mirror of
https://github.com/aljazceru/turso.git
synced 2025-12-17 00:24:21 +01:00
1411 lines
58 KiB
Rust
1411 lines
58 KiB
Rust
use std::{
|
|
cell::RefCell,
|
|
cmp::Ordering,
|
|
collections::{HashMap, VecDeque},
|
|
sync::Arc,
|
|
};
|
|
|
|
use constraints::{
|
|
constraints_from_where_clause, usable_constraints_for_join_order, Constraint, ConstraintRef,
|
|
};
|
|
use cost::Cost;
|
|
use join::{compute_best_join_order, BestJoinOrderResult};
|
|
use lift_common_subexpressions::lift_common_subexpressions_from_binary_or_terms;
|
|
use order::{compute_order_target, plan_satisfies_order_target, EliminatesSortBy};
|
|
use turso_ext::{ConstraintInfo, ConstraintUsage};
|
|
use turso_parser::ast::{self, Expr, SortOrder};
|
|
|
|
use crate::{
|
|
schema::{BTreeTable, Column, Index, IndexColumn, Schema, Table, Type, ROWID_SENTINEL},
|
|
translate::{
|
|
optimizer::{
|
|
access_method::AccessMethodParams,
|
|
constraints::{RangeConstraintRef, SeekRangeConstraint, TableConstraints},
|
|
},
|
|
plan::{
|
|
ColumnUsedMask, NonFromClauseSubquery, OuterQueryReference, QueryDestination,
|
|
ResultSetColumn, Scan, SeekKeyComponent,
|
|
},
|
|
},
|
|
types::SeekOp,
|
|
vdbe::builder::{CursorKey, CursorType, ProgramBuilder},
|
|
LimboError, Result,
|
|
};
|
|
|
|
use super::{
|
|
emitter::Resolver,
|
|
plan::{
|
|
DeletePlan, GroupBy, IterationDirection, JoinOrderMember, JoinedTable, Operation, Plan,
|
|
Search, SeekDef, SeekKey, SelectPlan, TableReferences, UpdatePlan, WhereTerm,
|
|
},
|
|
};
|
|
|
|
pub(crate) mod access_method;
|
|
pub(crate) mod constraints;
|
|
pub(crate) mod cost;
|
|
pub(crate) mod join;
|
|
pub(crate) mod lift_common_subexpressions;
|
|
pub(crate) mod order;
|
|
|
|
#[tracing::instrument(skip_all, level = tracing::Level::DEBUG)]
|
|
pub fn optimize_plan(program: &mut ProgramBuilder, plan: &mut Plan, schema: &Schema) -> Result<()> {
|
|
match plan {
|
|
Plan::Select(plan) => optimize_select_plan(plan, schema)?,
|
|
Plan::Delete(plan) => optimize_delete_plan(plan, schema)?,
|
|
Plan::Update(plan) => optimize_update_plan(program, plan, schema)?,
|
|
Plan::CompoundSelect {
|
|
left, right_most, ..
|
|
} => {
|
|
optimize_select_plan(right_most, schema)?;
|
|
for (plan, _) in left {
|
|
optimize_select_plan(plan, schema)?;
|
|
}
|
|
}
|
|
}
|
|
// When debug tracing is enabled, print the optimized plan as a SQL string for debugging
|
|
tracing::debug!(plan_sql = plan.to_string());
|
|
Ok(())
|
|
}
|
|
|
|
/**
|
|
* Make a few passes over the plan to optimize it.
|
|
* TODO: these could probably be done in less passes,
|
|
* but having them separate makes them easier to understand
|
|
*/
|
|
pub fn optimize_select_plan(plan: &mut SelectPlan, schema: &Schema) -> Result<()> {
|
|
optimize_subqueries(plan, schema)?;
|
|
lift_common_subexpressions_from_binary_or_terms(&mut plan.where_clause)?;
|
|
if let ConstantConditionEliminationResult::ImpossibleCondition =
|
|
eliminate_constant_conditions(&mut plan.where_clause)?
|
|
{
|
|
plan.contains_constant_false_condition = true;
|
|
return Ok(());
|
|
}
|
|
|
|
let best_join_order = optimize_table_access(
|
|
schema,
|
|
&mut plan.table_references,
|
|
&schema.indexes,
|
|
&mut plan.where_clause,
|
|
&mut plan.order_by,
|
|
&mut plan.group_by,
|
|
&plan.non_from_clause_subqueries,
|
|
)?;
|
|
|
|
if let Some(best_join_order) = best_join_order {
|
|
plan.join_order = best_join_order;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn optimize_delete_plan(plan: &mut DeletePlan, schema: &Schema) -> Result<()> {
|
|
lift_common_subexpressions_from_binary_or_terms(&mut plan.where_clause)?;
|
|
if let ConstantConditionEliminationResult::ImpossibleCondition =
|
|
eliminate_constant_conditions(&mut plan.where_clause)?
|
|
{
|
|
plan.contains_constant_false_condition = true;
|
|
return Ok(());
|
|
}
|
|
|
|
let _ = optimize_table_access(
|
|
schema,
|
|
&mut plan.table_references,
|
|
&schema.indexes,
|
|
&mut plan.where_clause,
|
|
&mut plan.order_by,
|
|
&mut None,
|
|
&[],
|
|
)?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn optimize_update_plan(
|
|
program: &mut ProgramBuilder,
|
|
plan: &mut UpdatePlan,
|
|
schema: &Schema,
|
|
) -> Result<()> {
|
|
lift_common_subexpressions_from_binary_or_terms(&mut plan.where_clause)?;
|
|
if let ConstantConditionEliminationResult::ImpossibleCondition =
|
|
eliminate_constant_conditions(&mut plan.where_clause)?
|
|
{
|
|
plan.contains_constant_false_condition = true;
|
|
return Ok(());
|
|
}
|
|
let _ = optimize_table_access(
|
|
schema,
|
|
&mut plan.table_references,
|
|
&schema.indexes,
|
|
&mut plan.where_clause,
|
|
&mut plan.order_by,
|
|
&mut None,
|
|
&[],
|
|
)?;
|
|
|
|
let table_ref = &mut plan.table_references.joined_tables_mut()[0];
|
|
|
|
// An ephemeral table is required if the UPDATE modifies any column that is present in the key of the
|
|
// btree used to iterate over the table.
|
|
// For regular table scans or seeks, this is just the rowid or the rowid alias column (INTEGER PRIMARY KEY)
|
|
// For index scans and seeks, this is any column in the index used.
|
|
let requires_ephemeral_table = 'requires: {
|
|
let Some(btree_table) = table_ref.table.btree() else {
|
|
break 'requires false;
|
|
};
|
|
let Some(index) = table_ref.op.index() else {
|
|
let rowid_alias_used = plan.set_clauses.iter().fold(false, |accum, (idx, _)| {
|
|
accum || (*idx != ROWID_SENTINEL && btree_table.columns[*idx].is_rowid_alias)
|
|
});
|
|
if rowid_alias_used {
|
|
break 'requires true;
|
|
}
|
|
let direct_rowid_update = plan
|
|
.set_clauses
|
|
.iter()
|
|
.any(|(idx, _)| *idx == ROWID_SENTINEL);
|
|
if direct_rowid_update {
|
|
break 'requires true;
|
|
}
|
|
break 'requires false;
|
|
};
|
|
|
|
plan.set_clauses
|
|
.iter()
|
|
.any(|(idx, _)| index.columns.iter().any(|c| c.pos_in_table == *idx))
|
|
};
|
|
|
|
if !requires_ephemeral_table {
|
|
return Ok(());
|
|
}
|
|
|
|
add_ephemeral_table_to_update_plan(program, plan)
|
|
}
|
|
|
|
/// An ephemeral table is required if the UPDATE modifies any column that is present in the key of the
|
|
/// btree used to iterate over the table.
|
|
/// For regular table scans or seeks, the key is the rowid or the rowid alias column (INTEGER PRIMARY KEY).
|
|
/// For index scans and seeks, the key is any column in the index used.
|
|
///
|
|
/// The ephemeral table will accumulate all the rowids of the rows that are affected by the UPDATE,
|
|
/// and then the temp table will be iterated over and the actual row updates performed.
|
|
///
|
|
/// This is necessary because an UPDATE is implemented as a DELETE-then-INSERT operation, which could
|
|
/// mess up the iteration order of the rows by changing the keys in the table/index that the iteration
|
|
/// is performed over. The ephemeral table ensures stable iteration because it is not modified during
|
|
/// the UPDATE loop.
|
|
fn add_ephemeral_table_to_update_plan(
|
|
program: &mut ProgramBuilder,
|
|
plan: &mut UpdatePlan,
|
|
) -> Result<()> {
|
|
let internal_id = program.table_reference_counter.next();
|
|
let ephemeral_table = Arc::new(BTreeTable {
|
|
root_page: 0, // Not relevant for ephemeral table definition
|
|
name: "ephemeral_scratch".to_string(),
|
|
has_rowid: true,
|
|
has_autoincrement: false,
|
|
primary_key_columns: vec![],
|
|
columns: vec![Column {
|
|
name: Some("rowid".to_string()),
|
|
ty: Type::Integer,
|
|
ty_str: "INTEGER".to_string(),
|
|
primary_key: true,
|
|
is_rowid_alias: false,
|
|
notnull: true,
|
|
default: None,
|
|
unique: false,
|
|
collation: None,
|
|
hidden: false,
|
|
}],
|
|
is_strict: false,
|
|
unique_sets: vec![],
|
|
foreign_keys: vec![],
|
|
});
|
|
|
|
let temp_cursor_id = program.alloc_cursor_id_keyed(
|
|
CursorKey::table(internal_id),
|
|
CursorType::BTreeTable(ephemeral_table.clone()),
|
|
);
|
|
|
|
// The actual update loop will use the ephemeral table as the single [JoinedTable] which it then loops over.
|
|
let table_references_update = TableReferences::new(
|
|
vec![JoinedTable {
|
|
table: Table::BTree(ephemeral_table.clone()),
|
|
identifier: "ephemeral_scratch".to_string(),
|
|
internal_id,
|
|
op: Operation::Scan(Scan::BTreeTable {
|
|
iter_dir: IterationDirection::Forwards,
|
|
index: None,
|
|
}),
|
|
join_info: None,
|
|
col_used_mask: ColumnUsedMask::default(),
|
|
database_id: 0,
|
|
}],
|
|
vec![],
|
|
);
|
|
|
|
// Building the ephemeral table will use the TableReferences from the original plan -- i.e. if we chose an index scan originally,
|
|
// we will build the ephemeral table by using the same index scan and using the same WHERE filters.
|
|
let table_references_ephemeral_select =
|
|
std::mem::replace(&mut plan.table_references, table_references_update);
|
|
|
|
for table in table_references_ephemeral_select.joined_tables() {
|
|
// The update loop needs to reference columns from the original source table, so we add it as an outer query reference.
|
|
plan.table_references
|
|
.add_outer_query_reference(OuterQueryReference {
|
|
identifier: table.identifier.clone(),
|
|
internal_id: table.internal_id,
|
|
table: table.table.clone(),
|
|
col_used_mask: table.col_used_mask.clone(),
|
|
});
|
|
}
|
|
|
|
let join_order = table_references_ephemeral_select
|
|
.joined_tables()
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, t)| JoinOrderMember {
|
|
table_id: t.internal_id,
|
|
original_idx: i,
|
|
is_outer: t
|
|
.join_info
|
|
.as_ref()
|
|
.is_some_and(|join_info| join_info.outer),
|
|
})
|
|
.collect();
|
|
let rowid_internal_id = table_references_ephemeral_select
|
|
.joined_tables()
|
|
.first()
|
|
.unwrap()
|
|
.internal_id;
|
|
|
|
let ephemeral_plan = SelectPlan {
|
|
table_references: table_references_ephemeral_select,
|
|
result_columns: vec![ResultSetColumn {
|
|
expr: Expr::RowId {
|
|
database: None,
|
|
table: rowid_internal_id,
|
|
},
|
|
alias: None,
|
|
contains_aggregates: false,
|
|
}],
|
|
where_clause: plan.where_clause.drain(..).collect(),
|
|
group_by: None, // N/A
|
|
order_by: vec![], // N/A
|
|
aggregates: vec![], // N/A
|
|
limit: None, // N/A
|
|
query_destination: QueryDestination::EphemeralTable {
|
|
cursor_id: temp_cursor_id,
|
|
table: ephemeral_table,
|
|
},
|
|
join_order,
|
|
offset: None,
|
|
contains_constant_false_condition: false,
|
|
distinctness: super::plan::Distinctness::NonDistinct,
|
|
values: vec![],
|
|
window: None,
|
|
non_from_clause_subqueries: vec![],
|
|
};
|
|
|
|
plan.ephemeral_plan = Some(ephemeral_plan);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn optimize_subqueries(plan: &mut SelectPlan, schema: &Schema) -> Result<()> {
|
|
for table in plan.table_references.joined_tables_mut() {
|
|
if let Table::FromClauseSubquery(from_clause_subquery) = &mut table.table {
|
|
optimize_select_plan(&mut from_clause_subquery.plan, schema)?;
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Optimize the join order and index selection for a query.
|
|
///
|
|
/// This function does the following:
|
|
/// - Computes a set of [Constraint]s for each table.
|
|
/// - Using those constraints, computes the best join order for the list of [TableReference]s
|
|
/// and selects the best [crate::translate::optimizer::access_method::AccessMethod] for each table in the join order.
|
|
/// - Mutates the [Operation]s in `joined_tables` to use the selected access methods.
|
|
/// - Removes predicates from the `where_clause` that are now redundant due to the selected access methods.
|
|
/// - Removes sorting operations if the selected join order and access methods satisfy the [crate::translate::optimizer::order::OrderTarget].
|
|
///
|
|
/// Returns the join order if it was optimized, or None if the default join order was considered best.
|
|
fn optimize_table_access(
|
|
schema: &Schema,
|
|
table_references: &mut TableReferences,
|
|
available_indexes: &HashMap<String, VecDeque<Arc<Index>>>,
|
|
where_clause: &mut [WhereTerm],
|
|
order_by: &mut Vec<(Box<ast::Expr>, SortOrder)>,
|
|
group_by: &mut Option<GroupBy>,
|
|
subqueries: &[NonFromClauseSubquery],
|
|
) -> Result<Option<Vec<JoinOrderMember>>> {
|
|
if table_references.joined_tables().len() > TableReferences::MAX_JOINED_TABLES {
|
|
crate::bail_parse_error!(
|
|
"Only up to {} tables can be joined",
|
|
TableReferences::MAX_JOINED_TABLES
|
|
);
|
|
}
|
|
let access_methods_arena = RefCell::new(Vec::new());
|
|
let maybe_order_target = compute_order_target(order_by, group_by.as_mut());
|
|
let constraints_per_table = constraints_from_where_clause(
|
|
where_clause,
|
|
table_references,
|
|
available_indexes,
|
|
subqueries,
|
|
)?;
|
|
|
|
// Currently the expressions we evaluate as constraints are binary expressions that will never be true for a NULL operand.
