Files
turso/core/translate/optimizer/order.rs
Jussi Saurio 7c07c09300 Add stable internal_id property to TableReference
Currently our "table id"/"table no"/"table idx" references always
use the direct index of the `TableReference` in the plan, e.g. in
`SelectPlan::table_references`. For example:

```rust
Expr::Column { table: 0, column: 3, .. }
```

refers to the 0'th table in the `table_references` list.

This is a fragile approach because it assumes the table_references
list is stable for the lifetime of the query processing. This has so
far been the case, but there exist certain query transformations,
e.g. subquery unnesting, that may fold new table references from
a subquery (which has its own table ref list) into the table reference
list of the parent.

If such a transformation is made, then potentially all of the Expr::Column
references to tables will become invalid. Consider this example:

```sql
-- Assume tables: users(id, age), orders(user_id, amount)

-- Get total amount spent per user on orders over $100
SELECT u.id, sub.total
FROM users u JOIN
     (SELECT user_id, SUM(amount) as total
      FROM orders o
      WHERE o.amount > 100
      GROUP BY o.user_id) sub
WHERE u.id = sub.user_id

-- Before subquery unnesting:
-- Main query table_references: [users, sub]
-- u.id refers to table 0, column 0
-- sub.total refers to table 1, column 1
--
-- Subquery table_references: [orders]
-- o.user_id refers to table 0, column 0
-- o.amount refers to table 0, column 1
--
-- After unnesting and folding subquery tables into main query,
-- the query might look like this:

SELECT u.id, SUM(o.amount) as total
FROM users u JOIN orders o ON u.id = o.user_id
WHERE o.amount > 100
GROUP BY u.id;

-- Main query table_references: [users, orders]
-- u.id refers to table index 0 (correct)
-- o.amount refers to table index 0 (incorrect, should be 1)
-- o.user_id refers to table index 0 (incorrect, should be 1)
```

We could ofc traverse every expression in the subquery and rewrite
the table indexes to be correct, but if we instead use stable identifiers
for each table reference, then all the column references will continue
to be correct.

Hence, this PR introduces a `TableInternalId` used in `TableReference`
as well as `Expr::Column` and `Expr::Rowid` so that this kind of query
transformations can happen with less pain.
2025-05-25 20:26:17 +03:00

