Files
turso/core/translate/group_by.rs
Jussi Saurio a99c8a8ca0 Simplify ORDER BY sorter column remapping
In case an ORDER BY column exactly matches a result column in the SELECT,
the insertion of the result column into the ORDER BY sorter can be skipped
because it's already necessarily inserted as a sorting column.

For this reason we have a mapping to know what index a given result column
has in the order by sorter.

This commit makes that mapping much simpler.
2025-08-15 15:48:41 +03:00

1117 lines
41 KiB
Rust

use turso_sqlite3_parser::ast;
use crate::translate::expr::{walk_expr, WalkControl};
use crate::translate::plan::ResultSetColumn;
use crate::{
function::AggFunc,
schema::PseudoCursorType,
translate::collate::CollationSeq,
util::exprs_are_equivalent,
vdbe::{
builder::{CursorType, ProgramBuilder},
insn::Insn,
BranchOffset,
},
Result,
};
use super::{
aggregation::handle_distinct,
emitter::{Resolver, TranslateCtx},
expr::{translate_condition_expr, translate_expr, ConditionMetadata},
order_by::order_by_sorter_insert,
plan::{Aggregate, Distinctness, GroupBy, SelectPlan, TableReferences},
result_row::emit_select_result,
};
/// Labels needed for various jumps in GROUP BY handling.
#[derive(Debug)]
pub struct GroupByLabels {
/// Label for the subroutine that clears the accumulator registers (temporary storage for per-group aggregate calculations)
pub label_subrtn_acc_clear: BranchOffset,
/// Label for the subroutine that outputs the current group's data
pub label_subrtn_acc_output: BranchOffset,
/// Label for the instruction that sets the accumulator indicator to true (indicating data exists in the accumulator for the current group)
pub label_acc_indicator_set_flag_true: BranchOffset,
/// Label for the instruction that jumps to the end of the grouping process without emitting a row
pub label_group_by_end_without_emitting_row: BranchOffset,
/// Label for the instruction that jumps to the end of the grouping process
pub label_agg_final: BranchOffset,
/// Label for the instruction that jumps to the end of the grouping process
pub label_group_by_end: BranchOffset,
/// Label for the instruction that jumps to the start of the loop that processed sorted data for GROUP BY.
/// Not relevant for cases where the data is already sorted.
pub label_sort_loop_start: BranchOffset,
/// Label for the instruction that jumps to the end of the loop that processed sorted data for GROUP BY.
/// Not relevant for cases where the data is already sorted.
pub label_sort_loop_end: BranchOffset,
/// Label for the instruction that jumps to the start of the aggregation step
pub label_grouping_agg_step: BranchOffset,
}
/// Registers allocated for GROUP BY operations.
#[derive(Debug)]
pub struct GroupByRegisters {
pub reg_group_by_source_cols_start: usize,
/// Register holding the return offset for the accumulator clear subroutine
pub reg_subrtn_acc_clear_return_offset: usize,
/// Register holding a flag to abort the grouping process if necessary
pub reg_abort_flag: usize,
/// Register holding the start of the non aggregate query members (all columns except aggregate arguments)
pub reg_non_aggregate_exprs_acc: usize,
/// Register holding the return offset for the accumulator output subroutine
pub reg_subrtn_acc_output_return_offset: usize,
/// Register holding a flag to indicate if data exists in the accumulator for the current group
pub reg_data_in_acc_flag: usize,
/// Starting index of the register(s) that hold the comparison result between the current row and the previous row
/// The comparison result is used to determine if the current row belongs to the same group as the previous row
/// Each group by expression has a corresponding register
pub reg_group_exprs_cmp: usize,
}
// Metadata for handling GROUP BY operations
#[derive(Debug)]
pub struct GroupByMetadata {
// Source of rows for the GROUP BY operation - either a sorter or the main loop itself, incase the rows are already sorted in GROUP BY required order
pub row_source: GroupByRowSource,
pub labels: GroupByLabels,
pub registers: GroupByRegisters,
}
/// Initialize resources needed for GROUP BY processing
pub fn init_group_by<'a>(
program: &mut ProgramBuilder,
t_ctx: &mut TranslateCtx<'a>,
group_by: &'a GroupBy,
plan: &SelectPlan,
result_columns: &'a [ResultSetColumn],
order_by: &'a Option<Vec<(ast::Expr, ast::SortOrder)>>,
) -> Result<()> {
collect_non_aggregate_expressions(
&mut t_ctx.non_aggregate_expressions,
group_by,
plan,
result_columns,
order_by,
)?;
let label_subrtn_acc_output = program.allocate_label();
let label_group_by_end_without_emitting_row = program.allocate_label();
let label_acc_indicator_set_flag_true = program.allocate_label();
let label_agg_final = program.allocate_label();
let label_group_by_end = program.allocate_label();
let label_subrtn_acc_clear = program.allocate_label();
let label_sort_loop_start = program.allocate_label();
let label_sort_loop_end = program.allocate_label();
let label_grouping_agg_step = program.allocate_label();
let reg_subrtn_acc_output_return_offset = program.alloc_register();
let reg_data_in_acc_flag = program.alloc_register();
let reg_abort_flag = program.alloc_register();
let reg_group_exprs_cmp = program.alloc_registers(group_by.exprs.len());
// The following two blocks of registers should always be allocated contiguously,
// because they are cleared in a contiguous block in the GROUP BYs clear accumulator subroutine.
// START BLOCK
let reg_non_aggregate_exprs_acc =
program.alloc_registers(t_ctx.non_aggregate_expressions.len());
if !plan.aggregates.is_empty() {
// Aggregate registers need to be NULLed at the start because the same registers might be reused on another invocation of a subquery,
// and if they are not NULLed, the 2nd invocation of the same subquery will have values left over from the first invocation.
t_ctx.reg_agg_start = Some(program.alloc_registers_and_init_w_null(plan.aggregates.len()));
}
// END BLOCK
let reg_sorter_key = program.alloc_register();
let column_count = plan.agg_args_count() + t_ctx.non_aggregate_expressions.len();
let reg_group_by_source_cols_start = program.alloc_registers(column_count);
let row_source = if let Some(sort_order) = group_by.sort_order.as_ref() {
let sort_cursor = program.alloc_cursor_id(CursorType::Sorter);
// Should work the same way as Order By
/*
* Terms of the ORDER BY clause that is part of a SELECT statement may be assigned a collating sequence using the COLLATE operator,
* in which case the specified collating function is used for sorting.
* Otherwise, if the expression sorted by an ORDER BY clause is a column,
* then the collating sequence of the column is used to determine sort order.
* If the expression is not a column and has no COLLATE clause, then the BINARY collating sequence is used.
*/
let collations = group_by
.exprs
.iter()
.map(|expr| match expr {
ast::Expr::Collate(_, collation_name) => {
CollationSeq::new(collation_name).map(Some)
}
ast::Expr::Column { table, column, .. } => {
let table_reference = plan
.table_references
.find_joined_table_by_internal_id(*table)
.unwrap();
let Some(table_column) = table_reference.table.get_column_at(*column) else {
crate::bail_parse_error!("column index out of bounds");
};
Ok(table_column.collation)
}
_ => Ok(Some(CollationSeq::default())),
})
.collect::<Result<Vec<_>>>()?;
program.emit_insn(Insn::SorterOpen {
cursor_id: sort_cursor,
columns: column_count,
order: sort_order.clone(),
collations,
});
let pseudo_cursor = group_by_create_pseudo_table(program, column_count);
GroupByRowSource::Sorter {
pseudo_cursor,
sort_cursor,
reg_sorter_key,
sorter_column_count: column_count,
start_reg_dest: reg_non_aggregate_exprs_acc,
}
} else {
GroupByRowSource::MainLoop {
start_reg_src: reg_group_by_source_cols_start,
start_reg_dest: reg_non_aggregate_exprs_acc,
}
};
program.add_comment(program.offset(), "clear group by abort flag");
program.emit_insn(Insn::Integer {
value: 0,
dest: reg_abort_flag,
});
program.add_comment(
program.offset(),
"initialize group by comparison registers to NULL",
);
program.emit_insn(Insn::Null {
dest: reg_group_exprs_cmp,
dest_end: if group_by.exprs.len() > 1 {
Some(reg_group_exprs_cmp + group_by.exprs.len() - 1)
} else {
None
},
});
program.add_comment(program.offset(), "go to clear accumulator subroutine");
let reg_subrtn_acc_clear_return_offset = program.alloc_register();
program.emit_insn(Insn::Gosub {
target_pc: label_subrtn_acc_clear,
return_reg: reg_subrtn_acc_clear_return_offset,
});
t_ctx.meta_group_by = Some(GroupByMetadata {
row_source,
labels: GroupByLabels {
label_subrtn_acc_output,
label_group_by_end_without_emitting_row,
label_acc_indicator_set_flag_true,
label_agg_final,
label_group_by_end,
label_subrtn_acc_clear,
label_sort_loop_start,
label_sort_loop_end,
label_grouping_agg_step,
},
registers: GroupByRegisters {
reg_subrtn_acc_output_return_offset,
reg_data_in_acc_flag,
reg_abort_flag,
reg_non_aggregate_exprs_acc,
reg_group_exprs_cmp,
reg_subrtn_acc_clear_return_offset,
reg_group_by_source_cols_start,
},
});
Ok(())
}
fn collect_non_aggregate_expressions<'a>(
non_aggregate_expressions: &mut Vec<(&'a ast::Expr, bool)>,