|
|
// If there are any constraints on the right hand side table of an outer join that are not part of the outer join condition,
|
|
// the outer join can be converted into an inner join.
|
|
// for example:
|
|
// - SELECT * FROM t1 LEFT JOIN t2 ON false WHERE t2.id = 5
|
|
// there can never be a situation where null columns are emitted for t2 because t2.id = 5 will never be true in that case.
|
|
// hence: we can convert the outer join into an inner join.
|
|
for (i, t) in table_references
|
|
.joined_tables_mut()
|
|
.iter_mut()
|
|
.enumerate()
|
|
.filter(|(_, t)| {
|
|
t.join_info
|
|
.as_ref()
|
|
.is_some_and(|join_info| join_info.outer)
|
|
})
|
|
{
|
|
if constraints_per_table[i]
|
|
.constraints
|
|
.iter()
|
|
.any(|c| where_clause[c.where_clause_pos.0].from_outer_join.is_none())
|
|
{
|
|
t.join_info.as_mut().unwrap().outer = false;
|
|
for term in where_clause.iter_mut() {
|
|
if let Some(from_outer_join) = term.from_outer_join {
|
|
if from_outer_join == t.internal_id {
|
|
term.from_outer_join = None;
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
let Some(best_join_order_result) = compute_best_join_order(
|
|
table_references.joined_tables_mut(),
|
|
maybe_order_target.as_ref(),
|
|
&constraints_per_table,
|
|
&access_methods_arena,
|
|
)?
|
|
else {
|
|
return Ok(None);
|
|
};
|
|
|
|
let BestJoinOrderResult {
|
|
best_plan,
|
|
best_ordered_plan,
|
|
} = best_join_order_result;
|
|
|
|
let joined_tables = table_references.joined_tables_mut();
|
|
|
|
// See if best_ordered_plan is better than the overall best_plan if we add a sorting penalty
|
|
// to the unordered plan's cost.
|
|
let best_plan = if let Some(best_ordered_plan) = best_ordered_plan {
|
|
let best_unordered_plan_cost = best_plan.cost;
|
|
let best_ordered_plan_cost = best_ordered_plan.cost;
|
|
const SORT_COST_PER_ROW_MULTIPLIER: f64 = 0.001;
|
|
let sorting_penalty =
|
|
Cost(best_plan.output_cardinality as f64 * SORT_COST_PER_ROW_MULTIPLIER);
|
|
if best_unordered_plan_cost + sorting_penalty > best_ordered_plan_cost {
|
|
best_ordered_plan
|
|
} else {
|
|
best_plan
|
|
}
|
|
} else {
|
|
best_plan
|
|
};
|
|
|
|
// Eliminate sorting if possible.
|
|
if let Some(order_target) = maybe_order_target {
|
|
let satisfies_order_target = plan_satisfies_order_target(
|
|
&best_plan,
|
|
&access_methods_arena,
|
|
joined_tables,
|
|
&order_target,
|
|
);
|
|
if satisfies_order_target {
|
|
match order_target.1 {
|
|
EliminatesSortBy::Group => {
|
|
let _ = group_by.as_mut().and_then(|g| g.sort_order.take());
|
|
}
|
|
EliminatesSortBy::Order => {
|
|
order_by.clear();
|
|
}
|
|
EliminatesSortBy::GroupByAndOrder => {
|
|
let _ = group_by.as_mut().and_then(|g| g.sort_order.take());
|
|
order_by.clear();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let (best_access_methods, best_table_numbers) = (
|
|
best_plan.best_access_methods().collect::<Vec<_>>(),
|
|
best_plan.table_numbers().collect::<Vec<_>>(),
|
|
);
|
|
|
|
let best_join_order: Vec<JoinOrderMember> = best_table_numbers
|
|
.into_iter()
|
|
.map(|table_number| JoinOrderMember {
|
|
table_id: joined_tables[table_number].internal_id,
|
|
original_idx: table_number,
|
|
is_outer: joined_tables[table_number]
|
|
.join_info
|
|
.as_ref()
|
|
.is_some_and(|join_info| join_info.outer),
|
|
})
|
|
.collect();
|
|
|
|
// Mutate the Operations in `joined_tables` to use the selected access methods.
|
|
for (i, join_order_member) in best_join_order.iter().enumerate() {
|
|
let table_idx = join_order_member.original_idx;
|
|
let access_method = &access_methods_arena.borrow()[best_access_methods[i]];
|
|
|
|
match &access_method.params {
|
|
AccessMethodParams::BTreeTable {
|
|
iter_dir,
|
|
index,
|
|
constraint_refs,
|
|
} => {
|
|
if constraint_refs.is_empty() {
|
|
let try_to_build_ephemeral_index = if schema.indexes_enabled() {
|
|
let is_leftmost_table = i == 0;
|
|
let uses_index = index.is_some();
|
|
!is_leftmost_table && !uses_index
|
|
} else {
|
|
false
|
|
};
|
|
|
|
if !try_to_build_ephemeral_index {
|
|
joined_tables[table_idx].op = Operation::Scan(Scan::BTreeTable {
|
|
iter_dir: *iter_dir,
|
|
index: index.clone(),
|
|
});
|
|
continue;
|
|
}
|
|
// This branch means we have a full table scan for a non-outermost table.
|
|
// Try to construct an ephemeral index since it's going to be better than a scan.
|
|
let table_constraints = constraints_per_table
|
|
.iter()
|
|
.find(|c| c.table_id == join_order_member.table_id);
|
|
let Some(table_constraints) = table_constraints else {
|
|
joined_tables[table_idx].op = Operation::Scan(Scan::BTreeTable {
|
|
iter_dir: *iter_dir,
|
|
index: index.clone(),
|
|
});
|
|
continue;
|
|
};
|
|
let usable_constraints = table_constraints
|
|
.constraints
|
|
.iter()
|
|
.filter(|c| c.usable)
|
|
.cloned()
|
|
.collect::<Vec<_>>();
|
|
let mut temp_constraint_refs = (0..usable_constraints.len())
|
|
.map(|i| ConstraintRef {
|
|
constraint_vec_pos: i,
|
|
index_col_pos: i,
|
|
sort_order: SortOrder::Asc,
|
|
})
|
|
.collect::<Vec<_>>();
|
|
temp_constraint_refs.sort_by_key(|x| x.index_col_pos);
|
|
|
|
let usable_constraint_refs = usable_constraints_for_join_order(
|
|
&usable_constraints,
|
|
&temp_constraint_refs,
|
|
&best_join_order[..=i],
|
|
);
|
|
if usable_constraint_refs.is_empty() {
|
|
joined_tables[table_idx].op = Operation::Scan(Scan::BTreeTable {
|
|
iter_dir: *iter_dir,
|
|
index: index.clone(),
|
|
});
|
|
continue;
|
|
}
|
|
let ephemeral_index =
|
|
ephemeral_index_build(&joined_tables[table_idx], &usable_constraint_refs);
|
|
let ephemeral_index = Arc::new(ephemeral_index);
|
|
joined_tables[table_idx].op = Operation::Search(Search::Seek {
|
|
index: Some(ephemeral_index),
|
|
seek_def: build_seek_def_from_constraints(
|
|
&table_constraints.constraints,
|
|
&usable_constraint_refs,
|
|
*iter_dir,
|
|
where_clause,
|
|
)?,
|
|
});
|
|
} else {
|
|
let is_outer_join = joined_tables[table_idx]
|
|
.join_info
|
|
.as_ref()
|
|
.is_some_and(|join_info| join_info.outer);
|
|
for cref in constraint_refs.iter() {
|
|
for constraint_vec_pos in &[cref.eq, cref.lower_bound, cref.upper_bound] {
|
|
let Some(constraint_vec_pos) = constraint_vec_pos else {
|
|
continue;
|
|
};
|
|
let constraint =
|
|
&constraints_per_table[table_idx].constraints[*constraint_vec_pos];
|
|
let where_term = &mut where_clause[constraint.where_clause_pos.0];
|
|
assert!(
|
|
!where_term.consumed,
|
|
"trying to consume a where clause term twice: {where_term:?}",
|
|
);
|
|
if is_outer_join && where_term.from_outer_join.is_none() {
|
|
// Don't consume WHERE terms from outer joins if the where term is not part of the outer join condition. Consider:
|
|
// - SELECT * FROM t1 LEFT JOIN t2 ON false WHERE t2.id = 5
|
|
// - there is no row in t2 where t2.id = 5
|
|
// This should never produce any rows with null columns for t2 (because NULL != 5), but if we consume 't2.id = 5' to use it as a seek key,
|
|
// this will cause a null row to be emitted for EVERY row of t1.
|
|
// Note: in most cases like this, the LEFT JOIN could just be converted into an INNER JOIN (because e.g. t2.id=5 statically excludes any null rows),
|
|
// but that optimization should not be done here - it should be done before the join order optimization happens.
|
|
continue;
|
|
}
|
|
where_term.consumed = true;
|
|
}
|
|
}
|
|
if let Some(index) = &index {
|
|
joined_tables[table_idx].op = Operation::Search(Search::Seek {
|
|
index: Some(index.clone()),
|
|
seek_def: build_seek_def_from_constraints(
|
|
&constraints_per_table[table_idx].constraints,
|
|
constraint_refs,
|
|
*iter_dir,
|
|
where_clause,
|
|
)?,
|
|
});
|
|
continue;
|
|
}
|
|
assert!(
|
|
constraint_refs.len() == 1,
|
|
"expected exactly one constraint for rowid seek, got {constraint_refs:?}"
|
|
);
|
|
joined_tables[table_idx].op = if let Some(eq) = constraint_refs[0].eq {
|
|
Operation::Search(Search::RowidEq {
|
|
cmp_expr: constraints_per_table[table_idx].constraints[eq]
|
|
.get_constraining_expr(where_clause)
|
|
.1,
|
|
})
|
|
} else {
|
|
Operation::Search(Search::Seek {
|
|
index: None,
|
|
seek_def: build_seek_def_from_constraints(
|
|
&constraints_per_table[table_idx].constraints,
|
|
constraint_refs,
|
|
*iter_dir,
|
|
where_clause,
|
|
)?,
|
|
})
|
|
};
|
|
}
|
|
}
|
|
AccessMethodParams::VirtualTable {
|
|
idx_num,
|
|
idx_str,
|
|
constraints,
|
|
constraint_usages,
|
|
} => {
|
|
joined_tables[table_idx].op = build_vtab_scan_op(
|
|
where_clause,
|
|
&constraints_per_table[table_idx],
|
|
idx_num,
|
|
idx_str,
|
|
constraints,
|
|
constraint_usages,
|
|
)?;
|
|
}
|
|
AccessMethodParams::Subquery => {
|
|
joined_tables[table_idx].op = Operation::Scan(Scan::Subquery);
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(Some(best_join_order))
|
|
}
|
|
|
|
fn build_vtab_scan_op(
|
|
where_clause: &mut [WhereTerm],
|
|
table_constraints: &TableConstraints,
|
|
idx_num: &i32,
|
|
idx_str: &Option<String>,
|
|
vtab_constraints: &[ConstraintInfo],
|
|
constraint_usages: &[ConstraintUsage],
|
|
) -> Result<Operation> {
|
|
if constraint_usages.len() != vtab_constraints.len() {
|
|
return Err(LimboError::ExtensionError(format!(
|
|
"Constraint usage count mismatch (expected {}, got {})",
|
|
vtab_constraints.len(),
|
|
constraint_usages.len()
|
|
)));
|
|
}
|
|
|
|
let mut constraints = vec![None; constraint_usages.len()];
|
|
let mut arg_count = 0;
|
|
|
|
for (i, vtab_constraint) in vtab_constraints.iter().enumerate() {
|
|
let usage = constraint_usages[i];
|
|
let argv_index = match usage.argv_index {
|
|
Some(idx) if idx >= 1 && (idx as usize) <= constraint_usages.len() => idx,
|
|
Some(idx) => {
|
|
return Err(LimboError::ExtensionError(format!(
|
|
"argv_index {} is out of valid range [1..{}]",
|
|
idx,
|
|
constraint_usages.len()
|
|
)));
|
|
}
|
|
None => continue,
|
|
};
|
|
|
|
let zero_based_argv_index = (argv_index - 1) as usize;
|
|
if constraints[zero_based_argv_index].is_some() {
|
|
return Err(LimboError::ExtensionError(format!(
|
|
"duplicate argv_index {argv_index}"
|
|
)));
|
|
}
|
|
|
|
let constraint = &table_constraints.constraints[vtab_constraint.index];
|
|
if usage.omit {
|
|
where_clause[constraint.where_clause_pos.0].consumed = true;
|
|
}
|
|
let (_, expr) = constraint.get_constraining_expr(where_clause);
|
|
constraints[zero_based_argv_index] = Some(expr);
|
|
arg_count += 1;
|
|
}
|
|
|
|
// Verify that used indices form a contiguous sequence starting from 1
|
|
let constraints = constraints
|
|
.into_iter()
|
|
.take(arg_count)
|
|
.enumerate()
|
|
.map(|(i, c)| {
|
|
c.ok_or_else(|| {
|
|
LimboError::ExtensionError(format!(
|
|
"argv_index values must form contiguous sequence starting from 1, missing index {}",
|
|
i + 1
|
|
))
|
|
})
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
|
|
Ok(Operation::Scan(Scan::VirtualTable {
|
|
idx_num: *idx_num,
|
|
idx_str: idx_str.clone(),
|
|
constraints,
|
|
}))
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Clone)]
|
|
enum ConstantConditionEliminationResult {
|
|
Continue,
|
|
ImpossibleCondition,
|
|
}
|
|
|
|
/// Removes predicates that are always true.
|
|
/// Returns a ConstantEliminationResult indicating whether any predicates are always false.
|
|
/// This is used to determine whether the query can be aborted early.
