Files
turso/core/translate/plan.rs
Pekka Enberg 662d629666 Rename JoinAwareConditionExpr to WhereTerm
We transform all JOIN conditions into WHERE clause terms in the query
planner. The JoinAwareConditionExpr name tries to make that point, but I
think it makes things more confusing. Let's call it WhereTerm (suggested
by Jussi).
2025-02-03 07:46:51 +02:00

404 lines
14 KiB
Rust

use core::fmt;
use sqlite3_parser::ast;
use std::{
fmt::{Display, Formatter},
rc::Rc,
};
use crate::{
function::AggFunc,
schema::{BTreeTable, Column, Index, Table},
vdbe::BranchOffset,
};
use crate::{
schema::{PseudoTable, Type},
translate::plan::Plan::{Delete, Select},
};
#[derive(Debug, Clone)]
pub struct ResultSetColumn {
pub expr: ast::Expr,
pub name: String,
// TODO: encode which aggregates (e.g. index bitmask of plan.aggregates) are present in this column
pub contains_aggregates: bool,
}
#[derive(Debug, Clone)]
pub struct GroupBy {
pub exprs: Vec<ast::Expr>,
/// having clause split into a vec at 'AND' boundaries.
pub having: Option<Vec<ast::Expr>>,
}
/// In a query plan, WHERE clause conditions and JOIN conditions are all folded into a vector of WhereTerm.
/// This is done so that we can evaluate the conditions at the correct loop depth.
/// We also need to keep track of whether the condition came from an OUTER JOIN. Take this example:
/// SELECT * FROM users u LEFT JOIN products p ON u.id = 5.
/// Even though the condition only refers to 'u', we CANNOT evaluate it at the users loop, because we need to emit NULL
/// values for the columns of 'p', for EVERY row in 'u', instead of completely skipping any rows in 'u' where the condition is false.
#[derive(Debug, Clone)]
pub struct WhereTerm {
/// The original condition expression.
pub expr: ast::Expr,
/// Is this condition originally from an OUTER JOIN?
/// If so, we need to evaluate it at the loop of the right table in that JOIN,
/// regardless of which tables it references.
/// We also cannot e.g. short circuit the entire query in the optimizer if the condition is statically false.
pub from_outer_join: bool,
/// The loop index where to evaluate the condition.
/// For example, in `SELECT * FROM u JOIN p WHERE u.id = 5`, the condition can already be evaluated at the first loop (idx 0),
/// because that is the rightmost table that it references.
pub eval_at_loop: usize,
}
/// A query plan is either a SELECT or a DELETE (for now)
#[derive(Debug, Clone)]
pub enum Plan {
Select(SelectPlan),
Delete(DeletePlan),
}
/// The type of the query, either top level or subquery
#[derive(Debug, Clone)]
pub enum SelectQueryType {
TopLevel,
Subquery {
/// The register that holds the program offset that handles jumping to/from the subquery.
yield_reg: usize,
/// The index of the first instruction in the bytecode that implements the subquery.
coroutine_implementation_start: BranchOffset,
},
}
#[derive(Debug, Clone)]
pub struct SelectPlan {
/// List of table references in loop order, outermost first.
pub table_references: Vec<TableReference>,
/// the columns inside SELECT ... FROM
pub result_columns: Vec<ResultSetColumn>,
/// where clause split into a vec at 'AND' boundaries. all join conditions also get shoved in here,
/// and we keep track of which join they came from (mainly for OUTER JOIN processing)
pub where_clause: Vec<WhereTerm>,
/// group by clause
pub group_by: Option<GroupBy>,
/// order by clause
pub order_by: Option<Vec<(ast::Expr, Direction)>>,
/// all the aggregates collected from the result columns, order by, and (TODO) having clauses
pub aggregates: Vec<Aggregate>,
/// limit clause
pub limit: Option<isize>,
/// offset clause
pub offset: Option<isize>,
/// all the indexes available
pub available_indexes: Vec<Rc<Index>>,
/// query contains a constant condition that is always false
pub contains_constant_false_condition: bool,
/// query type (top level or subquery)
pub query_type: SelectQueryType,
}
#[allow(dead_code)]
#[derive(Debug, Clone)]
pub struct DeletePlan {
/// List of table references. Delete is always a single table.
pub table_references: Vec<TableReference>,
/// the columns inside SELECT ... FROM
pub result_columns: Vec<ResultSetColumn>,
/// where clause split into a vec at 'AND' boundaries.
pub where_clause: Vec<WhereTerm>,
/// order by clause
pub order_by: Option<Vec<(ast::Expr, Direction)>>,
/// limit clause
pub limit: Option<isize>,
/// offset clause
pub offset: Option<isize>,
/// all the indexes available
pub available_indexes: Vec<Rc<Index>>,
/// query contains a constant condition that is always false
pub contains_constant_false_condition: bool,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum IterationDirection {
Forwards,
Backwards,
}
pub fn select_star(tables: &[TableReference], out_columns: &mut Vec<ResultSetColumn>) {
for (current_table_index, table) in tables.iter().enumerate() {
let maybe_using_cols = table
.join_info
.as_ref()
.and_then(|join_info| join_info.using.as_ref());
out_columns.extend(
table
.columns()
.iter()
.enumerate()
.filter(|(_, col)| {
// If we are joining with USING, we need to deduplicate the columns from the right table
// that are also present in the USING clause.
if let Some(using_cols) = maybe_using_cols {
!using_cols
.iter()
.any(|using_col| col.name.eq_ignore_ascii_case(&using_col.0))
} else {
true
}
})
.map(|(i, col)| ResultSetColumn {
name: col.name.clone(),
expr: ast::Expr::Column {
database: None,
table: current_table_index,
column: i,
is_rowid_alias: col.is_rowid_alias,
},
contains_aggregates: false,
}),
);
}
}
/// Join information for a table reference.
#[derive(Debug, Clone)]
pub struct JoinInfo {
/// Whether this is an OUTER JOIN.
pub outer: bool,
/// The USING clause for the join, if any. NATURAL JOIN is transformed into USING (col1, col2, ...).
pub using: Option<ast::DistinctNames>,
}
/// A table reference in the query plan.
/// For example, SELECT * FROM users u JOIN products p JOIN (SELECT * FROM users) sub
/// has three table references:
/// 1. operation=Scan, table=users, table_identifier=u, reference_type=BTreeTable, join_info=None
/// 2. operation=Scan, table=products, table_identifier=p, reference_type=BTreeTable, join_info=Some(JoinInfo { outer: false, using: None }),
/// 3. operation=Subquery, table=users, table_identifier=sub, reference_type=Subquery, join_info=None
#[derive(Debug, Clone)]
pub struct TableReference {
/// The operation that this table reference performs.
pub op: Operation,
/// Table object, which contains metadata about the table, e.g. columns.
pub table: Table,
/// The name of the table as referred to in the query, either the literal name or an alias e.g. "users" or "u"
pub identifier: String,
/// The join info for this table reference, if it is the right side of a join (which all except the first table reference have)
pub join_info: Option<JoinInfo>,
}
/**
A SourceOperator is a reference in the query plan that reads data from a table.
*/
#[derive(Clone, Debug)]
pub enum Operation {
// Scan operation
// This operation is used to scan a table.
// The iter_dir are uset to indicate the direction of the iterator.
// The use of Option for iter_dir is aimed at implementing a conservative optimization strategy: it only pushes
// iter_dir down to Scan when iter_dir is None, to prevent potential result set errors caused by multiple
// assignments. for more detailed discussions, please refer to https://github.com/tursodatabase/limbo/pull/376
Scan {
iter_dir: Option<IterationDirection>,
},
// Search operation
// This operation is used to search for a row in a table using an index
// (i.e. a primary key or a secondary index)
Search(Search),
/// Subquery operation
/// This operation is used to represent a subquery in the query plan.
/// The subquery itself (recursively) contains an arbitrary SelectPlan.
Subquery {
plan: Box<SelectPlan>,
result_columns_start_reg: usize,
},
}
impl TableReference {
/// Returns the btree table for this table reference, if it is a BTreeTable.
pub fn btree(&self) -> Option<Rc<BTreeTable>> {
self.table.btree()
}
/// Creates a new TableReference for a subquery.
pub fn new_subquery(identifier: String, plan: SelectPlan, join_info: Option<JoinInfo>) -> Self {
let table = Table::Pseudo(Rc::new(PseudoTable::new_with_columns(
plan.result_columns
.iter()
.map(|rc| Column {
name: rc.name.clone(),
ty: Type::Text, // FIXME: infer proper type
ty_str: "TEXT".to_string(),
is_rowid_alias: false,
primary_key: false,
notnull: false,
default: None,
})
.collect(),
)));
Self {
op: Operation::Subquery {
plan: Box::new(plan),
result_columns_start_reg: 0, // Will be set in the bytecode emission phase
},
table,
identifier: identifier.clone(),
join_info,
}
}
pub fn columns(&self) -> &[Column] {
self.table.columns()
}
}
/// An enum that represents a search operation that can be used to search for a row in a table using an index
/// (i.e. a primary key or a secondary index)
#[allow(clippy::enum_variant_names)]
#[derive(Clone, Debug)]
pub enum Search {
/// A rowid equality point lookup. This is a special case that uses the SeekRowid bytecode instruction and does not loop.
RowidEq { cmp_expr: WhereTerm },
/// A rowid search. Uses bytecode instructions like SeekGT, SeekGE etc.
RowidSearch {
cmp_op: ast::Operator,
cmp_expr: WhereTerm,
},
/// A secondary index search. Uses bytecode instructions like SeekGE, SeekGT etc.
IndexSearch {
index: Rc<Index>,
cmp_op: ast::Operator,
cmp_expr: WhereTerm,
},
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Direction {
Ascending,
Descending,
}
impl Display for Direction {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Direction::Ascending => write!(f, "ASC"),
Direction::Descending => write!(f, "DESC"),
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct Aggregate {
pub func: AggFunc,
pub args: Vec<ast::Expr>,
pub original_expr: ast::Expr,
}
impl Display for Aggregate {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let args_str = self
.args
.iter()
.map(|arg| arg.to_string())
.collect::<Vec<String>>()
.join(", ");
write!(f, "{:?}({})", self.func, args_str)
}
}
/// For EXPLAIN QUERY PLAN
impl Display for Plan {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
Select(select_plan) => select_plan.fmt(f),
Delete(delete_plan) => delete_plan.fmt(f),
}
}
}
impl Display for SelectPlan {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
writeln!(f, "QUERY PLAN")?;
// Print each table reference with appropriate indentation based on join depth
for (i, reference) in self.table_references.iter().enumerate() {
let is_last = i == self.table_references.len() - 1;
let indent = if i == 0 {
if is_last { "`--" } else { "|--" }.to_string()
} else {
format!(
" {}{}",
"| ".repeat(i - 1),
if is_last { "`--" } else { "|--" }
)
};
match &reference.op {
Operation::Scan { .. } => {
let table_name = if reference.table.get_name() == reference.identifier {
reference.identifier.clone()
} else {
format!("{} AS {}", reference.table.get_name(), reference.identifier)
};
writeln!(f, "{}SCAN {}", indent, table_name)?;
}
Operation::Search(search) => match search {
Search::RowidEq { .. } | Search::RowidSearch { .. } => {
writeln!(
f,
"{}SEARCH {} USING INTEGER PRIMARY KEY (rowid=?)",
indent, reference.identifier
)?;
}
Search::IndexSearch { index, .. } => {
writeln!(
f,
"{}SEARCH {} USING INDEX {}",
indent, reference.identifier, index.name
)?;
}
},
Operation::Subquery { plan, .. } => {
writeln!(f, "{}SUBQUERY {}", indent, reference.identifier)?;
// Indent and format the subquery plan
for line in format!("{}", plan).lines() {
writeln!(f, "{} {}", indent, line)?;
}
}
}
}
Ok(())
}
}
impl Display for DeletePlan {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
writeln!(f, "QUERY PLAN")?;
// Delete plan should only have one table reference
if let Some(reference) = self.table_references.first() {
let indent = "`--";
match &reference.op {
Operation::Scan { .. } => {
let table_name = if reference.table.get_name() == reference.identifier {
reference.identifier.clone()
} else {
format!("{} AS {}", reference.table.get_name(), reference.identifier)
};
writeln!(f, "{}DELETE FROM {}", indent, table_name)?;
}
Operation::Search { .. } => {
panic!("DELETE plans should not contain search operations");
}
Operation::Subquery { .. } => {
panic!("DELETE plans should not contain subqueries");
}
}
}
Ok(())
}
}