populate the view by scanning the source table using a state machine
/// This can be called multiple times and will resume from where it left off
pub fn populate_from_table(
&mut self,
conn: &std::sync::Arc<crate::Connection>,
) -> crate::Result<IOResult<()>> {
// If already populated, return immediately
if matches!(self.populate_state, PopulateState::Done) {
return Ok(IOResult::Done(()));
}
const BATCH_SIZE: usize = 100; // Process 100 rows at a time before yielding
loop {
match &mut self.populate_state {
PopulateState::Start => {
// Generate the SQL query for populating the view
// It is best to use a standard query than a cursor for two reasons:
// 1) Using a sql query will allow us to be much more efficient in cases where we only want
// some rows, in particular for indexed filters
// 2) There are two types of cursors: index and table. In some situations (like for example
// if the table has an integer primary key), the key will be exclusively in the index
// btree and not in the table btree. Using cursors would force us to be aware of this
// distinction (and others), and ultimately lead to reimplementing the whole query
// machinery (next step is which index is best to use, etc)
let query = self.sql_for_populate()?;
// Prepare the statement
let stmt = conn.prepare(&query)?;
self.populate_state = PopulateState::Processing {
stmt: Box::new(stmt),
rows_processed: 0,
};
// Continue to next state
}
PopulateState::Processing {
stmt,
rows_processed,
} => {
// Collect rows into a delta batch
let mut batch_delta = Delta::new();
let mut batch_count = 0;
loop {
if batch_count >= BATCH_SIZE {
// Process this batch through the standard pipeline
self.merge_delta(&batch_delta);
// Yield control after processing a batch
// TODO: currently this inner statement is the one that is tracking completions
// so as a stop gap we can just return a dummy completion here
return Ok(IOResult::IO(
IOCompletions::Single(Completion::new_dummy()),
));
}
// This step() call resumes from where the statement left off
match stmt.step()? {
crate::vdbe::StepResult::Row => {
// Get the row
let row = stmt.row().unwrap();
// Extract values from the row
let all_values: Vec<crate::types::Value> =
row.get_values().cloned().collect();
// The last value should be the rowid
let rowid = match all_values.last() {
Some(crate::types::Value::Integer(id)) => *id,
_ => {
// This shouldn't happen - rowid must be an integer
*rows_processed += 1;
batch_count += 1;
continue;
}
};
// Get all values except the rowid
let values = all_values[..all_values.len() - 1].to_vec();
// Add to batch delta - let merge_delta handle filtering and aggregation
batch_delta.insert(rowid, values);
*rows_processed += 1;
batch_count += 1;
}
crate::vdbe::StepResult::Done => {
// Process any remaining rows in the batch
self.merge_delta(&batch_delta);
// All rows processed, move to Done state
self.populate_state = PopulateState::Done;
return Ok(IOResult::Done(()));
}
crate::vdbe::StepResult::Interrupt | crate::vdbe::StepResult::Busy => {
return Err(LimboError::Busy);
}
crate::vdbe::StepResult::IO => {
// Process current batch before yielding
self.merge_delta(&batch_delta);
// The Statement needs to wait for IO
return Ok(IOResult::IO(IOCompletions::Single(
Completion::new_dummy(),
)));
}
}
}
}
PopulateState::Done => {
// Already populated
return Ok(IOResult::Done(()));
}
}
}
}
/// Extract GROUP BY columns and aggregate functions from SELECT statement
fn extract_aggregation_info(
select: &turso_sqlite3_parser::ast::Select,
) -> (Vec<String>, Vec<AggregateFunction>, Vec<String>) {
use turso_sqlite3_parser::ast::*;
let mut group_by_columns = Vec::new();
let mut aggregate_functions = Vec::new();
let mut output_column_names = Vec::new();
if let OneSelect::Select(ref select_stmt) = &*select.body.select {
// Extract GROUP BY columns
if let Some(ref group_by) = select_stmt.group_by {
for expr in &group_by.exprs {
if let Some(col_name) = extract_column_name_from_expr(expr) {
group_by_columns.push(col_name);
}
}
}
// Extract aggregate functions and column names/aliases from SELECT list
for result_col in &select_stmt.columns {
match result_col {
ResultColumn::Expr(expr, alias) => {
