Files
turso/extensions/core/src/vtabs.rs
2025-05-24 16:49:52 -04:00

676 lines
21 KiB
Rust

use crate::{types::StepResult, ExtResult, ResultCode, Value};
use std::{
ffi::{c_char, c_void, CStr, CString},
num::NonZeroUsize,
rc::Rc,
};
pub type RegisterModuleFn = unsafe extern "C" fn(
ctx: *mut c_void,
name: *const c_char,
module: VTabModuleImpl,
kind: VTabKind,
) -> ResultCode;
#[repr(C)]
#[derive(Clone, Debug)]
pub struct VTabModuleImpl {
pub name: *const c_char,
pub create: VtabFnCreate,
pub open: VtabFnOpen,
pub close: VtabFnClose,
pub filter: VtabFnFilter,
pub column: VtabFnColumn,
pub next: VtabFnNext,
pub eof: VtabFnEof,
pub update: VtabFnUpdate,
pub rowid: VtabRowIDFn,
pub destroy: VtabFnDestroy,
pub best_idx: BestIdxFn,
}
#[repr(C)]
pub struct VTabCreateResult {
pub code: ResultCode,
pub schema: *const c_char,
pub table: *const c_void,
}
#[cfg(feature = "core_only")]
impl VTabModuleImpl {
pub fn create(&self, args: Vec<Value>) -> crate::ExtResult<(String, *const c_void)> {
let result = unsafe { (self.create)(args.as_ptr(), args.len() as i32) };
for arg in args {
unsafe { arg.__free_internal_type() };
}
if !result.code.is_ok() {
return Err(result.code);
}
let schema = unsafe { std::ffi::CString::from_raw(result.schema as *mut _) };
Ok((schema.to_string_lossy().to_string(), result.table))
}
// TODO: This function is temporary and should eventually be removed.
// The only difference from `create` is that it takes ownership of the table instance.
// Currently, it is used to generate virtual table column names that are stored in
// `sqlite_schema` alongside the table's schema.
// However, storing column names is not necessary to match SQLite's behavior.
// SQLite computes the list of columns dynamically each time the `.schema` command
// is executed, using the `shell_add_schema` UDF function.
pub fn create_schema(&self, args: Vec<Value>) -> crate::ExtResult<String> {
self.create(args).and_then(|(schema, table)| {
// Drop the allocated table instance to avoid a memory leak.
let result = unsafe { (self.destroy)(table) };
if result.is_ok() {
Ok(schema)
} else {
Err(result)
}
})
}
}
pub type VtabFnCreate = unsafe extern "C" fn(args: *const Value, argc: i32) -> VTabCreateResult;
pub type VtabFnOpen = unsafe extern "C" fn(table: *const c_void, conn: *mut Conn) -> *const c_void;
pub type VtabFnClose = unsafe extern "C" fn(cursor: *const c_void) -> ResultCode;
pub type VtabFnFilter = unsafe extern "C" fn(
cursor: *const c_void,
argc: i32,
argv: *const Value,
idx_str: *const c_char,
idx_num: i32,
) -> ResultCode;
pub type VtabFnColumn = unsafe extern "C" fn(cursor: *const c_void, idx: u32) -> Value;
pub type VtabFnNext = unsafe extern "C" fn(cursor: *const c_void) -> ResultCode;
pub type VtabFnEof = unsafe extern "C" fn(cursor: *const c_void) -> bool;
pub type VtabRowIDFn = unsafe extern "C" fn(cursor: *const c_void) -> i64;
pub type VtabFnUpdate = unsafe extern "C" fn(
table: *const c_void,
argc: i32,
argv: *const Value,
p_out_rowid: *mut i64,
) -> ResultCode;
pub type VtabFnDestroy = unsafe extern "C" fn(table: *const c_void) -> ResultCode;
pub type BestIdxFn = unsafe extern "C" fn(
constraints: *const ConstraintInfo,
constraint_len: i32,
order_by: *const OrderByInfo,
order_by_len: i32,
) -> ExtIndexInfo;
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum VTabKind {
VirtualTable,
TableValuedFunction,
}
pub trait VTabModule: 'static {
type Table: VTable;
const VTAB_KIND: VTabKind;
const NAME: &'static str;
/// Creates a new instance of a virtual table.
/// Returns a tuple where the first element is the table's schema.
fn create(args: &[Value]) -> Result<(String, Self::Table), ResultCode>;
}
pub trait VTable {
type Cursor: VTabCursor<Error = Self::Error>;
type Error: std::fmt::Display;
/// 'conn' is an Option to allow for testing. Otherwise a valid connection to the core database
/// that created the virtual table will be available to use in your extension here.
fn open(&self, _conn: Option<Rc<Connection>>) -> Result<Self::Cursor, Self::Error>;
fn update(&mut self, _rowid: i64, _args: &[Value]) -> Result<(), Self::Error> {
Ok(())
}
fn insert(&mut self, _args: &[Value]) -> Result<i64, Self::Error> {
Ok(0)
}
fn delete(&mut self, _rowid: i64) -> Result<(), Self::Error> {
Ok(())
}
fn destroy(&mut self) -> Result<(), Self::Error> {
Ok(())
}
fn best_index(_constraints: &[ConstraintInfo], _order_by: &[OrderByInfo]) -> IndexInfo {
IndexInfo {
idx_num: 0,
idx_str: None,
order_by_consumed: false,
estimated_cost: 1_000_000.0,
estimated_rows: u32::MAX,
constraint_usages: _constraints
.iter()
.map(|_| ConstraintUsage {
argv_index: Some(0),
omit: false,
})
.collect(),
}
}
}
pub trait VTabCursor: Sized {
type Error: std::fmt::Display;
fn filter(&mut self, args: &[Value], idx_info: Option<(&str, i32)>) -> ResultCode;
fn rowid(&self) -> i64;
fn column(&self, idx: u32) -> Result<Value, Self::Error>;
fn eof(&self) -> bool;
fn next(&mut self) -> ResultCode;
fn close(&self) -> ResultCode {
ResultCode::OK
}
}
#[repr(u8)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ConstraintOp {
Eq = 2,
Lt = 4,
Le = 8,
Gt = 16,
Ge = 32,
Match = 64,
Like = 65,
Glob = 66,
Regexp = 67,
Ne = 68,
IsNot = 69,
IsNotNull = 70,
IsNull = 71,
Is = 72,
In = 73,
}
#[repr(C)]
#[derive(Copy, Clone)]
/// Describes an ORDER BY clause in a query involving a virtual table.
/// Passed along with the constraints to xBestIndex.
pub struct OrderByInfo {
/// The index of the column referenced in the ORDER BY clause.
pub column_index: u32,
/// Whether or not the clause is in descending order.
pub desc: bool,
}
/// The internal (core) representation of an 'index' on a virtual table.
/// Returned from xBestIndex and then processed and passed to VFilter.
#[derive(Debug, Clone)]
pub struct IndexInfo {
/// The index number, used to identify the index internally by the VTab
pub idx_num: i32,
/// Optional index name. these are passed to vfilter in a tuple (idx_num, idx_str)
pub idx_str: Option<String>,
/// Whether the index is used for order by
pub order_by_consumed: bool,
/// TODO: for eventual cost based query planning
pub estimated_cost: f64,
/// Estimated number of rows that the query will return
pub estimated_rows: u32,
/// List of constraints that can be used to optimize the query.
pub constraint_usages: Vec<ConstraintUsage>,
}
impl Default for IndexInfo {
fn default() -> Self {
Self {
idx_num: 0,
idx_str: None,
order_by_consumed: false,
estimated_cost: 1_000_000.0,
estimated_rows: u32::MAX,
constraint_usages: Vec::new(),
}
}
}
impl IndexInfo {
///
/// Converts IndexInfo to an FFI-safe `ExtIndexInfo`.
/// This method transfers ownership of `constraint_usages` and `idx_str`,
/// which must later be reclaimed using `from_ffi` to prevent leaks.
pub fn to_ffi(self) -> ExtIndexInfo {
let len = self.constraint_usages.len();
let ptr = Box::into_raw(self.constraint_usages.into_boxed_slice()) as *mut ConstraintUsage;
let idx_str_len = self.idx_str.as_ref().map(|s| s.len()).unwrap_or(0);
let c_idx_str = self
.idx_str
.map(|s| std::ffi::CString::new(s).unwrap().into_raw())
.unwrap_or(std::ptr::null_mut());
ExtIndexInfo {
idx_num: self.idx_num,
estimated_cost: self.estimated_cost,
estimated_rows: self.estimated_rows,
order_by_consumed: self.order_by_consumed,
constraint_usages_ptr: ptr,
constraint_usage_len: len,
idx_str: c_idx_str as *mut _,
idx_str_len,
}
}
/// Reclaims ownership of `constraint_usages` and `idx_str` from an FFI-safe `ExtIndexInfo`.
/// # Safety
/// This method is unsafe because it can cause memory leaks if not used correctly.
/// to_ffi and from_ffi are meant to send index info across ffi bounds then immediately reclaim it.
pub unsafe fn from_ffi(ffi: ExtIndexInfo) -> Self {
let constraint_usages = unsafe {
Box::from_raw(std::slice::from_raw_parts_mut(
ffi.constraint_usages_ptr,
ffi.constraint_usage_len,
))
.to_vec()
};
let idx_str = if ffi.idx_str.is_null() {
None
} else {
Some(unsafe {
std::ffi::CString::from_raw(ffi.idx_str as *mut _)
.to_string_lossy()
.into_owned()
})
};
Self {
idx_num: ffi.idx_num,
idx_str,
order_by_consumed: ffi.order_by_consumed,
estimated_cost: ffi.estimated_cost,
estimated_rows: ffi.estimated_rows,
constraint_usages,
}
}
}
#[repr(C)]
#[derive(Clone, Debug)]
/// FFI representation of IndexInfo.
pub struct ExtIndexInfo {
pub idx_num: i32,
pub idx_str: *const u8,
pub idx_str_len: usize,
pub order_by_consumed: bool,
pub estimated_cost: f64,
pub estimated_rows: u32,
pub constraint_usages_ptr: *mut ConstraintUsage,
pub constraint_usage_len: usize,
}
/// Returned from xBestIndex to describe how the virtual table
/// can use the constraints in the WHERE clause of a query.
#[derive(Debug, Clone, Copy)]
pub struct ConstraintUsage {
/// 1 based index of the argument passed
pub argv_index: Option<u32>,
/// If true, core can omit this constraint in the vdbe layer.
pub omit: bool,
}
#[derive(Clone, Copy, Debug)]
#[repr(C)]
/// The primary argument to xBestIndex, which describes a constraint
/// in a query involving a virtual table.
pub struct ConstraintInfo {
/// The index of the column referenced in the WHERE clause.
pub column_index: u32,
/// The operator used in the clause.
pub op: ConstraintOp,
/// Whether or not constraint is garaunteed to be enforced.
pub usable: bool,
/// packed integer with the index of the constraint in the planner,
/// and the side of the binary expr that the relevant column is on.
pub plan_info: u32,
}
impl ConstraintInfo {
#[inline(always)]
pub fn pack_plan_info(pred_idx: u32, is_right_side: bool) -> u32 {
((pred_idx) << 1) | (is_right_side as u32)
}
#[inline(always)]
pub fn unpack_plan_info(&self) -> (usize, bool) {
((self.plan_info >> 1) as usize, (self.plan_info & 1) != 0)
}
}
pub type PrepareStmtFn = unsafe extern "C" fn(api: *mut Conn, sql: *const c_char) -> *mut Stmt;
pub type ExecuteFn = unsafe extern "C" fn(
ctx: *mut Conn,
sql: *const c_char,
args: *mut Value,
arg_count: i32,
last_insert_rowid: *mut i64,
) -> ResultCode;
pub type GetColumnNamesFn =
unsafe extern "C" fn(ctx: *mut Stmt, count: *mut i32) -> *mut *mut c_char;
pub type BindArgsFn = unsafe extern "C" fn(ctx: *mut Stmt, idx: i32, arg: Value) -> ResultCode;
pub type StmtStepFn = unsafe extern "C" fn(ctx: *mut Stmt) -> ResultCode;
pub type StmtGetRowValuesFn = unsafe extern "C" fn(ctx: *mut Stmt);
pub type FreeCurrentRowFn = unsafe extern "C" fn(ctx: *mut Stmt);
pub type CloseConnectionFn = unsafe extern "C" fn(ctx: *mut c_void);
pub type CloseStmtFn = unsafe extern "C" fn(ctx: *mut Stmt);
/// core database connection
/// public fields for core only
#[repr(C)]
#[derive(Debug, Clone)]
pub struct Conn {
// boxed Rc::Weak from core::Connection
pub _ctx: *mut c_void,
pub _prepare_stmt: PrepareStmtFn,
pub _execute: ExecuteFn,
pub _close: CloseConnectionFn,
}
impl Conn {
pub fn new(
ctx: *mut c_void,
prepare_stmt: PrepareStmtFn,
exec_fn: ExecuteFn,
close: CloseConnectionFn,
) -> Self {
Conn {
_ctx: ctx,
_prepare_stmt: prepare_stmt,
_execute: exec_fn,
_close: close,
}
}
/// # Safety
/// Dereferences a null pointer with a null check
pub unsafe fn from_ptr(ptr: *mut Conn) -> crate::ExtResult<&'static mut Self> {
if ptr.is_null() {
return Err(ResultCode::Error);
}
Ok(unsafe { &mut *(ptr) })
}
pub fn close(&mut self) {
if self._ctx.is_null() {
return;
}
unsafe { (self._close)(self._ctx) };
self._ctx = std::ptr::null_mut();
}
/// execute a SQL statement with the given arguments.
/// optionally returns the last inserted rowid for the query
pub fn execute(&self, sql: &str, args: &[Value]) -> crate::ExtResult<Option<usize>> {
let Ok(sql) = CString::new(sql) else {
return Err(ResultCode::Error);
};
let arg_count = args.len() as i32;
let args = args.as_ptr();
let last_insert_rowid = 0;
if let ResultCode::OK = unsafe {
(self._execute)(
self as *const _ as *mut Conn,
sql.as_ptr(),
args as *mut Value,
arg_count,
&last_insert_rowid as *const _ as *mut i64,
)
} {
return Ok(Some(last_insert_rowid as usize));
}
Err(ResultCode::Error)
}
pub fn prepare_stmt(&self, sql: &str) -> *mut Stmt {
let Ok(sql) = CString::new(sql) else {
return std::ptr::null_mut();
};
unsafe { (self._prepare_stmt)(self as *const _ as *mut Conn, sql.as_ptr()) }
}
}
/// Prepared statement for querying a core database connection public API for extensions
/// Statements can be manually closed.
#[derive(Debug)]
#[repr(transparent)]
pub struct Statement(*mut Stmt);
impl Drop for Statement {
fn drop(&mut self) {
if self.0.is_null() {
return;
}
unsafe { (*self.0).close() }
}
}
/// Public API for methods to allow extensions to query other tables for
/// the connection that opened the VTable. This value and its resources are cleaned up when
/// the VTable is dropped, so there is no need to manually close the connection.
#[derive(Debug)]
#[repr(transparent)]
pub struct Connection(*mut Conn);
impl Connection {
pub fn new(ctx: *mut Conn) -> Self {
Connection(ctx)
}
/// From the included SQL string, prepare a statement for execution.
pub fn prepare(self: &Rc<Self>, sql: &str) -> ExtResult<Statement> {
let stmt = unsafe { (*self.0).prepare_stmt(sql) };
if stmt.is_null() {
return Err(ResultCode::Error);
}
Ok(Statement(stmt))
}
/// Execute a SQL statement with the given arguments.
/// Optionally returns the last inserted rowid for the query.
pub fn execute(self: &Rc<Self>, sql: &str, args: &[Value]) -> crate::ExtResult<Option<usize>> {
if self.0.is_null() {
return Err(ResultCode::Error);
}
unsafe { (*self.0).execute(sql, args) }
}
}
impl Statement {
/// Bind a value to a parameter in the prepared statement.
///```ignore
/// let stmt = conn.prepare_stmt("select * from users where name = ?");
/// stmt.bind_at(1, Value::from_text("test".into()));
///```
pub fn bind_at(&self, idx: NonZeroUsize, arg: Value) {
unsafe {
(*self.0).bind_args(idx, arg);
}
}
/// Execute the statement and return the next row
///```ignore
/// while stmt.step() == StepResult::Row {
/// let row = stmt.get_row();
/// println!("row: {:?}", row);
/// }
/// ```
pub fn step(&self) -> StepResult {
unsafe { (*self.0).step() }
}
// Get the current row values
///```ignore
/// while stmt.step() == StepResult::Row {
/// let row = stmt.get_row();
/// println!("row: {:?}", row);
///```
pub fn get_row(&mut self) -> &[Value] {
unsafe { (*self.0).get_row() }
}
/// Get the result column names for the prepared statement
pub fn get_column_names(&self) -> Vec<String> {
unsafe { (*self.0).get_column_names() }
}
/// Close the statement and clean up resources.
pub fn close(self) {
if self.0.is_null() {
return;
}
unsafe { (*self.0).close() }
}
}
/// Internal/core use _only_
/// Extensions should not import or use this type directly
#[repr(C)]
pub struct Stmt {
// Rc::into_raw from core::Connection
pub _conn: *mut c_void,
// Rc::into_raw from core::Statement
pub _ctx: *mut c_void,
pub _bind_args_fn: BindArgsFn,
pub _step: StmtStepFn,
pub _get_row_values: StmtGetRowValuesFn,
pub _get_column_names: GetColumnNamesFn,
pub _free_current_row: FreeCurrentRowFn,
pub _close: CloseStmtFn,
pub current_row: *mut Value,
pub current_row_len: i32,
}
impl Stmt {
#[allow(clippy::too_many_arguments)]
pub fn new(
conn: *mut c_void,
ctx: *mut c_void,
bind: BindArgsFn,
step: StmtStepFn,
rows: StmtGetRowValuesFn,
names: GetColumnNamesFn,
free_row: FreeCurrentRowFn,
close: CloseStmtFn,
) -> Self {
Stmt {
_conn: conn,
_ctx: ctx,
_bind_args_fn: bind,
_step: step,
_get_row_values: rows,
_get_column_names: names,
_free_current_row: free_row,
_close: close,
current_row: std::ptr::null_mut(),
current_row_len: -1,
}
}
/// Close the statement
pub fn close(&mut self) {
// null check to prevent double free
if self._ctx.is_null() {
return;
}
unsafe { (self._close)(self as *const Stmt as *mut Stmt) };
self._ctx = std::ptr::null_mut();
}
/// # Safety
/// Derefs a null ptr, does a null check first
pub unsafe fn from_ptr(ptr: *mut Stmt) -> ExtResult<&'static mut Self> {
if ptr.is_null() {
return Err(ResultCode::Error);
}
Ok(unsafe { &mut *(ptr) })
}
/// Returns the pointer to the statement.
pub fn to_ptr(&self) -> *mut Stmt {
self as *const Stmt as *mut Stmt
}
/// Bind a value to a parameter in the prepared statement
/// Own the value so it can be freed in core
fn bind_args(&self, idx: NonZeroUsize, arg: Value) {
unsafe {
(self._bind_args_fn)(self.to_ptr(), idx.get() as i32, arg);
};
}
/// Execute the statement to attempt to retrieve the next result row.
fn step(&self) -> StepResult {
unsafe { (self._step)(self.to_ptr()) }.into()
}
/// Free the memory for the values obtained from the `get_row` method.
/// This is easier done on core side because __free_internal_type is 'core_only'
/// feature to prevent extensions causing memory issues.
/// # Safety
/// This fn is unsafe because it derefs a raw pointer after null and
/// length checks. This fn should only be called with the pointer returned from get_row.
pub unsafe fn free_current_row(&mut self) {
if self.current_row.is_null() || self.current_row_len <= 0 {
return;
}
// free from the core side so we don't have to expose `__free_internal_type`
(self._free_current_row)(self.to_ptr());
self.current_row = std::ptr::null_mut();
self.current_row_len = -1;
}
/// Returns the values from the current row in the prepared statement, should
/// be called after the step() method returns `StepResult::Row`
pub fn get_row(&self) -> &[Value] {
unsafe { (self._get_row_values)(self.to_ptr()) };
if self.current_row.is_null() || self.current_row_len < 1 {
return &[];
}
let col_count = self.current_row_len;
unsafe { std::slice::from_raw_parts(self.current_row, col_count as usize) }
}
/// Returns the names of the result columns for the prepared statement.
pub fn get_column_names(&self) -> Vec<String> {
let mut count_value: i32 = 0;
let count: *mut i32 = &mut count_value;
let col_names = unsafe { (self._get_column_names)(self.to_ptr(), count) };
if col_names.is_null() || count_value == 0 {
return Vec::new();
}
let mut names = Vec::new();
let slice = unsafe { std::slice::from_raw_parts(col_names, count_value as usize) };
for x in slice {
let name = unsafe { CStr::from_ptr(*x) };
names.push(name.to_str().unwrap().to_string());
}
unsafe { free_column_names(col_names, count_value) };
names
}
}
/// