Files
turso/core/translate.rs
2024-07-14 14:00:25 +08:00

1089 lines
38 KiB
Rust

use std::cell::RefCell;
use std::rc::Rc;
use crate::function::{AggFunc, Func, SingleRowFunc};
use crate::pager::Pager;
use crate::schema::{Column, Schema, Table};
use crate::sqlite3_ondisk::{DatabaseHeader, MIN_PAGE_CACHE_SIZE};
use crate::util::normalize_ident;
use crate::vdbe::{BranchOffset, Insn, Program, ProgramBuilder};
use anyhow::Result;
use sqlite3_parser::ast::{self, Expr, Literal};
struct Select {
columns: Vec<ast::ResultColumn>,
column_info: Vec<ColumnInfo>,
src_tables: Vec<SrcTable>, // Tables we use to get data from. This includes "from" and "joins"
limit: Option<ast::Limit>,
exist_aggregation: bool,
where_clause: Option<ast::Expr>,
/// Ordered list of opened read table loops
/// Used for generating a loop that looks like this:
/// cursor 0 = open table 0
/// for each row in cursor 0
/// cursor 1 = open table 1
/// for each row in cursor 1
/// ...
/// end cursor 1
/// end cursor 0
loops: Vec<LoopInfo>,
}
struct LoopInfo {
rewind_offset: BranchOffset,
rewind_label: BranchOffset,
open_cursor: usize,
}
struct SrcTable {
table: Table,
join_info: Option<ast::JoinedSelectTable>, // FIXME: preferably this should be a reference with lifetime == Select ast expr
}
struct ColumnInfo {
func: Option<Func>,
args: Option<Vec<ast::Expr>>,
columns_to_allocate: usize, /* number of result columns this col will result on */
}
impl ColumnInfo {
pub fn new() -> Self {
Self {
func: None,
args: None,
columns_to_allocate: 1,
}
}
pub fn is_aggregation_function(&self) -> bool {
match self.func {
Some(Func::Agg(_)) => true,
_ => false,
}
}
}
struct LimitInfo {
limit_reg: usize,
num: i64,
goto_label: BranchOffset,
}
/// Translate SQL statement into bytecode program.
pub fn translate(
schema: &Schema,
stmt: ast::Stmt,
database_header: Rc<RefCell<DatabaseHeader>>,
pager: Rc<Pager>,
) -> Result<Program> {
match stmt {
ast::Stmt::Select(select) => {
let select = build_select(schema, select)?;
translate_select(select)
}
ast::Stmt::Pragma(name, body) => translate_pragma(&name, body, database_header, pager),
_ => todo!(),
}
}
fn build_select(schema: &Schema, select: ast::Select) -> Result<Select> {
match select.body.select {
ast::OneSelect::Select {
columns,
from: Some(from),
where_clause,
..
} => {
let table_name = match from.select {
Some(select_table) => match *select_table {
ast::SelectTable::Table(name, ..) => name.name,
_ => todo!(),
},
None => todo!(),
};
let table_name = table_name.0;
let table = match schema.get_table(&table_name) {
Some(table) => table,
None => anyhow::bail!("Parse error: no such table: {}", table_name),
};
let mut joins = Vec::new();
joins.push(SrcTable {
table: Table::BTree(table.clone()),
join_info: None,
});
match from.joins {
Some(selected_joins) => {
for join in selected_joins {
let table_name = match &join.table {
ast::SelectTable::Table(name, ..) => name.name.clone(),
_ => todo!(),
};
let table_name = &table_name.0;
let table = match schema.get_table(table_name) {
Some(table) => table,
None => anyhow::bail!("Parse error: no such table: {}", table_name),
};
joins.push(SrcTable {
table: Table::BTree(table),
join_info: Some(join.clone()),
});
}
}
None => {}
};
let table = Table::BTree(table);
let column_info = analyze_columns(&columns, &joins);
let exist_aggregation = column_info
.iter()
.any(|info| info.is_aggregation_function());
Ok(Select {
columns,
column_info,
src_tables: joins,
limit: select.limit.clone(),
exist_aggregation,
where_clause,
loops: Vec::new(),
})
}
ast::OneSelect::Select {
columns,
from: None,
where_clause,
..
} => {
let column_info = analyze_columns(&columns, &Vec::new());
let exist_aggregation = column_info
.iter()
.any(|info| info.is_aggregation_function());
Ok(Select {
columns,
column_info,
src_tables: Vec::new(),
limit: select.limit.clone(),
where_clause,
exist_aggregation,
loops: Vec::new(),
})
}
_ => todo!(),
}
}
/// Generate code for a SELECT statement.
fn translate_select(mut select: Select) -> Result<Program> {
let mut program = ProgramBuilder::new();
let init_label = program.allocate_label();
program.emit_insn_with_label_dependency(
Insn::Init {
target_pc: init_label,
},
init_label,
);
let start_offset = program.offset();
let limit_info = if let Some(limit) = &select.limit {
assert!(limit.offset.is_none());
let target_register = program.alloc_register();
let limit_reg = translate_expr(&mut program, &select, &limit.expr, target_register)?;
let num = if let ast::Expr::Literal(ast::Literal::Numeric(num)) = &limit.expr {
num.parse::<i64>()?
} else {
todo!();
};
let goto_label = program.allocate_label();
if num == 0 {
program.emit_insn_with_label_dependency(
Insn::Goto {
target_pc: goto_label,
},
goto_label,
);
}
Some(LimitInfo {
limit_reg,
num,
goto_label,
})
} else {
None
};
if !select.src_tables.is_empty() {
translate_tables_begin(&mut program, &mut select);
let where_maybe = insert_where_clause_instructions(&select, &mut program)?;
let (register_start, register_end) = translate_columns(&mut program, &select)?;
if !select.exist_aggregation {
program.emit_insn(Insn::ResultRow {
start_reg: register_start,
count: register_end - register_start,
});
emit_limit_insn(&limit_info, &mut program);
}
if let Some(where_clause_label) = where_maybe {
program.resolve_label(where_clause_label, program.offset());
}
translate_tables_end(&mut program, &select);
if select.exist_aggregation {
let mut target = register_start;
for info in &select.column_info {
if let Some(Func::Agg(func)) = &info.func {
program.emit_insn(Insn::AggFinal {
register: target,
func: func.clone(),
});
}
target += info.columns_to_allocate;
}
// only one result row
program.emit_insn(Insn::ResultRow {
start_reg: register_start,
count: register_end - register_start,
});
emit_limit_insn(&limit_info, &mut program);
}
} else {
assert!(!select.exist_aggregation);
let where_maybe = insert_where_clause_instructions(&select, &mut program)?;
let (register_start, register_end) = translate_columns(&mut program, &select)?;
if let Some(where_clause_label) = where_maybe {
program.resolve_label(where_clause_label, program.offset() + 1);
}
program.emit_insn(Insn::ResultRow {
start_reg: register_start,
count: register_end - register_start,
});
emit_limit_insn(&limit_info, &mut program);
};
program.emit_insn(Insn::Halt);
let halt_offset = program.offset() - 1;
if limit_info.is_some() && limit_info.as_ref().unwrap().goto_label < 0 {
program.resolve_label(limit_info.as_ref().unwrap().goto_label, halt_offset);
}
program.resolve_label(init_label, program.offset());
program.emit_insn(Insn::Transaction);
program.emit_run_once_insns();
program.emit_insn(Insn::Goto {
target_pc: start_offset,
});
Ok(program.build())
}
fn emit_limit_insn(limit_info: &Option<LimitInfo>, program: &mut ProgramBuilder) {
if limit_info.is_none() {
return;
}
let limit_info = limit_info.as_ref().unwrap();
if limit_info.num > 0 {
program.emit_insn_with_label_dependency(
Insn::DecrJumpZero {
reg: limit_info.limit_reg,
target_pc: limit_info.goto_label,
},
limit_info.goto_label,
);
}
}
fn insert_where_clause_instructions(
select: &Select,
program: &mut ProgramBuilder,
) -> Result<Option<BranchOffset>> {
if let Some(w) = &select.where_clause {
let label = program.allocate_label();
translate_condition_expr(program, &select, w, label)?;
Ok(Some(label))
} else {
Ok(None)
}
}
fn translate_tables_begin(program: &mut ProgramBuilder, select: &mut Select) {
for join in &select.src_tables {
let table = &join.table;
let loop_info = translate_table_open_cursor(program, table);
select.loops.push(loop_info);
}
for loop_info in &mut select.loops {
translate_table_open_loop(program, loop_info);
}
}
fn translate_tables_end(program: &mut ProgramBuilder, select: &Select) {
// iterate in reverse order as we open cursors in order
for table_loop in select.loops.iter().rev() {
let cursor_id = table_loop.open_cursor;
program.emit_insn(Insn::NextAsync { cursor_id });
program.emit_insn(Insn::NextAwait {
cursor_id,
pc_if_next: table_loop.rewind_offset as BranchOffset,
});
program.resolve_label(table_loop.rewind_label, program.offset());
}
}
fn translate_table_open_cursor(program: &mut ProgramBuilder, table: &Table) -> LoopInfo {
let cursor_id = program.alloc_cursor_id(table.clone());
let root_page = match table {
Table::BTree(btree) => btree.root_page,
Table::Pseudo(_) => todo!(),
};
program.emit_insn(Insn::OpenReadAsync {
cursor_id,
root_page,
});
program.emit_insn(Insn::OpenReadAwait);
LoopInfo {
open_cursor: cursor_id,
rewind_offset: 0,
rewind_label: 0,
}
}
fn translate_table_open_loop(program: &mut ProgramBuilder, loop_info: &mut LoopInfo) {
program.emit_insn(Insn::RewindAsync {
cursor_id: loop_info.open_cursor,
});
let rewind_await_label = program.allocate_label();
program.emit_insn_with_label_dependency(
Insn::RewindAwait {
cursor_id: loop_info.open_cursor,
pc_if_empty: rewind_await_label,
},
rewind_await_label,
);
loop_info.rewind_label = rewind_await_label;
loop_info.rewind_offset = program.offset() - 1;
}
fn translate_columns(program: &mut ProgramBuilder, select: &Select) -> Result<(usize, usize)> {
let register_start = program.next_free_register();
// allocate one register as output for each col
let registers: usize = select
.column_info
.iter()
.map(|col| col.columns_to_allocate)
.sum();
program.alloc_registers(registers);
let register_end = program.next_free_register();
let mut target = register_start;
for (col, info) in select.columns.iter().zip(select.column_info.iter()) {
translate_column(program, select, col, info, target)?;
target += info.columns_to_allocate;
}
Ok((register_start, register_end))
}
fn translate_column(
program: &mut ProgramBuilder,
select: &Select,
col: &ast::ResultColumn,
info: &ColumnInfo,
target_register: usize, // where to store the result, in case of star it will be the start of registers added
) -> Result<()> {
match col {
ast::ResultColumn::Expr(expr, _) => {
if info.is_aggregation_function() {
let _ = translate_aggregation(program, select, expr, info, target_register)?;
} else {
let _ = translate_expr(program, select, expr, target_register)?;
}
}
ast::ResultColumn::Star => {
let mut target_register = target_register;
for join in &select.src_tables {
let table = &join.table;
translate_table_star(table, program, target_register);
target_register += table.columns().len();
}
}
ast::ResultColumn::TableStar(_) => todo!(),
}
Ok(())
}
fn translate_table_star(table: &Table, program: &mut ProgramBuilder, target_register: usize) {
let table_cursor = program.resolve_cursor_id(table);
for (i, col) in table.columns().iter().enumerate() {
let col_target_register = target_register + i;
if table.column_is_rowid_alias(col) {
program.emit_insn(Insn::RowId {
cursor_id: table_cursor,
dest: col_target_register,
});
} else {
program.emit_insn(Insn::Column {
column: i,
dest: col_target_register,
cursor_id: table_cursor,
});
maybe_apply_affinity(col, col_target_register, program);
}
}
}
fn analyze_columns(columns: &Vec<ast::ResultColumn>, joins: &Vec<SrcTable>) -> Vec<ColumnInfo> {
let mut column_information_list = Vec::with_capacity(columns.len());
for column in columns {
let mut info = ColumnInfo::new();
if let ast::ResultColumn::Star = column {
info.columns_to_allocate = 0;
for join in joins {
info.columns_to_allocate += join.table.columns().len();
}
} else {
info.columns_to_allocate = 1;
analyze_column(column, &mut info);
}
column_information_list.push(info);
}
column_information_list
}
/// Analyze a column expression.
///
/// This function will walk all columns and find information about:
/// * Aggregation functions.
fn analyze_column(column: &ast::ResultColumn, column_info_out: &mut ColumnInfo) {
match column {
ast::ResultColumn::Expr(expr, _) => analyze_expr(expr, column_info_out),
ast::ResultColumn::Star => {}
ast::ResultColumn::TableStar(_) => {}
}
}
fn analyze_expr(expr: &Expr, column_info_out: &mut ColumnInfo) {
match expr {
ast::Expr::FunctionCall {
name,
distinctness: _,
args,
filter_over: _,
} => {
let func_type = match normalize_ident(name.0.as_str()).as_str().parse() {
Ok(func) => Some(func),
Err(_) => None,
};
if func_type.is_none() {
let args = args.as_ref().unwrap();
if args.len() > 0 {
analyze_expr(&args.get(0).unwrap(), column_info_out);
}
} else {
column_info_out.func = func_type;
// TODO(pere): use lifetimes for args? Arenas would be lovely here :(
column_info_out.args.clone_from(args);
}
}
ast::Expr::FunctionCallStar { .. } => todo!(),
_ => {}
}
}
fn translate_condition_expr(
program: &mut ProgramBuilder,
select: &Select,
expr: &ast::Expr,
jump_target: BranchOffset,
) -> Result<()> {
match expr {
ast::Expr::Between { .. } => todo!(),
ast::Expr::Binary(e1, op, e2) => {
let e1_reg = program.alloc_register();
let e2_reg = program.alloc_register();
let _ = translate_expr(program, select, e1, e1_reg)?;
match e1.as_ref() {
ast::Expr::Literal(_) => program.move_last_insn_out_of_loop(),
_ => {}
}
let _ = translate_expr(program, select, e2, e2_reg)?;
match e2.as_ref() {
ast::Expr::Literal(_) => program.move_last_insn_out_of_loop(),
_ => {}
}
if jump_target < 0 {
program.add_label_dependency(jump_target, program.offset());
}
program.emit_insn(match op {
ast::Operator::NotEquals => Insn::Eq {
lhs: e1_reg,
rhs: e2_reg,
target_pc: jump_target,
},
ast::Operator::Equals => Insn::Ne {
lhs: e1_reg,
rhs: e2_reg,
target_pc: jump_target,
},
ast::Operator::Less => Insn::Ge {
lhs: e1_reg,
rhs: e2_reg,
target_pc: jump_target,
},
ast::Operator::LessEquals => Insn::Gt {
lhs: e1_reg,
rhs: e2_reg,
target_pc: jump_target,
},
ast::Operator::Greater => Insn::Le {
lhs: e1_reg,
rhs: e2_reg,
target_pc: jump_target,
},
ast::Operator::GreaterEquals => Insn::Lt {
lhs: e1_reg,
rhs: e2_reg,
target_pc: jump_target,
},
_ => todo!(),
});
Ok(())
}
ast::Expr::Literal(lit) => match lit {
ast::Literal::Numeric(val) => {
let maybe_int = val.parse::<i64>();
if let Ok(int_value) = maybe_int {
let reg = program.alloc_register();
program.emit_insn(Insn::Integer {
value: int_value,
dest: reg,
});
if jump_target < 0 {
program.add_label_dependency(jump_target, program.offset());
}
program.emit_insn(Insn::IfNot {
reg,
target_pc: jump_target,
});
Ok(())
} else {
anyhow::bail!("Parse error: unsupported literal type in condition");
}
}
_ => todo!(),
},
_ => todo!(),
}
}
fn translate_expr(
program: &mut ProgramBuilder,
select: &Select,
expr: &ast::Expr,
target_register: usize,
) -> Result<usize> {
match expr {
ast::Expr::Between { .. } => todo!(),
ast::Expr::Binary(e1, op, e2) => {
let e1_reg = program.alloc_register();
let e2_reg = program.alloc_register();
let _ = translate_expr(program, select, e1, e1_reg)?;
let _ = translate_expr(program, select, e2, e2_reg)?;
program.emit_insn(match op {
ast::Operator::NotEquals => Insn::Ne {
lhs: e1_reg,
rhs: e2_reg,
target_pc: program.offset() + 3, // jump to "emit True" instruction
},
ast::Operator::Equals => Insn::Eq {
lhs: e1_reg,
rhs: e2_reg,
target_pc: program.offset() + 3,
},
ast::Operator::Less => Insn::Lt {
lhs: e1_reg,
rhs: e2_reg,
target_pc: program.offset() + 3,
},
ast::Operator::LessEquals => Insn::Le {
lhs: e1_reg,
rhs: e2_reg,
target_pc: program.offset() + 3,
},
ast::Operator::Greater => Insn::Gt {
lhs: e1_reg,
rhs: e2_reg,