// Extract aggregate functions
let mut found_aggregates = Vec::new();
Self::extract_aggregates_from_expr(expr, &mut found_aggregates);
// Determine the output column name
let col_name = if let Some(As::As(alias_name)) = alias {
// Use the provided alias
alias_name.as_str().to_string()
} else if !found_aggregates.is_empty() {
// Use the default name from the aggregate function
found_aggregates[0].default_output_name()
} else if let Some(name) = extract_column_name_from_expr(expr) {
// Use the column name
name
} else {
// Fallback to a generic name
format!("column{}", output_column_names.len() + 1)
};
output_column_names.push(col_name);
aggregate_functions.extend(found_aggregates);
}
ResultColumn::Star => {
// For SELECT *, we'd need to know the base table columns
// This is handled elsewhere
}
ResultColumn::TableStar(_) => {
// Similar to Star, but for a specific table
}
}
}
}
(group_by_columns, aggregate_functions, output_column_names)
}
/// Recursively extract aggregate functions from an expression
fn extract_aggregates_from_expr(
expr: &turso_sqlite3_parser::ast::Expr,
aggregate_functions: &mut Vec<AggregateFunction>,
) {
use crate::function::Func;
use turso_sqlite3_parser::ast::*;
match expr {
// Handle COUNT(*) and similar aggregate functions with *
Expr::FunctionCallStar { name, .. } => {
// FunctionCallStar is typically COUNT(*), which has 0 args
if let Ok(func) = Func::resolve_function(name.as_str(), 0) {
// Use the centralized mapping from operator.rs
// For COUNT(*), we pass None as the input column
if let Some(agg_func) = AggregateFunction::from_sql_function(&func, None) {
aggregate_functions.push(agg_func);
}
}
}
Expr::FunctionCall { name, args, .. } => {
// Regular function calls with arguments
let arg_count = args.as_ref().map_or(0, |a| a.len());
if let Ok(func) = Func::resolve_function(name.as_str(), arg_count) {
// Extract the input column if there's an argument
let input_column = if arg_count > 0 {
args.as_ref()
.and_then(|args| args.first())
.and_then(extract_column_name_from_expr)
} else {
None
};
// Use the centralized mapping from operator.rs
if let Some(agg_func) =
AggregateFunction::from_sql_function(&func, input_column)
{
aggregate_functions.push(agg_func);
}
}
}
// Recursively check binary expressions, etc.
Expr::Binary(left, _, right) => {
Self::extract_aggregates_from_expr(left, aggregate_functions);
Self::extract_aggregates_from_expr(right, aggregate_functions);
}
_ => {}
}
}
/// Extract JOIN information from SELECT statement
#[allow(clippy::type_complexity)]
pub fn extract_join_info(
select: &turso_sqlite3_parser::ast::Select,
) -> (Option<(String, String)>, Option<(String, String)>) {
use turso_sqlite3_parser::ast::*;
if let OneSelect::Select(ref select_stmt) = &*select.body.select {
if let Some(ref from) = &select_stmt.from {
// Check if there are any joins
if let Some(ref joins) = &from.joins {
if !joins.is_empty() {
// Get the first (left) table name
let left_table = if let Some(ref select_table) = &from.select {
match &**select_table {
SelectTable::Table(name, _, _) => {
Some(name.name.as_str().to_string())
}
_ => None,
}
} else {
None
};
// Get the first join (right) table and condition
if let Some(first_join) = joins.first() {
let right_table = match &first_join.table {
SelectTable::Table(name, _, _) => {
Some(name.name.as_str().to_string())
}
_ => None,
};
// Extract join condition (simplified - assumes single equality)
let join_condition =
if let Some(ref constraint) = &first_join.constraint {
match constraint {
JoinConstraint::On(expr) => {
Self::extract_join_columns_from_expr(expr)
}
_ => None,
}
} else {
None
};
if let (Some(left), Some(right)) = (left_table, right_table) {
return (Some((left, right)), join_condition);
}
}
}
}
}
}
(None, None)
}
/// Extract join column names from a join condition expression
fn extract_join_columns_from_expr(
expr: &turso_sqlite3_parser::ast::Expr,
) -> Option<(String, String)> {
use turso_sqlite3_parser::ast::*;
// Look for expressions like: t1.col = t2.col
if let Expr::Binary(left, op, right) = expr {
if matches!(op, Operator::Equals) {
// Extract column names from both sides
let left_col = match &**left {
Expr::Qualified(name, _) => Some(name.as_str().to_string()),
Expr::Id(name) => Some(name.as_str().to_string()),
_ => None,
};
let right_col = match &**right {
Expr::Qualified(name, _) => Some(name.as_str().to_string()),
Expr::Id(name) => Some(name.as_str().to_string()),
_ => None,
};
if let (Some(l), Some(r)) = (left_col, right_col) {
return Some((l, r));
}
}
}
None
}
/// Extract projection columns from SELECT statement
fn extract_project_columns(
select: &turso_sqlite3_parser::ast::Select,
column_names: &[String],
) -> Option<Vec<ProjectColumn>> {
use turso_sqlite3_parser::ast::*;
if let OneSelect::Select(ref select_stmt) = &*select.body.select {
let mut columns = Vec::new();
for result_col in &select_stmt.columns {
match result_col {
ResultColumn::Expr(expr, alias) => {
match expr {
Expr::Id(name) => {
// Simple column reference
columns.push(ProjectColumn::Column(name.as_str().to_string()));
}
_ => {
// Expression - store it for evaluation
let alias_str = if let Some(As::As(alias_name)) = alias {
Some(alias_name.as_str().to_string())
} else {
None
};
columns.push(ProjectColumn::Expression {
expr: expr.clone(),
alias: alias_str,
});
}
}
}
ResultColumn::Star => {
// Select all columns
for name in column_names {
columns.push(ProjectColumn::Column(name.as_str().to_string()));
}
}
_ => {
// For now, skip TableStar and other cases
}
}
}
if !columns.is_empty() {
return Some(columns);
}
}
None
}
/// Get the current records as an iterator - for cursor-based access
pub fn iter(&self) -> impl Iterator<Item = (i64, Vec<Value>)> + '_ {
self.stream.to_vec().into_iter().filter_map(move |row| {
self.records
.get(&row.rowid)
.map(|values| (row.rowid, values.clone()))
})
}
/// Get current data merged with transaction state
pub fn current_data(&self, tx_state: Option<&ViewTransactionState>) -> Vec<(i64, Vec<Value>)> {
// Start with committed records
if let Some(tx_state) = tx_state {
// processed_delta = input delta for now. Need to apply operations
let processed_delta = &tx_state.delta;
// For non-aggregation views, merge the processed delta with committed records
let mut result_map: BTreeMap<i64, Vec<Value>> = self.records.clone();
for (row, weight) in &processed_delta.changes {
if *weight > 0 && self.apply_filter(&row.values) {
result_map.insert(row.rowid, row.values.clone());
} else if *weight < 0 {
result_map.remove(&row.rowid);
}
}
result_map.into_iter().collect()
} else {
// No transaction state: return committed records
self.records.clone().into_iter().collect()
}
}
/// Apply filter operator to a delta if present
fn apply_filter_to_delta(&mut self, delta: Delta) -> Delta {
if let Some(ref mut filter_op) = self.filter_operator {
filter_op.process_delta(delta)
} else {
delta
}
}
/// Apply aggregation operator to a delta if this is an aggregated view
fn apply_aggregation_to_delta(&mut self, delta: Delta) -> Delta {
if let Some(ref mut agg_op) = self.aggregate_operator {
agg_op.process_delta(delta)
} else {
delta
}
}
/// Merge a delta of changes into the view's current state
pub fn merge_delta(&mut self, delta: &Delta) {
// Early return if delta is empty
if delta.is_empty() {
return;
}
// Apply operators in pipeline
let mut current_delta = delta.clone();
current_delta = self.apply_filter_to_delta(current_delta);
current_delta = self.apply_aggregation_to_delta(current_delta);
// Update records and stream with the processed delta
let mut zset_delta = RowKeyZSet::new();
for (row, weight) in &current_delta.changes {
if *weight > 0 {
self.records.insert(row.rowid, row.values.clone());
zset_delta.insert(row.clone(), 1);
} else if *weight < 0 {
self.records.remove(&row.rowid);
zset_delta.insert(row.clone(), -1);
}
}
self.stream.apply_delta(&zset_delta);
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::incremental::operator::{Delta, IncrementalOperator};
use crate::schema::{BTreeTable, Column, Schema, Type};
use crate::types::Value;
use std::sync::Arc;
fn create_test_schema() -> Schema {
let mut schema = Schema::new(false);
let table = BTreeTable {
root_page: 1,
name: "t".to_string(),
columns: vec![
Column {
name: Some("a".to_string()),
ty: Type::Integer,
ty_str: "INTEGER".to_string(),
primary_key: false,
is_rowid_alias: false,
notnull: false,
default: None,
unique: false,
collation: None,
hidden: false,
},
Column {
name: Some("b".to_string()),
ty: Type::Integer,
ty_str: "INTEGER".to_string(),
primary_key: false,
is_rowid_alias: false,
notnull: false,
default: None,
unique: false,
collation: None,
hidden: false,
},
Column {
name: Some("c".to_string()),
ty: Type::Integer,
ty_str: "INTEGER".to_string(),
primary_key: false,
is_rowid_alias: false,
notnull: false,
default: None,
unique: false,
collation: None,
hidden: false,
},
],
primary_key_columns: vec![],
has_rowid: true,
is_strict: false,
unique_sets: None,
};
schema.add_btree_table(Arc::new(table));
schema
}
#[test]
fn test_projection_simple_columns() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a, b FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(10), Value::Integer(20), Value::Integer(30)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(output.values, vec![Value::Integer(10), Value::Integer(20)]);
}
#[test]
fn test_projection_arithmetic_expression() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a * 2 as doubled FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(4), Value::Integer(2), Value::Integer(0)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(output.values, vec![Value::Integer(8)]);
}
#[test]
fn test_projection_multiple_expressions() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a + b as sum, a - b as diff, c FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(10), Value::Integer(3), Value::Integer(7)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(
output.values,
vec![Value::Integer(13), Value::Integer(7), Value::Integer(7),]
);
}
#[test]
fn test_projection_function_call() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT hex(a) as hex_a, b FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(255), Value::Integer(20), Value::Integer(30)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(
output.values,
vec![Value::Text("FF".into()), Value::Integer(20),]
);
}
#[test]
fn test_projection_mixed_columns_and_expressions() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a, b * 2 as doubled, c, a + b + c as total FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(1), Value::Integer(5), Value::Integer(3)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(
output.values,
vec![
Value::Integer(1),
Value::Integer(10),
Value::Integer(3),
Value::Integer(9),
]
);
}
#[test]
fn test_projection_complex_expression() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT (a * 2) + (b * 3) as weighted, c / 2 as half FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(5), Value::Integer(2), Value::Integer(10)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(output.values, vec![Value::Integer(16), Value::Integer(5),]);
}
#[test]
fn test_projection_with_where_clause() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a, a * 2 as doubled FROM t WHERE b > 2";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
assert!(view.filter_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(4), Value::Integer(3), Value::Integer(0)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
assert_eq!(output.values, vec![Value::Integer(4), Value::Integer(8),]);
}
#[test]
fn test_projection_more_output_columns_than_input() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a, b, a * 2 as doubled_a, b * 3 as tripled_b, a + b as sum, hex(c) as hex_c FROM t";
let view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.project_operator.is_some());
let project_op = view.project_operator.as_ref().unwrap();
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(5), Value::Integer(2), Value::Integer(15)],
);
let mut temp_project = project_op.clone();
temp_project.initialize(delta);
let result = temp_project.get_current_state();
let (output, _weight) = result.changes.first().unwrap();
// 3 input columns -> 6 output columns
assert_eq!(
output.values,
vec![
Value::Integer(5), // a
Value::Integer(2), // b
Value::Integer(10), // a * 2
Value::Integer(6), // b * 3
Value::Integer(7), // a + b
Value::Text("F".into()), // hex(15)
]
);
}
#[test]