|
|
fn eliminate_constant_conditions(
|
|
where_clause: &mut [WhereTerm],
|
|
) -> Result<ConstantConditionEliminationResult> {
|
|
let mut i = 0;
|
|
while i < where_clause.len() {
|
|
let predicate = &where_clause[i];
|
|
if predicate.expr.is_always_true()? {
|
|
// true predicates can be removed since they don't affect the result
|
|
where_clause[i].consumed = true;
|
|
i += 1;
|
|
} else if predicate.expr.is_always_false()? {
|
|
// any false predicate in a list of conjuncts (AND-ed predicates) will make the whole list false,
|
|
// except an outer join condition, because that just results in NULLs, not skipping the whole loop
|
|
if predicate.from_outer_join.is_some() {
|
|
i += 1;
|
|
continue;
|
|
}
|
|
where_clause
|
|
.iter_mut()
|
|
.for_each(|term| term.consumed = true);
|
|
return Ok(ConstantConditionEliminationResult::ImpossibleCondition);
|
|
} else {
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
Ok(ConstantConditionEliminationResult::Continue)
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
pub enum AlwaysTrueOrFalse {
|
|
AlwaysTrue,
|
|
AlwaysFalse,
|
|
}
|
|
|
|
/**
|
|
Helper trait for expressions that can be optimized
|
|
Implemented for ast::Expr
|
|
*/
|
|
pub trait Optimizable {
|
|
// if the expression is a constant expression that, when evaluated as a condition, is always true or false
|
|
// return a [ConstantPredicate].
|
|
fn check_always_true_or_false(&self) -> Result<Option<AlwaysTrueOrFalse>>;
|
|
fn is_always_true(&self) -> Result<bool> {
|
|
Ok(self.check_always_true_or_false()? == Some(AlwaysTrueOrFalse::AlwaysTrue))
|
|
}
|
|
fn is_always_false(&self) -> Result<bool> {
|
|
Ok(self.check_always_true_or_false()? == Some(AlwaysTrueOrFalse::AlwaysFalse))
|
|
}
|
|
fn is_constant(&self, resolver: &Resolver<'_>) -> bool;
|
|
fn is_nonnull(&self, tables: &TableReferences) -> bool;
|
|
}
|
|
|
|
impl Optimizable for ast::Expr {
|
|
/// Returns true if the expressions is (verifiably) non-NULL.
|
|
/// It might still be non-NULL even if we return false; we just
|
|
/// weren't able to prove it.
|
|
/// This function is currently very conservative, and will return false
|
|
/// for any expression where we aren't sure and didn't bother to find out
|
|
/// by writing more complex code.
|
|
fn is_nonnull(&self, tables: &TableReferences) -> bool {
|
|
match self {
|
|
Expr::SubqueryResult { .. } => false,
|
|
Expr::Between {
|
|
lhs, start, end, ..
|
|
} => lhs.is_nonnull(tables) && start.is_nonnull(tables) && end.is_nonnull(tables),
|
|
Expr::Binary(_, ast::Operator::Modulus | ast::Operator::Divide, _) => false, // 1 % 0, 1 / 0
|
|
Expr::Binary(expr, _, expr1) => expr.is_nonnull(tables) && expr1.is_nonnull(tables),
|
|
Expr::Case {
|
|
base,
|
|
when_then_pairs,
|
|
else_expr,
|
|
..
|
|
} => {
|
|
base.as_ref().is_none_or(|base| base.is_nonnull(tables))
|
|
&& when_then_pairs
|
|
.iter()
|
|
.all(|(_, then)| then.is_nonnull(tables))
|
|
&& else_expr
|
|
.as_ref()
|
|
.is_none_or(|else_expr| else_expr.is_nonnull(tables))
|
|
}
|
|
Expr::Cast { expr, .. } => expr.is_nonnull(tables),
|
|
Expr::Collate(expr, _) => expr.is_nonnull(tables),
|
|
Expr::DoublyQualified(..) => {
|
|
panic!("Do not call is_nonnull before DoublyQualified has been rewritten as Column")
|
|
}
|
|
Expr::Exists(..) => false,
|
|
Expr::FunctionCall { .. } => false,
|
|
Expr::FunctionCallStar { .. } => false,
|
|
Expr::Id(..) => panic!("Do not call is_nonnull before Id has been rewritten as Column"),
|
|
Expr::Column {
|
|
table,
|
|
column,
|
|
is_rowid_alias,
|
|
..
|
|
} => {
|
|
if *is_rowid_alias {
|
|
return true;
|
|
}
|
|
|
|
let (_, table_ref) = tables
|
|
.find_table_by_internal_id(*table)
|
|
.expect("table not found");
|
|
let columns = table_ref.columns();
|
|
let column = &columns[*column];
|
|
column.primary_key || column.notnull
|
|
}
|
|
Expr::RowId { .. } => true,
|
|
Expr::InList { lhs, rhs, .. } => {
|
|
lhs.is_nonnull(tables) && rhs.is_empty() || rhs.iter().all(|v| v.is_nonnull(tables))
|
|
}
|
|
Expr::InSelect { .. } => false,
|
|
Expr::InTable { .. } => false,
|
|
Expr::IsNull(..) => true,
|
|
Expr::Like { lhs, rhs, .. } => lhs.is_nonnull(tables) && rhs.is_nonnull(tables),
|
|
Expr::Literal(literal) => match literal {
|
|
ast::Literal::Numeric(_) => true,
|
|
ast::Literal::String(_) => true,
|
|
ast::Literal::Blob(_) => true,
|
|
ast::Literal::Keyword(_) => true,
|
|
ast::Literal::Null => false,
|
|
ast::Literal::CurrentDate => true,
|
|
ast::Literal::CurrentTime => true,
|
|
ast::Literal::CurrentTimestamp => true,
|
|
},
|
|
Expr::Name(..) => false,
|
|
Expr::NotNull(..) => true,
|
|
Expr::Parenthesized(exprs) => exprs.iter().all(|expr| expr.is_nonnull(tables)),
|
|
Expr::Qualified(..) => {
|
|
panic!("Do not call is_nonnull before Qualified has been rewritten as Column")
|
|
}
|
|
Expr::Raise(..) => false,
|
|
Expr::Subquery(..) => false,
|
|
Expr::Unary(_, expr) => expr.is_nonnull(tables),
|
|
Expr::Variable(..) => false,
|
|
Expr::Register(..) => false, // Register values can be null
|
|
}
|
|
}
|
|
/// Returns true if the expression is a constant i.e. does not depend on variables or columns etc.
|
|
fn is_constant(&self, resolver: &Resolver<'_>) -> bool {
|
|
match self {
|
|
Expr::SubqueryResult { .. } => false,
|
|
Expr::Between {
|
|
lhs, start, end, ..
|
|
} => {
|
|
lhs.is_constant(resolver)
|
|
&& start.is_constant(resolver)
|
|
&& end.is_constant(resolver)
|
|
}
|
|
Expr::Binary(expr, _, expr1) => {
|
|
expr.is_constant(resolver) && expr1.is_constant(resolver)
|
|
}
|
|
Expr::Case {
|
|
base,
|
|
when_then_pairs,
|
|
else_expr,
|
|
} => {
|
|
base.as_ref().is_none_or(|base| base.is_constant(resolver))
|
|
&& when_then_pairs.iter().all(|(when, then)| {
|
|
when.is_constant(resolver) && then.is_constant(resolver)
|
|
})
|
|
&& else_expr
|
|
.as_ref()
|
|
.is_none_or(|else_expr| else_expr.is_constant(resolver))
|
|
}
|
|
Expr::Cast { expr, .. } => expr.is_constant(resolver),
|
|
Expr::Collate(expr, _) => expr.is_constant(resolver),
|
|
Expr::DoublyQualified(_, _, _) => {
|
|
panic!("DoublyQualified should have been rewritten as Column")
|
|
}
|
|
Expr::Exists(_) => false,
|
|
Expr::FunctionCall { args, name, .. } => {
|
|
let Some(func) = resolver.resolve_function(name.as_str(), args.len()) else {
|
|
return false;
|
|
};
|
|
func.is_deterministic() && args.iter().all(|arg| arg.is_constant(resolver))
|
|
}
|
|
Expr::FunctionCallStar { .. } => false,
|
|
Expr::Id(_) => true,
|
|
Expr::Column { .. } => false,
|
|
Expr::RowId { .. } => false,
|
|
Expr::InList { lhs, rhs, .. } => {
|
|
lhs.is_constant(resolver) && rhs.is_empty()
|
|
|| rhs.iter().all(|v| v.is_constant(resolver))
|
|
}
|
|
Expr::InSelect { .. } => {
|
|
false // might be constant, too annoying to check subqueries etc. implement later
|
|
}
|
|
Expr::InTable { .. } => false,
|
|
Expr::IsNull(expr) => expr.is_constant(resolver),
|
|
Expr::Like {
|
|
lhs, rhs, escape, ..