group_by: &'a GroupBy,
plan: &SelectPlan,
root_result_columns: &'a [ResultSetColumn],
order_by: &'a Option<Vec<(ast::Expr, ast::SortOrder)>>,
) -> Result<()> {
let mut result_columns = Vec::new();
for expr in root_result_columns
.iter()
.map(|col| &col.expr)
.chain(order_by.iter().flat_map(|o| o.iter().map(|(e, _)| e)))
.chain(group_by.having.iter().flatten())
{
collect_result_columns(expr, plan, &mut result_columns)?;
}
for group_expr in &group_by.exprs {
let in_result = result_columns
.iter()
.any(|expr| exprs_are_equivalent(expr, group_expr));
non_aggregate_expressions.push((group_expr, in_result));
}
for expr in result_columns {
let in_group_by = group_by
.exprs
.iter()
.any(|group_expr| exprs_are_equivalent(expr, group_expr));
if !in_group_by {
non_aggregate_expressions.push((expr, true));
}
}
Ok(())
}
fn collect_result_columns<'a>(
root_expr: &'a ast::Expr,
plan: &SelectPlan,
result_columns: &mut Vec<&'a ast::Expr>,
) -> Result<()> {
walk_expr(root_expr, &mut |expr: &ast::Expr| -> Result<WalkControl> {
match expr {
ast::Expr::Column { table, .. } | ast::Expr::RowId { table, .. } => {
if plan
.table_references
.find_joined_table_by_internal_id(*table)
.is_some()
{
result_columns.push(expr);
}
}
_ => {
if plan.aggregates.iter().any(|a| a.original_expr == *expr) {
return Ok(WalkControl::SkipChildren);
}
}
};
Ok(WalkControl::Continue)
})?;
Ok(())
}
/// In case sorting is needed for GROUP BY, creates a pseudo table that matches
/// the number of columns in the GROUP BY sorter. Rows are individually read
/// from the sorter into this pseudo table and processed.
pub fn group_by_create_pseudo_table(
program: &mut ProgramBuilder,
sorter_column_count: usize,
) -> usize {
// Create a pseudo-table to read one row at a time from the sorter
// This allows us to use standard table access operations on the sorted data
program.alloc_cursor_id(CursorType::Pseudo(PseudoCursorType {
column_count: sorter_column_count,
}))
}
/// In case sorting is needed for GROUP BY, sorts the rows in the GROUP BY sorter
/// and opens a pseudo table from which the sorted rows are read.
pub fn emit_group_by_sort_loop_start(
program: &mut ProgramBuilder,
row_source: &GroupByRowSource,
label_sort_loop_end: BranchOffset,
) -> Result<()> {
let GroupByRowSource::Sorter {
sort_cursor,
pseudo_cursor,
reg_sorter_key,
sorter_column_count,
..
} = row_source
else {
crate::bail_parse_error!("sort cursor must be opened for GROUP BY if we got here");
};
program.emit_insn(Insn::OpenPseudo {
cursor_id: *pseudo_cursor,
content_reg: *reg_sorter_key,
num_fields: *sorter_column_count,
});
// Sort the sorter based on the group by columns
program.emit_insn(Insn::SorterSort {
cursor_id: *sort_cursor,
pc_if_empty: label_sort_loop_end,
});
Ok(())
}
/// In case sorting is needed for GROUP BY, advances to the next row
/// in the GROUP BY sorter.
pub fn emit_group_by_sort_loop_end(
program: &mut ProgramBuilder,
sort_cursor: usize,
label_sort_loop_start: BranchOffset,
label_sort_loop_end: BranchOffset,
) {
// Continue to the next row in the sorter
program.emit_insn(Insn::SorterNext {
cursor_id: sort_cursor,
pc_if_next: label_sort_loop_start,
});
program.preassign_label_to_next_insn(label_sort_loop_end);
}
/// Enum representing the source for the rows processed during a GROUP BY.
/// In case sorting is needed (which is most of the time), the variant
/// [GroupByRowSource::Sorter] encodes the necessary information about that
/// sorter.
///
/// In case where the rows are already ordered, for example:
/// "SELECT indexed_col, count(1) FROM t GROUP BY indexed_col"
/// the rows are processed directly in the order they arrive from
/// the main query loop.