target_pc: program.offset() + 3,
},
ast::Operator::GreaterEquals => Insn::Ge {
lhs: e1_reg,
rhs: e2_reg,
target_pc: program.offset() + 3,
},
_ => todo!(),
});
program.emit_insn(Insn::Integer {
value: 0, // emit False
dest: target_register,
});
program.emit_insn(Insn::Goto {
target_pc: program.offset() + 2,
});
program.emit_insn(Insn::Integer {
value: 1, // emit True
dest: target_register,
});
Ok(target_register)
}
ast::Expr::Case { .. } => todo!(),
ast::Expr::Cast { .. } => todo!(),
ast::Expr::Collate(_, _) => todo!(),
ast::Expr::DoublyQualified(_, _, _) => todo!(),
ast::Expr::Exists(_) => todo!(),
ast::Expr::FunctionCall {
name,
distinctness: _,
args,
filter_over: _,
} => {
let func_type: Option<Func> = match normalize_ident(name.0.as_str()).as_str().parse() {
Ok(func) => Some(func),
Err(_) => None,
};
match func_type {
Some(Func::Agg(_)) => {
anyhow::bail!("Parse error: aggregation function in non-aggregation context")
}
Some(Func::SingleRow(srf)) => {
match srf {
SingleRowFunc::Coalesce => {
let args = if let Some(args) = args {
if args.len() < 2 {
anyhow::bail!(
"Parse error: coalesce function with less than 2 arguments"
);
}
args
} else {
anyhow::bail!("Parse error: coalesce function with no arguments");
};
// coalesce function is implemented as a series of not null checks
// whenever a not null check succeeds, we jump to the end of the series
let label_coalesce_end = program.allocate_label();
for (index, arg) in args.iter().enumerate() {
let reg = translate_expr(program, select, arg, target_register)?;
if index < args.len() - 1 {
program.emit_insn_with_label_dependency(
Insn::NotNull {
reg,
target_pc: label_coalesce_end,
},
label_coalesce_end,
);
}
}
program.preassign_label_to_next_insn(label_coalesce_end);
Ok(target_register)
}
}
}
None => {
anyhow::bail!("Parse error: unknown function {}", name.0);
}
}
}
ast::Expr::FunctionCallStar { .. } => todo!(),
ast::Expr::Id(ident) => {
// let (idx, col) = table.unwrap().get_column(&ident.0).unwrap();
let (idx, col, cursor_id) = resolve_ident_table(program, &ident.0, select)?;
if col.primary_key {
program.emit_insn(Insn::RowId {
cursor_id,
dest: target_register,
});
} else {
program.emit_insn(Insn::Column {
column: idx,
dest: target_register,
cursor_id,
});
}
maybe_apply_affinity(col, target_register, program);
Ok(target_register)
}
ast::Expr::InList { .. } => todo!(),
ast::Expr::InSelect { .. } => todo!(),
ast::Expr::InTable { .. } => todo!(),
ast::Expr::IsNull(_) => todo!(),
ast::Expr::Like { .. } => todo!(),
ast::Expr::Literal(lit) => match lit {
ast::Literal::Numeric(val) => {
let maybe_int = val.parse::<i64>();
if let Ok(int_value) = maybe_int {
program.emit_insn(Insn::Integer {
value: int_value,
dest: target_register,
});
} else {
// must be a float
program.emit_insn(Insn::Real {
value: val.parse().unwrap(),
dest: target_register,
});
}
Ok(target_register)
}
ast::Literal::String(s) => {
program.emit_insn(Insn::String8 {
value: s[1..s.len() - 1].to_string(),
dest: target_register,
});
Ok(target_register)
}
ast::Literal::Blob(_) => todo!(),
ast::Literal::Keyword(_) => todo!(),
ast::Literal::Null => {
program.emit_insn(Insn::Null {
dest: target_register,
});
Ok(target_register)
}
ast::Literal::CurrentDate => todo!(),
ast::Literal::CurrentTime => todo!(),
ast::Literal::CurrentTimestamp => todo!(),
},
ast::Expr::Name(_) => todo!(),
ast::Expr::NotNull(_) => todo!(),
ast::Expr::Parenthesized(_) => todo!(),
ast::Expr::Qualified(_, _) => todo!(),
ast::Expr::Raise(_, _) => todo!(),
ast::Expr::Subquery(_) => todo!(),
ast::Expr::Unary(_, _) => todo!(),
ast::Expr::Variable(_) => todo!(),
}
}
fn resolve_ident_table<'a>(
program: &ProgramBuilder,
ident: &String,
select: &'a Select,
) -> Result<(usize, &'a Column, usize)> {
for join in &select.src_tables {
let res = join
.table
.columns()
.iter()
.enumerate()
.find(|(_, col)| col.name == *ident);
if res.is_some() {
let (idx, col) = res.unwrap();
let cursor_id = program.resolve_cursor_id(&join.table);
return Ok((idx, col, cursor_id));
}
}
anyhow::bail!("Parse error: column with name {} not found", ident.as_str());
}
fn translate_aggregation(
program: &mut ProgramBuilder,
select: &Select,
expr: &ast::Expr,
info: &ColumnInfo,
target_register: usize,
) -> Result<usize> {
let _ = expr;
assert!(info.func.is_some());
let func = info.func.as_ref().unwrap();
let empty_args = &Vec::<ast::Expr>::new();
let args = info.args.as_ref().unwrap_or(empty_args);
let dest = match func {
Func::SingleRow(_) => anyhow::bail!("Parse error: single row function in aggregation"),
Func::Agg(agg_func) => match agg_func {
AggFunc::Avg => {
if args.len() != 1 {
anyhow::bail!("Parse error: avg bad number of arguments");
}
let expr = &args[0];
let expr_reg = program.alloc_register();
let _ = translate_expr(program, select, expr, expr_reg)?;
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: AggFunc::Avg,
});
target_register
}
AggFunc::Count => {
let expr_reg = if args.is_empty() {
program.alloc_register()
} else {
let expr = &args[0];
let expr_reg = program.alloc_register();
let _ = translate_expr(program, select, expr, expr_reg);
expr_reg
};
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: AggFunc::Count,
});
target_register
}
AggFunc::GroupConcat => {
if args.len() != 1 && args.len() != 2 {
anyhow::bail!("Parse error: group_concat bad number of arguments");
}
let expr_reg = program.alloc_register();
let delimiter_reg = program.alloc_register();
let expr = &args[0];
let delimiter_expr: ast::Expr;
if args.len() == 2 {
match &args[1] {
ast::Expr::Id(ident) => {
if ident.0.starts_with("\"") {
delimiter_expr =
ast::Expr::Literal(Literal::String(ident.0.to_string()));
} else {
delimiter_expr = args[1].clone();
}
}
ast::Expr::Literal(Literal::String(s)) => {
delimiter_expr = ast::Expr::Literal(Literal::String(s.to_string()));
}
_ => anyhow::bail!("Incorrect delimiter parameter"),
};
} else {
delimiter_expr = ast::Expr::Literal(Literal::String(String::from("\",\"")));
}
if let Err(error) = translate_expr(program, select, expr, expr_reg) {
anyhow::bail!(error);
}
if let Err(error) = translate_expr(program, select, &delimiter_expr, delimiter_reg)
{
anyhow::bail!(error);
}
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: delimiter_reg,
func: AggFunc::GroupConcat,
});
target_register
}
AggFunc::Max => {
if args.len() != 1 {
anyhow::bail!("Parse error: max bad number of arguments");
}
let expr = &args[0];
let expr_reg = program.alloc_register();
let _ = translate_expr(program, select, expr, expr_reg);
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: AggFunc::Max,
});
target_register
}
AggFunc::Min => {
if args.len() != 1 {
anyhow::bail!("Parse error: min bad number of arguments");
}
let expr = &args[0];
let expr_reg = program.alloc_register();
let _ = translate_expr(program, select, expr, expr_reg);
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: AggFunc::Min,
});
target_register
}
AggFunc::StringAgg => {
if args.len() != 2 {
anyhow::bail!("Parse error: string_agg bad number of arguments");
}
let expr_reg = program.alloc_register();
let delimiter_reg = program.alloc_register();
let expr = &args[0];
let delimiter_expr: ast::Expr;
match &args[1] {
ast::Expr::Id(ident) => {
if ident.0.starts_with("\"") {
anyhow::bail!("Parse error: no such column: \",\" - should this be a string literal in single-quotes?");
} else {
delimiter_expr = args[1].clone();
}
}
ast::Expr::Literal(Literal::String(s)) => {