|
|
} => {
|
|
lhs.is_constant(resolver)
|
|
&& rhs.is_constant(resolver)
|
|
&& escape
|
|
.as_ref()
|
|
.is_none_or(|escape| escape.is_constant(resolver))
|
|
}
|
|
Expr::Literal(_) => true,
|
|
Expr::Name(_) => false,
|
|
Expr::NotNull(expr) => expr.is_constant(resolver),
|
|
Expr::Parenthesized(exprs) => exprs.iter().all(|expr| expr.is_constant(resolver)),
|
|
Expr::Qualified(_, _) => {
|
|
panic!("Qualified should have been rewritten as Column")
|
|
}
|
|
Expr::Raise(_, expr) => expr.as_ref().is_none_or(|expr| expr.is_constant(resolver)),
|
|
Expr::Subquery(_) => false,
|
|
Expr::Unary(_, expr) => expr.is_constant(resolver),
|
|
Expr::Variable(_) => false,
|
|
Expr::Register(_) => false, // Register values are not constants
|
|
}
|
|
}
|
|
/// Returns true if the expression is a constant expression that, when evaluated as a condition, is always true or false
|
|
fn check_always_true_or_false(&self) -> Result<Option<AlwaysTrueOrFalse>> {
|
|
match self {
|
|
Self::Literal(lit) => match lit {
|
|
ast::Literal::Numeric(b) => {
|
|
if let Ok(int_value) = b.parse::<i64>() {
|
|
return Ok(Some(if int_value == 0 {
|
|
AlwaysTrueOrFalse::AlwaysFalse
|
|
} else {
|
|
AlwaysTrueOrFalse::AlwaysTrue
|
|
}));
|
|
}
|
|
if let Ok(float_value) = b.parse::<f64>() {
|
|
return Ok(Some(if float_value == 0.0 {
|
|
AlwaysTrueOrFalse::AlwaysFalse
|
|
} else {
|
|
AlwaysTrueOrFalse::AlwaysTrue
|
|
}));
|
|
}
|
|
|
|
Ok(None)
|
|
}
|
|
ast::Literal::String(s) => {
|
|
let without_quotes = s.trim_matches('\'');
|
|
if let Ok(int_value) = without_quotes.parse::<i64>() {
|
|
return Ok(Some(if int_value == 0 {
|
|
AlwaysTrueOrFalse::AlwaysFalse
|
|
} else {
|
|
AlwaysTrueOrFalse::AlwaysTrue
|
|
}));
|
|
}
|
|
|
|
if let Ok(float_value) = without_quotes.parse::<f64>() {
|
|
return Ok(Some(if float_value == 0.0 {
|
|
AlwaysTrueOrFalse::AlwaysFalse
|
|
} else {
|
|
AlwaysTrueOrFalse::AlwaysTrue
|
|
}));
|
|
}
|
|
|
|
Ok(Some(AlwaysTrueOrFalse::AlwaysFalse))
|
|
}
|
|
_ => Ok(None),
|
|
},
|
|
Self::Unary(op, expr) => {
|
|
if *op == ast::UnaryOperator::Not {
|
|
let trivial = expr.check_always_true_or_false()?;
|
|
return Ok(trivial.map(|t| match t {
|
|
AlwaysTrueOrFalse::AlwaysTrue => AlwaysTrueOrFalse::AlwaysFalse,
|
|
AlwaysTrueOrFalse::AlwaysFalse => AlwaysTrueOrFalse::AlwaysTrue,
|
|
}));
|
|
}
|
|
|
|
if *op == ast::UnaryOperator::Negative {
|
|
let trivial = expr.check_always_true_or_false()?;
|
|
return Ok(trivial);
|
|
}
|
|
|
|
Ok(None)
|
|
}
|
|
Self::InList { lhs: _, not, rhs } => {
|
|
if rhs.is_empty() {
|
|
return Ok(Some(if *not {
|
|
AlwaysTrueOrFalse::AlwaysTrue
|
|
} else {
|
|
AlwaysTrueOrFalse::AlwaysFalse
|
|
}));
|
|
}
|
|
|
|
Ok(None)
|
|
}
|
|
Self::Binary(lhs, op, rhs) => {
|
|
let lhs_trivial = lhs.check_always_true_or_false()?;
|
|
let rhs_trivial = rhs.check_always_true_or_false()?;
|
|
match op {
|
|
ast::Operator::And => {
|
|
if lhs_trivial == Some(AlwaysTrueOrFalse::AlwaysFalse)
|
|
|| rhs_trivial == Some(AlwaysTrueOrFalse::AlwaysFalse)
|
|
{
|
|
return Ok(Some(AlwaysTrueOrFalse::AlwaysFalse));
|
|
}
|
|
if lhs_trivial == Some(AlwaysTrueOrFalse::AlwaysTrue)
|
|
&& rhs_trivial == Some(AlwaysTrueOrFalse::AlwaysTrue)
|
|
{
|
|
return Ok(Some(AlwaysTrueOrFalse::AlwaysTrue));
|
|
}
|
|
|
|
Ok(None)
|
|
}
|
|
ast::Operator::Or => {
|
|
if lhs_trivial == Some(AlwaysTrueOrFalse::AlwaysTrue)
|
|
|| rhs_trivial == Some(AlwaysTrueOrFalse::AlwaysTrue)
|
|
{
|
|
return Ok(Some(AlwaysTrueOrFalse::AlwaysTrue));
|
|
}
|
|
if lhs_trivial == Some(AlwaysTrueOrFalse::AlwaysFalse)
|
|
&& rhs_trivial == Some(AlwaysTrueOrFalse::AlwaysFalse)
|
|
{
|
|
return Ok(Some(AlwaysTrueOrFalse::AlwaysFalse));
|
|
}
|
|
|
|
Ok(None)
|
|
}
|
|
_ => Ok(None),
|
|
}
|
|
}
|
|
_ => Ok(None),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn ephemeral_index_build(
|
|
table_reference: &JoinedTable,
|
|
constraint_refs: &[RangeConstraintRef],
|
|
) -> Index {
|
|
let mut ephemeral_columns: Vec<IndexColumn> = table_reference
|
|
.columns()
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, c)| IndexColumn {
|
|
name: c.name.clone().unwrap(),
|
|
order: SortOrder::Asc,
|
|
pos_in_table: i,
|
|
collation: c.collation,
|
|
default: c.default.clone(),
|
|
})
|
|
// only include columns that are used in the query
|
|
.filter(|c| table_reference.column_is_used(c.pos_in_table))
|
|
.collect();
|
|
// sort so that constraints first, then rest in whatever order they were in in the table
|
|
ephemeral_columns.sort_by(|a, b| {
|
|
let a_constraint = constraint_refs
|
|
.iter()
|
|
.enumerate()
|
|
.find(|(_, c)| c.table_col_pos == a.pos_in_table);
|
|
let b_constraint = constraint_refs
|
|
.iter()
|
|
.enumerate()
|
|
.find(|(_, c)| c.table_col_pos == b.pos_in_table);
|
|
match (a_constraint, b_constraint) {
|
|
(Some(_), None) => Ordering::Less,
|
|
(None, Some(_)) => Ordering::Greater,
|
|
(Some((a_idx, _)), Some((b_idx, _))) => a_idx.cmp(&b_idx),
|
|
(None, None) => Ordering::Equal,
|
|
}
|
|
});
|
|
let ephemeral_index = Index {
|
|
name: format!(
|
|
"ephemeral_{}_{}",
|
|
table_reference.table.get_name(),
|
|
table_reference.internal_id
|
|
),
|
|
columns: ephemeral_columns,
|
|
unique: false,
|
|
ephemeral: true,
|
|
table_name: table_reference.table.get_name().to_string(),
|
|
root_page: 0,
|
|
where_clause: None,
|
|
has_rowid: table_reference
|
|
.table
|
|
.btree()
|
|
.is_some_and(|btree| btree.has_rowid),
|
|
};
|
|
|
|
ephemeral_index
|
|
}
|
|
|
|
/// Build a [SeekDef] for a given list of [Constraint]s
|
|
pub fn build_seek_def_from_constraints(
|
|
constraints: &[Constraint],
|
|
constraint_refs: &[RangeConstraintRef],
|
|
iter_dir: IterationDirection,
|
|
where_clause: &[WhereTerm],
|
|
) -> Result<SeekDef> {
|
|
assert!(
|
|
!constraint_refs.is_empty(),
|
|
"cannot build seek def from empty list of constraint refs"
|
|
);
|
|
// Extract the key values and operators
|
|
let key = constraint_refs
|
|
.iter()
|
|
.map(|cref| cref.as_seek_range_constraint(constraints, where_clause))
|
|
.collect();
|
|
|
|
let seek_def = build_seek_def(iter_dir, key)?;
|
|
Ok(seek_def)
|
|
}
|
|
|
|
/// Build a [SeekDef] for a given [SeekRangeConstraint] and [IterationDirection].
|
|
/// To be usable as a seek key, all but potentially the last term must be equalities.
|
|
/// The last term can be a nonequality (range with potentially one unbounded range).
|
|
///
|
|
/// There are two parts to the seek definition:
|
|
/// 1. start [SeekKey], which specifies the key that we will use to seek to the first row that matches the index key.
|
|
/// 2. end [SeekKey], which specifies the key that we will use to terminate the index scan that follows the seek.
|
|
///
|
|
/// There are some nuances to how, and which parts of, the index key can be used in the start and end [SeekKey]s,
|
|
/// depending on the operator and iteration order. This function explains those nuances inline when dealing with
|
|
/// each case.
|
|
///
|
|
/// But to illustrate the general idea, consider the following examples:
|
|
///
|
|
/// 1. For example, having two conditions like (x>10 AND y>20) cannot be used as a valid [SeekKey] GT(x:10, y:20)
|
|
/// because the first row greater than (x:10, y:20) might be (x:11, y:19), which does not satisfy the where clause.
|
|
/// In this case, only GT(x:10) must be used as the [SeekKey], and rows with y <= 20 must be filtered as a regular condition expression for each value of x.
|
|
///
|
|
/// 2. In contrast, having (x=10 AND y>20) forms a valid index key GT(x:10, y:20) because after the seek, we can simply terminate as soon as x > 10,
|
|
/// i.e. use GT(x:10, y:20) as the start [SeekKey] and GT(x:10) as the end.
|
|
///
|
|
/// The preceding examples are for an ascending index. The logic is similar for descending indexes, but an important distinction is that
|
|
/// since a descending index is laid out in reverse order, the comparison operators are reversed, e.g. LT becomes GT, LE becomes GE, etc.
|
|
/// So when you see e.g. a SeekOp::GT below for a descending index, it actually means that we are seeking the first row where the index key is LESS than the seek key.
|
|
///
|
|
fn build_seek_def(
|
|
iter_dir: IterationDirection,
|
|
mut key: Vec<SeekRangeConstraint>,
|
|
) -> Result<SeekDef> {
|
|
assert!(!key.is_empty());
|
|
let last = key.last().unwrap();
|
|
|
|
// if we searching for exact key - emit definition immediately with prefix as a full key
|
|
if last.eq.is_some() {
|
|
let (start_op, end_op) = match iter_dir {
|
|
IterationDirection::Forwards => (SeekOp::GE { eq_only: true }, SeekOp::GT),
|
|
IterationDirection::Backwards => (SeekOp::LE { eq_only: true }, SeekOp::LT),
|
|
};
|
|
return Ok(SeekDef {
|
|
prefix: key,
|
|
iter_dir,
|
|
start: SeekKey {
|
|
last_component: SeekKeyComponent::None,
|
|
op: start_op,
|
|
},
|
|
end: SeekKey {
|
|
last_component: SeekKeyComponent::None,
|
|
op: end_op,
|
|
},
|
|
});
|
|
}
|
|
assert!(last.lower_bound.is_some() || last.upper_bound.is_some());
|
|
|
|
// pop last key as we will do some form of range search
|
|
let last = key.pop().unwrap();
|
|
|
|
// after that all key components must be equality constraints
|
|
debug_assert!(key.iter().all(|k| k.eq.is_some()));
|
|
|
|
// For the commented examples below, keep in mind that since a descending index is laid out in reverse order, the comparison operators are reversed, e.g. LT becomes GT, LE becomes GE, etc.
|
|
// Also keep in mind that index keys are compared based on the number of columns given, so for example:
|
|
// - if key is GT(x:10), then (x=10, y=usize::MAX) is not GT because only X is compared. (x=11, y=<any>) is GT.
|
|
// - if key is GT(x:10, y:20), then (x=10, y=21) is GT because both X and Y are compared.
|
|
// - if key is GT(x:10, y:NULL), then (x=10, y=0) is GT because NULL is always LT in index key comparisons.
|
|
Ok(match iter_dir {
|
|
IterationDirection::Forwards => {
|
|
let (start, end) = match last.sort_order {
|
|
SortOrder::Asc => {
|
|
let start = match last.lower_bound {
|
|
// Forwards, Asc, GT: (x=10 AND y>20)
|
|
// Start key: start from the first GT(x:10, y:20)
|
|
Some((ast::Operator::Greater, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::GT,
|
|
},
|
|
// Forwards, Asc, GE: (x=10 AND y>=20)
|
|
// Start key: start from the first GE(x:10, y:20)
|
|
Some((ast::Operator::GreaterEquals, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::GE { eq_only: false },
|
|
},
|
|
// Forwards, Asc, None, (x=10 AND y<30)
|
|
// Start key: start from the first GE(x:10)
|
|
None => SeekKey {
|
|
last_component: SeekKeyComponent::None,
|
|
op: SeekOp::GE { eq_only: false },
|
|
},
|
|
Some((op, _)) => {
|
|
crate::bail_parse_error!("build_seek_def: invalid operator: {:?}", op,)
|
|
}
|
|
};
|
|
let end = match last.upper_bound {
|
|
// Forwards, Asc, LT, (x=10 AND y<30)
|
|
// End key: end at first GE(x:10, y:30)
|
|
Some((ast::Operator::Less, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::GE { eq_only: false },
|
|
},
|
|
// Forwards, Asc, LE, (x=10 AND y<=30)
|
|
// End key: end at first GT(x:10, y:30)
|
|
Some((ast::Operator::LessEquals, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::GT,
|
|
},
|
|
// Forwards, Asc, None, (x=10 AND y>20)
|
|
// End key: end at first GT(x:10)
|
|
None => SeekKey {
|
|
last_component: SeekKeyComponent::None,
|
|
op: SeekOp::GT,
|
|
},
|
|
Some((op, _)) => {
|
|
crate::bail_parse_error!("build_seek_def: invalid operator: {:?}", op,)
|
|
}
|
|
};
|
|
(start, end)
|
|
}
|
|
SortOrder::Desc => {
|
|
let start = match last.upper_bound {
|
|
// Forwards, Desc, LT: (x=10 AND y<30)
|
|
// Start key: start from the first GT(x:10, y:30)
|
|
Some((ast::Operator::Less, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::GT,
|
|
},
|
|
// Forwards, Desc, LE: (x=10 AND y<=30)
|
|
// Start key: start from the first GE(x:10, y:30)
|
|
Some((ast::Operator::LessEquals, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::GE { eq_only: false },
|
|
},
|
|
// Forwards, Desc, None: (x=10 AND y>20)
|
|
// Start key: start from the first GE(x:10)
|
|
None => SeekKey {
|
|
last_component: SeekKeyComponent::None,
|
|
op: SeekOp::GE { eq_only: false },
|
|
},
|
|
Some((op, _)) => {
|
|
crate::bail_parse_error!("build_seek_def: invalid operator: {:?}", op,)
|
|
}
|
|
};
|
|
let end = match last.lower_bound {
|
|
// Forwards, Asc, GT, (x=10 AND y>20)
|
|
// End key: end at first GE(x:10, y:20)
|
|
Some((ast::Operator::Greater, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::GE { eq_only: false },
|
|
},
|
|
// Forwards, Asc, GE, (x=10 AND y>=20)
|
|
// End key: end at first GT(x:10, y:20)
|
|
Some((ast::Operator::GreaterEquals, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::GT,
|
|
},
|
|
// Forwards, Asc, None, (x=10 AND y<30)
|
|
// End key: end at first GT(x:10)
|
|
None => SeekKey {
|
|
last_component: SeekKeyComponent::None,
|
|
op: SeekOp::GT,
|
|
},
|
|
Some((op, _)) => {
|
|
crate::bail_parse_error!("build_seek_def: invalid operator: {:?}", op,)
|
|
}
|
|
};
|
|
(start, end)
|
|
}
|
|
};
|
|
SeekDef {
|
|
prefix: key,
|
|
iter_dir,
|
|
start,
|
|
end,
|
|
}
|
|
}
|
|
IterationDirection::Backwards => {
|
|
let (start, end) = match last.sort_order {
|
|
SortOrder::Asc => {
|
|
let start = match last.upper_bound {
|
|
// Backwards, Asc, LT: (x=10 AND y<30)
|
|
// Start key: start from the first LT(x:10, y:30)
|
|
Some((ast::Operator::Less, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::LT,
|
|
},
|
|
// Backwards, Asc, LT: (x=10 AND y<=30)
|
|
// Start key: start from the first LE(x:10, y:30)
|
|
Some((ast::Operator::LessEquals, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::LE { eq_only: false },
|
|
},
|
|
// Backwards, Asc, None: (x=10 AND y>20)
|
|
// Start key: start from the first LE(x:10)
|
|
None => SeekKey {
|
|
last_component: SeekKeyComponent::None,
|
|
op: SeekOp::LE { eq_only: false },
|
|
},
|
|
Some((op, _)) => {
|
|
crate::bail_parse_error!("build_seek_def: invalid operator: {:?}", op)
|
|
}
|
|
};
|
|
let end = match last.lower_bound {
|
|
// Backwards, Asc, GT, (x=10 AND y>20)
|
|
// End key: end at first LE(x:10, y:20)
|
|
Some((ast::Operator::Greater, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::LE { eq_only: false },
|
|
},
|
|
// Backwards, Asc, GT, (x=10 AND y>=20)
|
|
// End key: end at first LT(x:10, y:20)
|
|
Some((ast::Operator::GreaterEquals, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::LT,
|
|
},
|
|
// Backwards, Asc, None, (x=10 AND y<30)
|
|
// End key: end at first LT(x:10)
|
|
None => SeekKey {
|
|
last_component: SeekKeyComponent::None,
|
|
op: SeekOp::LT,
|
|
},
|
|
Some((op, _)) => {
|
|
crate::bail_parse_error!("build_seek_def: invalid operator: {:?}", op,)
|
|
}
|
|
};
|
|
(start, end)
|
|
}
|
|
SortOrder::Desc => {
|
|
let start = match last.lower_bound {
|
|
// Backwards, Desc, LT: (x=10 AND y>20)
|
|
// Start key: start from the first LT(x:10, y:20)
|
|
Some((ast::Operator::Greater, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::LT,
|
|
},
|
|
// Backwards, Desc, LE: (x=10 AND y>=20)
|
|
// Start key: start from the first LE(x:10, y:20)
|
|
Some((ast::Operator::GreaterEquals, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::LE { eq_only: false },
|
|
},
|
|
// Backwards, Desc, LE: (x=10 AND y<30)
|
|
// Start key: start from the first LE(x:10)
|
|
None => SeekKey {
|
|
last_component: SeekKeyComponent::None,
|
|
op: SeekOp::LE { eq_only: false },
|
|
},
|
|
Some((op, _)) => {
|
|
crate::bail_parse_error!("build_seek_def: invalid operator: {:?}", op,)
|
|
}
|
|
};
|
|
let end = match last.upper_bound {
|
|
// Backwards, Desc, LT, (x=10 AND y<30)
|
|
// End key: end at first LE(x:10, y:30)
|
|
Some((ast::Operator::Less, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::LE { eq_only: false },
|
|
},
|
|
// Backwards, Desc, LT, (x=10 AND y<=30)
|
|
// End key: end at first LT(x:10, y:30)
|
|
Some((ast::Operator::LessEquals, bound)) => SeekKey {
|
|
last_component: SeekKeyComponent::Expr(bound),
|
|
op: SeekOp::LT,
|
|
},
|
|
// Backwards, Desc, LT, (x=10 AND y>20)
|
|
// End key: end at first LT(x:10)
|
|
None => SeekKey {
|
|
last_component: SeekKeyComponent::None,
|
|
op: SeekOp::LT,
|
|
},
|
|
Some((op, _)) => {
|
|
crate::bail_parse_error!("build_seek_def: invalid operator: {:?}", op,)
|
|
}
|
|
};
|
|
(start, end)
|
|
}
|
|
};
|
|
SeekDef {
|
|
prefix: key,
|
|
iter_dir,
|
|
start,
|
|
end,
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
pub trait TakeOwnership {
|
|
fn take_ownership(&mut self) -> Self;
|
|
}
|
|
|
|
impl TakeOwnership for ast::Expr {
|
|
fn take_ownership(&mut self) -> Self {
|
|
std::mem::replace(self, ast::Expr::Literal(ast::Literal::Null))
|
|
}
|
|
}
|