#[derive(Debug)]
pub enum GroupByRowSource {
Sorter {
/// Cursor opened for the pseudo table that GROUP BY reads rows from.
pseudo_cursor: usize,
/// The sorter opened for ensuring the rows are in GROUP BY order.
sort_cursor: usize,
/// Register holding the key used for sorting in the Sorter
reg_sorter_key: usize,
/// Number of columns in the GROUP BY sorter
sorter_column_count: usize,
start_reg_dest: usize,
},
MainLoop {
/// If GROUP BY rows are read directly in the main loop, start_reg is the first register
/// holding the value of a relevant column.
start_reg_src: usize,
/// The grouping columns for a group that is not yet finalized must be placed in new registers,
/// so that they don't get overwritten by the next group's data.
/// This is because the emission of a group that is "done" is made after a comparison between the "current" and "next" grouping
/// columns returns nonequal. If we don't store the "current" group in a separate set of registers, the "next" group's data will
/// overwrite the "current" group's columns and the wrong grouping column values will be emitted.
/// Aggregation results do not require new registers as they are not at risk of being overwritten before a given group
/// is processed.
start_reg_dest: usize,
},
}
/// Enum representing the source of the aggregate function arguments
/// emitted for a group by aggregation.
/// In the common case, the aggregate function arguments are first inserted
/// into a sorter in the main loop, and in the group by aggregation phase
/// we read the data from the sorter.
///
/// In the alternative case, no sorting is required for group by,
/// and the aggregate function arguments are retrieved directly from
/// registers allocated in the main loop.
pub enum GroupByAggArgumentSource<'a> {
/// The aggregate function arguments are retrieved from a pseudo cursor
/// which reads from the GROUP BY sorter.
PseudoCursor {
cursor_id: usize,
col_start: usize,
dest_reg_start: usize,
aggregate: &'a Aggregate,
},
/// The aggregate function arguments are retrieved from a contiguous block of registers
/// allocated in the main loop for that given aggregate function.
Register {
src_reg_start: usize,
aggregate: &'a Aggregate,
},
}
impl<'a> GroupByAggArgumentSource<'a> {
/// Create a new [GroupByAggArgumentSource] that retrieves the values from a GROUP BY sorter.
pub fn new_from_cursor(
program: &mut ProgramBuilder,
cursor_id: usize,
col_start: usize,
aggregate: &'a Aggregate,
) -> Self {
let dest_reg_start = program.alloc_registers(aggregate.args.len());
Self::PseudoCursor {
cursor_id,
col_start,
dest_reg_start,
aggregate,
}
}
/// Create a new [GroupByAggArgumentSource] that retrieves the values directly from an already
/// populated register or registers.
pub fn new_from_registers(src_reg_start: usize, aggregate: &'a Aggregate) -> Self {
Self::Register {
src_reg_start,
aggregate,
}
}
pub fn aggregate(&self) -> &Aggregate {
match self {
GroupByAggArgumentSource::PseudoCursor { aggregate, .. } => aggregate,
GroupByAggArgumentSource::Register { aggregate, .. } => aggregate,
}
}
pub fn agg_func(&self) -> &AggFunc {
match self {
GroupByAggArgumentSource::PseudoCursor { aggregate, .. } => &aggregate.func,
GroupByAggArgumentSource::Register { aggregate, .. } => &aggregate.func,
}
}
pub fn args(&self) -> &[ast::Expr] {
match self {
GroupByAggArgumentSource::PseudoCursor { aggregate, .. } => &aggregate.args,
GroupByAggArgumentSource::Register { aggregate, .. } => &aggregate.args,
}
}
pub fn num_args(&self) -> usize {
match self {
GroupByAggArgumentSource::PseudoCursor { aggregate, .. } => aggregate.args.len(),
GroupByAggArgumentSource::Register { aggregate, .. } => aggregate.args.len(),
}
}
/// Read the value of an aggregate function argument either from sorter data or directly from a register.
pub fn translate(&self, program: &mut ProgramBuilder, arg_idx: usize) -> Result<usize> {
match self {
GroupByAggArgumentSource::PseudoCursor {
cursor_id,
col_start,
dest_reg_start,
..
} => {
program.emit_column(*cursor_id, *col_start, dest_reg_start + arg_idx);
Ok(dest_reg_start + arg_idx)
}
GroupByAggArgumentSource::Register {
src_reg_start: start_reg,
..
} => Ok(*start_reg + arg_idx),
}
}
}
/// Emits bytecode for processing a single GROUP BY group.
pub fn group_by_process_single_group(
program: &mut ProgramBuilder,
group_by: &GroupBy,
plan: &SelectPlan,
t_ctx: &mut TranslateCtx,
) -> Result<()> {
let GroupByMetadata {
registers,
labels,
row_source,
..
} = t_ctx
.meta_group_by
.as_ref()
.expect("group by metadata not found");
program.preassign_label_to_next_insn(labels.label_sort_loop_start);
let groups_start_reg = match &row_source {
GroupByRowSource::Sorter {
sort_cursor,
pseudo_cursor,
reg_sorter_key,
..
} => {
// Read a row from the sorted data in the sorter into the pseudo cursor
program.emit_insn(Insn::SorterData {
cursor_id: *sort_cursor,
dest_reg: *reg_sorter_key,
pseudo_cursor: *pseudo_cursor,
});
// Read the group by columns from the pseudo cursor
let groups_start_reg = program.alloc_registers(group_by.exprs.len());
for i in 0..group_by.exprs.len() {
let sorter_column_index = i;
let group_reg = groups_start_reg + i;
program.emit_column(*pseudo_cursor, sorter_column_index, group_reg);
}
groups_start_reg
}
GroupByRowSource::MainLoop { start_reg_src, .. } => *start_reg_src,
};
// Compare the group by columns to the previous group by columns to see if we are at a new group or not
program.emit_insn(Insn::Compare {
start_reg_a: registers.reg_group_exprs_cmp,
start_reg_b: groups_start_reg,
count: group_by.exprs.len(),
collation: program.curr_collation(),
});
program.add_comment(
program.offset(),
"start new group if comparison is not equal",
);
// If we are at a new group, continue. If we are at the same group, jump to the aggregation step (i.e. accumulate more values into the aggregations)
let label_jump_after_comparison = program.allocate_label();
program.emit_insn(Insn::Jump {
target_pc_lt: label_jump_after_comparison,
target_pc_eq: labels.label_grouping_agg_step,
target_pc_gt: label_jump_after_comparison,
});
program.add_comment(
program.offset(),
"check if ended group had data, and output if so",
);
program.resolve_label(label_jump_after_comparison, program.offset());
program.emit_insn(Insn::Gosub {
target_pc: labels.label_subrtn_acc_output,
return_reg: registers.reg_subrtn_acc_output_return_offset,
});
// New group, move current group by columns into the comparison register
program.emit_insn(Insn::Move {
source_reg: groups_start_reg,
dest_reg: registers.reg_group_exprs_cmp,
count: group_by.exprs.len(),
});
program.add_comment(program.offset(), "check abort flag");
program.emit_insn(Insn::IfPos {
reg: registers.reg_abort_flag,
target_pc: labels.label_group_by_end,
decrement_by: 0,
});
program.add_comment(program.offset(), "goto clear accumulator subroutine");
program.emit_insn(Insn::Gosub {
target_pc: labels.label_subrtn_acc_clear,
return_reg: registers.reg_subrtn_acc_clear_return_offset,
});
// Process each aggregate function for the current row
program.preassign_label_to_next_insn(labels.label_grouping_agg_step);
let cursor_index = t_ctx.non_aggregate_expressions.len(); // Skipping all columns in sorter that not an aggregation arguments
let mut offset = 0;
for (i, agg) in plan.aggregates.iter().enumerate() {
let start_reg = t_ctx
.reg_agg_start
.expect("aggregate registers must be initialized");
let agg_result_reg = start_reg + i;
let agg_arg_source = match &row_source {
GroupByRowSource::Sorter { pseudo_cursor, .. } => {
GroupByAggArgumentSource::new_from_cursor(
program,
*pseudo_cursor,
cursor_index + offset,
agg,
)
}
GroupByRowSource::MainLoop { start_reg_src, .. } => {
// Aggregation arguments are always placed in the registers that follow any scalars.
let start_reg_aggs = start_reg_src + t_ctx.non_aggregate_expressions.len();
GroupByAggArgumentSource::new_from_registers(start_reg_aggs + offset, agg)
}
};
translate_aggregation_step_groupby(
program,
&plan.table_references,
agg_arg_source,
agg_result_reg,
&t_ctx.resolver,
)?;
if let Distinctness::Distinct { ctx } = &agg.distinctness {
let ctx = ctx
.as_ref()
.expect("distinct aggregate context not populated");
program.preassign_label_to_next_insn(ctx.label_on_conflict);
}
offset += agg.args.len();
}
// We only need to store non-aggregate columns once per group
// Skip if we've already stored them for this group
program.add_comment(
program.offset(),
"don't emit group columns if continuing existing group",
);
program.emit_insn(Insn::If {
target_pc: labels.label_acc_indicator_set_flag_true,
reg: registers.reg_data_in_acc_flag,
jump_if_null: false,
});
// Read non-aggregate columns from the current row
match row_source {
GroupByRowSource::Sorter {
pseudo_cursor,
start_reg_dest,
..
} => {
let mut next_reg = *start_reg_dest;
for (sorter_column_index, (expr, in_result)) in
t_ctx.non_aggregate_expressions.iter().enumerate()
{
if *in_result {
program.emit_column(*pseudo_cursor, sorter_column_index, next_reg);
t_ctx.resolver.expr_to_reg_cache.push((expr, next_reg));
next_reg += 1;
}
}
}
GroupByRowSource::MainLoop { start_reg_dest, .. } => {
// Re-translate all the non-aggregate expressions into destination registers. We cannot use the same registers as emitted
// in the earlier part of the main loop, because they would be overwritten by the next group before the group results
// are processed.
for (i, expr) in t_ctx
.non_aggregate_expressions
.iter()
.filter_map(|(expr, in_result)| if *in_result { Some(expr) } else { None })
.enumerate()
{
let dest_reg = start_reg_dest + i;
translate_expr(
program,
Some(&plan.table_references),
expr,
dest_reg,
&t_ctx.resolver,
)?;
t_ctx.resolver.expr_to_reg_cache.push((expr, dest_reg));
}
}
}
// Mark that we've stored data for this group
program.resolve_label(labels.label_acc_indicator_set_flag_true, program.offset());
program.add_comment(program.offset(), "indicate data in accumulator");
program.emit_insn(Insn::Integer {
value: 1,
dest: registers.reg_data_in_acc_flag,
});
Ok(())
}
/// Emits the bytecode for processing the aggregation phase of a GROUP BY clause.
/// This is called either when:
/// 1. the main query execution loop has finished processing,
/// and we now have data in the GROUP BY sorter.
/// 2. the rows are already sorted in the order that the GROUP BY keys are defined,
/// and we can start aggregating inside the main loop.
pub fn group_by_agg_phase(
program: &mut ProgramBuilder,
t_ctx: &mut TranslateCtx,
plan: &SelectPlan,
) -> Result<()> {
let GroupByMetadata {
labels, row_source, ..
} = t_ctx.meta_group_by.as_mut().unwrap();
let group_by = plan.group_by.as_ref().unwrap();
let label_sort_loop_start = labels.label_sort_loop_start;
let label_sort_loop_end = labels.label_sort_loop_end;
if matches!(row_source, GroupByRowSource::Sorter { .. }) {
emit_group_by_sort_loop_start(program, row_source, label_sort_loop_end)?;
}
group_by_process_single_group(program, group_by, plan, t_ctx)?;
let row_source = &t_ctx.meta_group_by.as_ref().unwrap().row_source;
// Continue to the next row in the sorter
if let GroupByRowSource::Sorter { sort_cursor, .. } = row_source {
emit_group_by_sort_loop_end(
program,
*sort_cursor,
label_sort_loop_start,
label_sort_loop_end,
);
}
Ok(())
}
pub fn group_by_emit_row_phase<'a>(
program: &mut ProgramBuilder,
t_ctx: &mut TranslateCtx<'a>,
plan: &'a SelectPlan,
) -> Result<()> {
let group_by = plan.group_by.as_ref().expect("group by not found");
let GroupByMetadata {
labels, registers, ..
} = t_ctx
.meta_group_by
.as_ref()
.expect("group by metadata not found");
program.add_comment(program.offset(), "emit row for final group");
program.emit_insn(Insn::Gosub {
target_pc: labels.label_subrtn_acc_output,
return_reg: registers.reg_subrtn_acc_output_return_offset,
});
program.add_comment(program.offset(), "group by finished");
program.emit_insn(Insn::Goto {
target_pc: labels.label_group_by_end,
});
program.emit_insn(Insn::Integer {
value: 1,
dest: registers.reg_abort_flag,
});
program.emit_insn(Insn::Return {
return_reg: registers.reg_subrtn_acc_output_return_offset,
can_fallthrough: false,
});
program.resolve_label(labels.label_subrtn_acc_output, program.offset());
// Only output a row if there's data in the accumulator
program.add_comment(program.offset(), "output group by row subroutine start");
program.emit_insn(Insn::IfPos {
reg: registers.reg_data_in_acc_flag,
target_pc: labels.label_agg_final,
decrement_by: 0,
});
// If no data, return without outputting a row
program.resolve_label(
labels.label_group_by_end_without_emitting_row,
program.offset(),
);
// SELECT DISTINCT also jumps here if there is a duplicate.
if let Distinctness::Distinct { ctx } = &plan.distinctness {
let distinct_ctx = ctx.as_ref().expect("distinct context must exist");
program.resolve_label(distinct_ctx.label_on_conflict, program.offset());
}
program.emit_insn(Insn::Return {
return_reg: registers.reg_subrtn_acc_output_return_offset,
can_fallthrough: false,
});
// Resolve the label for the start of the group by output row subroutine
program.resolve_label(labels.label_agg_final, program.offset());
// Finalize aggregate values for output
for (i, agg) in plan.aggregates.iter().enumerate() {
let agg_start_reg = t_ctx
.reg_agg_start
.expect("aggregate registers must be initialized");
let agg_result_reg = agg_start_reg + i;
program.emit_insn(Insn::AggFinal {
register: agg_result_reg,
func: agg.func.clone(),
});
t_ctx
.resolver
.expr_to_reg_cache
.push((&agg.original_expr, agg_result_reg));
}
t_ctx.resolver.enable_expr_to_reg_cache();
if let Some(having) = &group_by.having {
for expr in having.iter() {
let if_true_target = program.allocate_label();
translate_condition_expr(
program,
&plan.table_references,
expr,
ConditionMetadata {
jump_if_condition_is_true: false,
jump_target_when_false: labels.label_group_by_end_without_emitting_row,
jump_target_when_true: if_true_target,
},
&t_ctx.resolver,
)?;
program.preassign_label_to_next_insn(if_true_target);
}
}
match &plan.order_by {
None => {
emit_select_result(
program,
&t_ctx.resolver,
plan,
Some(labels.label_group_by_end),
Some(labels.label_group_by_end_without_emitting_row),
t_ctx.reg_nonagg_emit_once_flag,
t_ctx.reg_offset,
t_ctx.reg_result_cols_start.unwrap(),
t_ctx.limit_ctx,
)?;
}
Some(_) => {
order_by_sorter_insert(
program,
&t_ctx.resolver,
t_ctx
.meta_sort
.as_ref()
.expect("sort metadata must exist for ORDER BY"),
plan,
)?;
}
}
program.emit_insn(Insn::Return {
return_reg: registers.reg_subrtn_acc_output_return_offset,
can_fallthrough: false,
});
// Subroutine to clear accumulators for a new group
program.add_comment(program.offset(), "clear accumulator subroutine start");
program.resolve_label(labels.label_subrtn_acc_clear, program.offset());
let start_reg = registers.reg_non_aggregate_exprs_acc;
// Reset all accumulator registers to NULL
program.emit_insn(Insn::Null {
dest: start_reg,
dest_end: Some(
start_reg + t_ctx.non_aggregate_expressions.len() + plan.agg_args_count() - 1,
),
});
// Reopen ephemeral indexes for distinct aggregates (effectively clearing them).
plan.aggregates
.iter()
.filter_map(|agg| {
if let Distinctness::Distinct { ctx } = &agg.distinctness {
Some(ctx)
} else {
None
}
})
.for_each(|ctx| {
let ctx = ctx
.as_ref()
.expect("distinct aggregate context not populated");
program.emit_insn(Insn::OpenEphemeral {
cursor_id: ctx.cursor_id,
is_table: false,
});
});
program.emit_insn(Insn::Integer {
value: 0,
dest: registers.reg_data_in_acc_flag,
});
program.emit_insn(Insn::Return {
return_reg: registers.reg_subrtn_acc_clear_return_offset,
can_fallthrough: false,
});
program.preassign_label_to_next_insn(labels.label_group_by_end);
Ok(())
}
/// Emits the bytecode for processing an aggregate step within a GROUP BY clause.
/// Eg. in `SELECT product_category, SUM(price) FROM t GROUP BY line_item`, 'price' is evaluated for every row
/// where the 'product_category' is the same, and the result is added to the accumulator for that category.
///
/// This is distinct from the final step, which is called after a single group has been entirely accumulated,
/// and the actual result value of the aggregation is materialized.