fn test_aggregation_count_with_group_by() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a, COUNT(*) FROM t GROUP BY a";
let mut view = IncrementalView::from_sql(sql, &schema).unwrap();
// Verify the view has an aggregate operator
assert!(view.aggregate_operator.is_some());
// Insert some test data
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(1), Value::Integer(10), Value::Integer(100)],
);
delta.insert(
2,
vec![Value::Integer(2), Value::Integer(20), Value::Integer(200)],
);
delta.insert(
3,
vec![Value::Integer(1), Value::Integer(30), Value::Integer(300)],
);
// Process the delta
view.merge_delta(&delta);
// Verify we only processed the 3 rows we inserted
assert_eq!(view.tracker.lock().unwrap().aggregation_updates, 3);
// Check the aggregated results
let results = view.current_data(None);
// Should have 2 groups: a=1 with count=2, a=2 with count=1
assert_eq!(results.len(), 2);
// Find the group with a=1
let group1 = results
.iter()
.find(|(_, vals)| vals[0] == Value::Integer(1))
.unwrap();
assert_eq!(group1.1[0], Value::Integer(1)); // a=1
assert_eq!(group1.1[1], Value::Integer(2)); // COUNT(*)=2
// Find the group with a=2
let group2 = results
.iter()
.find(|(_, vals)| vals[0] == Value::Integer(2))
.unwrap();
assert_eq!(group2.1[0], Value::Integer(2)); // a=2
assert_eq!(group2.1[1], Value::Integer(1)); // COUNT(*)=1
}
#[test]
fn test_aggregation_sum_with_filter() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT SUM(b) FROM t WHERE a > 1";
let mut view = IncrementalView::from_sql(sql, &schema).unwrap();
assert!(view.aggregate_operator.is_some());
assert!(view.filter_operator.is_some());
let mut delta = Delta::new();
delta.insert(
1,
vec![Value::Integer(1), Value::Integer(10), Value::Integer(100)],
);
delta.insert(
2,
vec![Value::Integer(2), Value::Integer(20), Value::Integer(200)],
);
delta.insert(
3,
vec![Value::Integer(3), Value::Integer(30), Value::Integer(300)],
);
view.merge_delta(&delta);
// Should filter all 3 rows
assert_eq!(view.tracker.lock().unwrap().filter_evaluations, 3);
// But only aggregate the 2 that passed the filter (a > 1)
assert_eq!(view.tracker.lock().unwrap().aggregation_updates, 2);
let results = view.current_data(None);
// Should have 1 row with sum of b where a > 1
assert_eq!(results.len(), 1);
assert_eq!(results[0].1[0], Value::Integer(50)); // SUM(b) = 20 + 30
}
#[test]
fn test_aggregation_incremental_updates() {
let schema = create_test_schema();
let sql = "CREATE MATERIALIZED VIEW v AS SELECT a, COUNT(*), SUM(b) FROM t GROUP BY a";
let mut view = IncrementalView::from_sql(sql, &schema).unwrap();
// Initial insert
let mut delta1 = Delta::new();
delta1.insert(
1,
vec![Value::Integer(1), Value::Integer(10), Value::Integer(100)],
);
delta1.insert(
2,
vec![Value::Integer(1), Value::Integer(20), Value::Integer(200)],
);
view.merge_delta(&delta1);
// Verify we processed exactly 2 rows for the first batch
assert_eq!(view.tracker.lock().unwrap().aggregation_updates, 2);
// Check initial state
let results1 = view.current_data(None);
assert_eq!(results1.len(), 1);
assert_eq!(results1[0].1[1], Value::Integer(2)); // COUNT(*)=2
assert_eq!(results1[0].1[2], Value::Integer(30)); // SUM(b)=30
// Reset counter to track second batch separately
view.tracker.lock().unwrap().aggregation_updates = 0;
// Add more data
let mut delta2 = Delta::new();
delta2.insert(
3,
vec![Value::Integer(1), Value::Integer(5), Value::Integer(300)],
);
delta2.insert(
4,
vec![Value::Integer(2), Value::Integer(15), Value::Integer(400)],
);
view.merge_delta(&delta2);
// Should only process the 2 new rows, not recompute everything
assert_eq!(view.tracker.lock().unwrap().aggregation_updates, 2);
// Check updated state
let results2 = view.current_data(None);
assert_eq!(results2.len(), 2);
// Group a=1
let group1 = results2
.iter()
.find(|(_, vals)| vals[0] == Value::Integer(1))
.unwrap();
assert_eq!(group1.1[1], Value::Integer(3)); // COUNT(*)=3
assert_eq!(group1.1[2], Value::Integer(35)); // SUM(b)=35
// Group a=2
let group2 = results2
.iter()
.find(|(_, vals)| vals[0] == Value::Integer(2))
.unwrap();
assert_eq!(group2.1[1], Value::Integer(1)); // COUNT(*)=1
assert_eq!(group2.1[2], Value::Integer(15)); // SUM(b)=15
}
}