Files
turso/core/translate/optimizer/order.rs
Piotr Rzysko 82491ceb6a Integrate virtual tables with optimizer
This change connects virtual tables with the query optimizer.
The optimizer now considers virtual tables during join order search
and invokes their best_index callbacks to determine feasible access
paths.

Currently, this is not a visible change, since none of the existing
extensions return information indicating that a plan is invalid.
2025-08-05 05:48:28 +02:00

242 lines
10 KiB
Rust

use std::cell::RefCell;
use turso_sqlite3_parser::ast::{self, SortOrder, TableInternalId};
use crate::{
translate::optimizer::access_method::AccessMethodParams,
translate::plan::{GroupBy, IterationDirection, JoinedTable},
util::exprs_are_equivalent,
};
use super::{access_method::AccessMethod, join::JoinN};
#[derive(Debug, PartialEq, Clone)]
/// A convenience struct for representing a (table_no, column_no, [SortOrder]) tuple.
pub struct ColumnOrder {
pub table_id: TableInternalId,
pub column_no: usize,
pub order: SortOrder,
}
#[derive(Debug, PartialEq, Clone)]
/// If an [OrderTarget] is satisfied, then [EliminatesSort] describes which part of the query no longer requires sorting.
pub enum EliminatesSortBy {
Group,
Order,
GroupByAndOrder,
}
#[derive(Debug, PartialEq, Clone)]
/// An [OrderTarget] is considered in join optimization and index selection,
/// so that if a given join ordering and its access methods satisfy the [OrderTarget],
/// then the join ordering and its access methods are preferred, all other things being equal.
pub struct OrderTarget(pub Vec<ColumnOrder>, pub EliminatesSortBy);
impl OrderTarget {
fn maybe_from_iterator<'a>(
list: impl Iterator<Item = (&'a ast::Expr, SortOrder)> + Clone,
eliminates_sort: EliminatesSortBy,
) -> Option<Self> {
if list.clone().count() == 0 {
return None;
}
if list
.clone()
.any(|(expr, _)| !matches!(expr, ast::Expr::Column { .. }))
{
return None;
}
Some(OrderTarget(
list.map(|(expr, order)| {
let ast::Expr::Column { table, column, .. } = expr else {
unreachable!();
};
ColumnOrder {
table_id: *table,
column_no: *column,
order,
}
})
.collect(),
eliminates_sort,
))
}
}
/// Compute an [OrderTarget] for the join optimizer to use.
/// Ideally, a join order is both efficient in joining the tables
/// but also returns the results in an order that minimizes the amount of
/// sorting that needs to be done later (either in GROUP BY, ORDER BY, or both).
///
/// TODO: this does not currently handle the case where we definitely cannot eliminate
/// the ORDER BY sorter, but we could still eliminate the GROUP BY sorter.
pub fn compute_order_target(
order_by_opt: &mut Option<Vec<(ast::Expr, SortOrder)>>,
group_by_opt: Option<&mut GroupBy>,
) -> Option<OrderTarget> {
match (&order_by_opt, group_by_opt) {
// No ordering demands - we don't care what order the joined result rows are in
(None, None) => None,
// Only ORDER BY - we would like the joined result rows to be in the order specified by the ORDER BY
(Some(order_by), None) => OrderTarget::maybe_from_iterator(
order_by.iter().map(|(expr, order)| (expr, *order)),
EliminatesSortBy::Order,
),
// Only GROUP BY - we would like the joined result rows to be in the order specified by the GROUP BY
(None, Some(group_by)) => OrderTarget::maybe_from_iterator(
group_by.exprs.iter().map(|expr| (expr, SortOrder::Asc)),
EliminatesSortBy::Group,
),
// Both ORDER BY and GROUP BY:
// If the GROUP BY does not contain all the expressions in the ORDER BY,
// then we must separately sort the result rows for ORDER BY anyway.
// However, in that case we can use the GROUP BY expressions as the target order for the join,
// so that we don't have to sort twice.
//
// If the GROUP BY contains all the expressions in the ORDER BY,
// then we again can use the GROUP BY expressions as the target order for the join;
// however in this case we must take the ASC/DESC from ORDER BY into account.
(Some(order_by), Some(group_by)) => {
// Does the group by contain all expressions in the order by?
let group_by_contains_all = order_by.iter().all(|(expr, _)| {