pub fn translate_aggregation_step_groupby(
program: &mut ProgramBuilder,
referenced_tables: &TableReferences,
agg_arg_source: GroupByAggArgumentSource,
target_register: usize,
resolver: &Resolver,
) -> Result<usize> {
let num_args = agg_arg_source.num_args();
let dest = match agg_arg_source.agg_func() {
AggFunc::Avg => {
if num_args != 1 {
crate::bail_parse_error!("avg bad number of arguments");
}
let expr_reg = agg_arg_source.translate(program, 0)?;
handle_distinct(program, agg_arg_source.aggregate(), expr_reg);
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: AggFunc::Avg,
});
target_register
}
AggFunc::Count | AggFunc::Count0 => {
let expr_reg = agg_arg_source.translate(program, 0)?;
handle_distinct(program, agg_arg_source.aggregate(), expr_reg);
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: if matches!(agg_arg_source.agg_func(), AggFunc::Count0) {
AggFunc::Count0
} else {
AggFunc::Count
},
});
target_register
}
AggFunc::GroupConcat => {
let num_args = agg_arg_source.num_args();
if num_args != 1 && num_args != 2 {
crate::bail_parse_error!("group_concat bad number of arguments");
}
let delimiter_reg = program.alloc_register();
let delimiter_expr: ast::Expr;
if num_args == 2 {
match &agg_arg_source.args()[1] {
ast::Expr::Column { .. } => {
delimiter_expr = agg_arg_source.args()[1].clone();
}
ast::Expr::Literal(ast::Literal::String(s)) => {
delimiter_expr = ast::Expr::Literal(ast::Literal::String(s.to_string()));
}
_ => crate::bail_parse_error!("Incorrect delimiter parameter"),
};
} else {
delimiter_expr = ast::Expr::Literal(ast::Literal::String(String::from("\",\"")));
}
let expr_reg = agg_arg_source.translate(program, 0)?;
handle_distinct(program, agg_arg_source.aggregate(), expr_reg);
translate_expr(
program,
Some(referenced_tables),
&delimiter_expr,
delimiter_reg,
resolver,
)?;
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: delimiter_reg,
func: AggFunc::GroupConcat,
});
target_register
}
AggFunc::Max => {
if num_args != 1 {
crate::bail_parse_error!("max bad number of arguments");
}
let expr_reg = agg_arg_source.translate(program, 0)?;
handle_distinct(program, agg_arg_source.aggregate(), expr_reg);
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: AggFunc::Max,
});
target_register
}
AggFunc::Min => {
if num_args != 1 {
crate::bail_parse_error!("min bad number of arguments");
}
let expr_reg = agg_arg_source.translate(program, 0)?;
handle_distinct(program, agg_arg_source.aggregate(), expr_reg);
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: AggFunc::Min,
});
target_register
}
#[cfg(feature = "json")]
AggFunc::JsonGroupArray | AggFunc::JsonbGroupArray => {
if num_args != 1 {
crate::bail_parse_error!("min bad number of arguments");
}
let expr_reg = agg_arg_source.translate(program, 0)?;
handle_distinct(program, agg_arg_source.aggregate(), expr_reg);
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: AggFunc::JsonGroupArray,
});
target_register
}
#[cfg(feature = "json")]
AggFunc::JsonGroupObject | AggFunc::JsonbGroupObject => {
if num_args != 2 {
crate::bail_parse_error!("max bad number of arguments");
}
let expr_reg = agg_arg_source.translate(program, 0)?;
handle_distinct(program, agg_arg_source.aggregate(), expr_reg);
let value_reg = agg_arg_source.translate(program, 1)?;
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: value_reg,
func: AggFunc::JsonGroupObject,
});
target_register
}
AggFunc::StringAgg => {
if num_args != 2 {
crate::bail_parse_error!("string_agg bad number of arguments");
}
let delimiter_reg = program.alloc_register();
let delimiter_expr = match &agg_arg_source.args()[1] {
ast::Expr::Column { .. } => agg_arg_source.args()[1].clone(),
ast::Expr::Literal(ast::Literal::String(s)) => {
ast::Expr::Literal(ast::Literal::String(s.to_string()))
}
_ => crate::bail_parse_error!("Incorrect delimiter parameter"),
};
let expr_reg = agg_arg_source.translate(program, 0)?;
handle_distinct(program, agg_arg_source.aggregate(), expr_reg);
translate_expr(
program,
Some(referenced_tables),
&delimiter_expr,
delimiter_reg,
resolver,
)?;
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: delimiter_reg,
func: AggFunc::StringAgg,
});
target_register
}
AggFunc::Sum => {
if num_args != 1 {
crate::bail_parse_error!("sum bad number of arguments");
}
let expr_reg = agg_arg_source.translate(program, 0)?;
handle_distinct(program, agg_arg_source.aggregate(), expr_reg);
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: AggFunc::Sum,
});
target_register
}
AggFunc::Total => {
if num_args != 1 {
crate::bail_parse_error!("total bad number of arguments");
}
let expr_reg = agg_arg_source.translate(program, 0)?;
handle_distinct(program, agg_arg_source.aggregate(), expr_reg);
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: AggFunc::Total,
});
target_register
}
AggFunc::External(_) => {
todo!("External aggregate functions are not yet supported in GROUP BY");
}
};
Ok(dest)
}