delimiter_expr = ast::Expr::Literal(Literal::String(s.to_string()));
}
_ => anyhow::bail!("Incorrect delimiter parameter"),
};
if let Err(error) = translate_expr(program, select, expr, expr_reg) {
anyhow::bail!(error);
}
if let Err(error) = translate_expr(program, select, &delimiter_expr, delimiter_reg)
{
anyhow::bail!(error);
}
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: delimiter_reg,
func: AggFunc::StringAgg,
});
target_register
}
AggFunc::Sum => {
if args.len() != 1 {
anyhow::bail!("Parse error: sum bad number of arguments");
}
let expr = &args[0];
let expr_reg = program.alloc_register();
let _ = translate_expr(program, select, expr, expr_reg)?;
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: AggFunc::Sum,
});
target_register
}
AggFunc::Total => {
if args.len() != 1 {
anyhow::bail!("Parse error: total bad number of arguments");
}
let expr = &args[0];
let expr_reg = program.alloc_register();
let _ = translate_expr(program, select, expr, expr_reg)?;
program.emit_insn(Insn::AggStep {
acc_reg: target_register,
col: expr_reg,
delimiter: 0,
func: AggFunc::Total,
});
target_register
}
},
};
Ok(dest)
}
fn translate_pragma(
name: &ast::QualifiedName,
body: Option<ast::PragmaBody>,
database_header: Rc<RefCell<DatabaseHeader>>,
pager: Rc<Pager>,
) -> Result<Program> {
let mut program = ProgramBuilder::new();
let init_label = program.allocate_label();
program.emit_insn_with_label_dependency(
Insn::Init {
target_pc: init_label,
},
init_label,
);
let start_offset = program.offset();
match body {
None => {
let pragma_result = program.alloc_register();
program.emit_insn(Insn::Integer {
value: database_header.borrow().default_cache_size.into(),
dest: pragma_result,
});
let pragma_result_end = program.next_free_register();
program.emit_insn(Insn::ResultRow {
start_reg: pragma_result,
count: pragma_result_end - pragma_result,
});
}
Some(ast::PragmaBody::Equals(value)) => {
let value_to_update = match value {
ast::Expr::Literal(ast::Literal::Numeric(numeric_value)) => {
numeric_value.parse::<i64>().unwrap()
}
ast::Expr::Unary(ast::UnaryOperator::Negative, expr) => match *expr {
ast::Expr::Literal(ast::Literal::Numeric(numeric_value)) => {
-numeric_value.parse::<i64>().unwrap()
}
_ => 0,
},
_ => 0,
};
update_pragma(&name.name.0, value_to_update, database_header, pager);
}
Some(ast::PragmaBody::Call(_)) => {
todo!()
}
};
program.emit_insn(Insn::Halt);
program.resolve_label(init_label, program.offset());
program.emit_insn(Insn::Transaction);
program.emit_run_once_insns();
program.emit_insn(Insn::Goto {
target_pc: start_offset,
});
Ok(program.build())
}
fn update_pragma(name: &str, value: i64, header: Rc<RefCell<DatabaseHeader>>, pager: Rc<Pager>) {
match name {
"cache_size" => {
let mut cache_size_unformatted = value;
let mut cache_size = if cache_size_unformatted < 0 {
let kb = cache_size_unformatted.abs() * 1024;
kb / 512 // assume 512 page size for now
} else {
value
} as usize;
if cache_size < MIN_PAGE_CACHE_SIZE {
// update both in memory and stored disk value
cache_size = MIN_PAGE_CACHE_SIZE;
cache_size_unformatted = MIN_PAGE_CACHE_SIZE as i64;
}
// update in-memory header
header.borrow_mut().default_cache_size = cache_size_unformatted
.try_into()
.unwrap_or_else(|_| panic!("invalid value, too big for a i32 {}", value));
// update in disk
let header_copy = header.borrow().clone();
pager.write_database_header(&header_copy);
// update cache size
pager.change_page_cache_size(cache_size);
}
_ => todo!(),
}
}
fn maybe_apply_affinity(col: &Column, target_register: usize, program: &mut ProgramBuilder) {
match col.ty {
crate::schema::Type::Real => program.emit_insn(Insn::RealAffinity {
register: target_register,
}),
_ => {}
}
}