group_by
.exprs
.iter()
.any(|group_by_expr| exprs_are_equivalent(expr, group_by_expr))
});
// If not, let's try to target an ordering that matches the group by -- we don't care about ASC/DESC
if !group_by_contains_all {
return OrderTarget::maybe_from_iterator(
group_by.exprs.iter().map(|expr| (expr, SortOrder::Asc)),
EliminatesSortBy::Group,
);
}
// If yes, let's try to target an ordering that matches the GROUP BY columns,
// but the ORDER BY orderings. First, we need to reorder the GROUP BY columns to match the ORDER BY columns.
group_by.exprs.sort_by_key(|expr| {
order_by
.iter()
.position(|(order_by_expr, _)| exprs_are_equivalent(expr, order_by_expr))
.map_or(usize::MAX, |i| i)
});
// Now, regardless of whether we can eventually eliminate the sorting entirely in the optimizer,
// we know that we don't need ORDER BY sorting anyway, because the GROUP BY will sort the result since
// it contains all the necessary columns required for the ORDER BY, and the GROUP BY columns are now in the correct order.
// First, however, we need to make sure the GROUP BY sorter's column sort directions match the ORDER BY requirements.
assert!(group_by.exprs.len() >= order_by.len());
for (i, (_, order_by_dir)) in order_by.iter().enumerate() {
group_by
.sort_order
.as_mut()
.expect("GROUP BY should have a sort order before optimization is run")[i] =
*order_by_dir;
}
// Now we can remove the ORDER BY from the query.
order_by_opt.take();
OrderTarget::maybe_from_iterator(
group_by
.exprs
.iter()
.zip(
group_by
.sort_order
.as_ref()
.expect("GROUP BY should have a sort order before optimization is run")
.iter(),
)
.map(|(expr, dir)| (expr, *dir)),
EliminatesSortBy::GroupByAndOrder,
)
}
}
}
/// Check if the plan's row iteration order matches the [OrderTarget]'s column order.
/// If yes, and this plan is selected, then a sort operation can be eliminated.
pub fn plan_satisfies_order_target(
plan: &JoinN,
access_methods_arena: &RefCell<Vec<AccessMethod>>,
joined_tables: &[JoinedTable],
order_target: &OrderTarget,
) -> bool {
let mut target_col_idx = 0;
let num_cols_in_order_target = order_target.0.len();
for (table_index, access_method_index) in plan.data.iter() {
let target_col = &order_target.0[target_col_idx];
let table_ref = &joined_tables[*table_index];
let correct_table = target_col.table_id == table_ref.internal_id;
if !correct_table {
return false;
}
// Check if this table has an access method that provides the right ordering.
let access_method = &access_methods_arena.borrow()[*access_method_index];
match &access_method.params {
AccessMethodParams::BTreeTable {
iter_dir, index, ..
} => {
match index {
None => {
// No index, so the next required column must be the rowid alias column.
let rowid_alias_col = table_ref
.table
.columns()
.iter()
.position(|c| c.is_rowid_alias);
let Some(rowid_alias_col) = rowid_alias_col else {
return false;
};
let correct_column = target_col.column_no == rowid_alias_col;
if !correct_column {
return false;
}
// Btree table rows are always in ascending order of rowid.
let correct_order = if *iter_dir == IterationDirection::Forwards {
target_col.order == SortOrder::Asc
} else {
target_col.order == SortOrder::Desc
};
if !correct_order {
return false;
}
target_col_idx += 1;
// All order columns matched.
if target_col_idx == num_cols_in_order_target {
return true;
}
}
Some(index) => {
// All of the index columns must match the next required columns in the order target.
for index_col in index.columns.iter() {
let target_col = &order_target.0[target_col_idx];
let correct_column = target_col.column_no == index_col.pos_in_table;
if !correct_column {
return false;
}
let correct_order = if *iter_dir == IterationDirection::Forwards {
target_col.order == index_col.order
} else {
target_col.order != index_col.order
};
if !correct_order {
return false;
}
target_col_idx += 1;
// All order columns matched.
if target_col_idx == num_cols_in_order_target {
return true;
}
}
}
}
}
AccessMethodParams::VirtualTable { .. } => return false,
AccessMethodParams::Subquery => return false,
}
}
false
}