235 lines
9.7 KiB
Rust

use std::cell::RefCell;
use limbo_sqlite3_parser::ast::{self, SortOrder, TableInternalId};
use crate::{
translate::plan::{GroupBy, IterationDirection, TableReference},
util::exprs_are_equivalent,
};
use super::{access_method::AccessMethod, join::JoinN};
#[derive(Debug, PartialEq, Clone)]
/// A convenience struct for representing a (table_no, column_no, [SortOrder]) tuple.
pub struct ColumnOrder {
pub table_id: TableInternalId,
pub column_no: usize,
pub order: SortOrder,
}
#[derive(Debug, PartialEq, Clone)]
/// If an [OrderTarget] is satisfied, then [EliminatesSort] describes which part of the query no longer requires sorting.
pub enum EliminatesSort {
GroupBy,
OrderBy,
GroupByAndOrderBy,
}
#[derive(Debug, PartialEq, Clone)]
/// An [OrderTarget] is considered in join optimization and index selection,
/// so that if a given join ordering and its access methods satisfy the [OrderTarget],
/// then the join ordering and its access methods are preferred, all other things being equal.
pub struct OrderTarget(pub Vec<ColumnOrder>, pub EliminatesSort);
impl OrderTarget {
fn maybe_from_iterator<'a>(
list: impl Iterator<Item = (&'a ast::Expr, SortOrder)> + Clone,
eliminates_sort: EliminatesSort,
) -> Option<Self> {
if list.clone().count() == 0 {
return None;
}
if list
.clone()
.any(|(expr, _)| !matches!(expr, ast::Expr::Column { .. }))
{
return None;
}
Some(OrderTarget(
list.map(|(expr, order)| {
let ast::Expr::Column { table, column, .. } = expr else {
unreachable!();
};
ColumnOrder {
table_id: *table,
column_no: *column,
order,
}
})
.collect(),
eliminates_sort,
))
}
}
/// Compute an [OrderTarget] for the join optimizer to use.
/// Ideally, a join order is both efficient in joining the tables
/// but also returns the results in an order that minimizes the amount of
/// sorting that needs to be done later (either in GROUP BY, ORDER BY, or both).
///
/// TODO: this does not currently handle the case where we definitely cannot eliminate
/// the ORDER BY sorter, but we could still eliminate the GROUP BY sorter.
pub fn compute_order_target(
order_by_opt: &mut Option<Vec<(ast::Expr, SortOrder)>>,
group_by_opt: Option<&mut GroupBy>,
) -> Option<OrderTarget> {
match (&order_by_opt, group_by_opt) {
// No ordering demands - we don't care what order the joined result rows are in
(None, None) => None,
// Only ORDER BY - we would like the joined result rows to be in the order specified by the ORDER BY
(Some(order_by), None) => OrderTarget::maybe_from_iterator(
order_by.iter().map(|(expr, order)| (expr, *order)),
EliminatesSort::OrderBy,
),
// Only GROUP BY - we would like the joined result rows to be in the order specified by the GROUP BY
(None, Some(group_by)) => OrderTarget::maybe_from_iterator(
group_by.exprs.iter().map(|expr| (expr, SortOrder::Asc)),
EliminatesSort::GroupBy,
),
// Both ORDER BY and GROUP BY:
// If the GROUP BY does not contain all the expressions in the ORDER BY,
// then we must separately sort the result rows for ORDER BY anyway.
// However, in that case we can use the GROUP BY expressions as the target order for the join,
// so that we don't have to sort twice.
//
// If the GROUP BY contains all the expressions in the ORDER BY,
// then we again can use the GROUP BY expressions as the target order for the join;
// however in this case we must take the ASC/DESC from ORDER BY into account.
(Some(order_by), Some(group_by)) => {
// Does the group by contain all expressions in the order by?
let group_by_contains_all = order_by.iter().all(|(expr, _)| {
group_by
.exprs
.iter()
.any(|group_by_expr| exprs_are_equivalent(expr, group_by_expr))
});
// If not, let's try to target an ordering that matches the group by -- we don't care about ASC/DESC
if !group_by_contains_all {
return OrderTarget::maybe_from_iterator(
group_by.exprs.iter().map(|expr| (expr, SortOrder::Asc)),
EliminatesSort::GroupBy,
);
}
// If yes, let's try to target an ordering that matches the GROUP BY columns,
// but the ORDER BY orderings. First, we need to reorder the GROUP BY columns to match the ORDER BY columns.
group_by.exprs.sort_by_key(|expr| {
order_by
.iter()
.position(|(order_by_expr, _)| exprs_are_equivalent(expr, order_by_expr))
.map_or(usize::MAX, |i| i)
});
// Now, regardless of whether we can eventually eliminate the sorting entirely in the optimizer,
// we know that we don't need ORDER BY sorting anyway, because the GROUP BY will sort the result since
// it contains all the necessary columns required for the ORDER BY, and the GROUP BY columns are now in the correct order.
// First, however, we need to make sure the GROUP BY sorter's column sort directions match the ORDER BY requirements.
assert!(group_by.exprs.len() >= order_by.len());
for (i, (_, order_by_dir)) in order_by.iter().enumerate() {
group_by
.sort_order
.as_mut()
.expect("GROUP BY should have a sort order before optimization is run")[i] =
*order_by_dir;
}
// Now we can remove the ORDER BY from the query.
order_by_opt.take();
OrderTarget::maybe_from_iterator(
group_by
.exprs
.iter()
.zip(
group_by
.sort_order
.as_ref()
.expect("GROUP BY should have a sort order before optimization is run")
.iter(),
)
.map(|(expr, dir)| (expr, *dir)),
EliminatesSort::GroupByAndOrderBy,
)
}
}
}
/// Check if the plan's row iteration order matches the [OrderTarget]'s column order.
/// If yes, and this plan is selected, then a sort operation can be eliminated.
pub fn plan_satisfies_order_target(
plan: &JoinN,
access_methods_arena: &RefCell<Vec<AccessMethod>>,
table_references: &[TableReference],
order_target: &OrderTarget,
) -> bool {
let mut target_col_idx = 0;
let num_cols_in_order_target = order_target.0.len();
for (table_index, access_method_index) in plan.data.iter() {
let target_col = &order_target.0[target_col_idx];
let table_ref = &table_references[*table_index];
let correct_table = target_col.table_id == table_ref.internal_id;
if !correct_table {
return false;
}
// Check if this table has an access method that provides the right ordering.
let access_method = &access_methods_arena.borrow()[*access_method_index];
let iter_dir = access_method.iter_dir;
let index = access_method.index.as_ref();
match index {
None => {
// No index, so the next required column must be the rowid alias column.
let rowid_alias_col = table_ref
.table
.columns()
.iter()
.position(|c| c.is_rowid_alias);
let Some(rowid_alias_col) = rowid_alias_col else {
return false;
};
let correct_column = target_col.column_no == rowid_alias_col;
if !correct_column {
return false;
}
// Btree table rows are always in ascending order of rowid.
let correct_order = if iter_dir == IterationDirection::Forwards {
target_col.order == SortOrder::Asc
} else {
target_col.order == SortOrder::Desc
};
if !correct_order {
return false;
}
target_col_idx += 1;
// All order columns matched.
if target_col_idx == num_cols_in_order_target {
return true;
}
}
Some(index) => {
// All of the index columns must match the next required columns in the order target.
for index_col in index.columns.iter() {
let target_col = &order_target.0[target_col_idx];
let correct_column = target_col.column_no == index_col.pos_in_table;
if !correct_column {
return false;
}
let correct_order = if iter_dir == IterationDirection::Forwards {
target_col.order == index_col.order
} else {
target_col.order != index_col.order
};
if !correct_order {
return false;
}
target_col_idx += 1;
// All order columns matched.
if target_col_idx == num_cols_in_order_target {
return true;
}
}
}
}
}
false
}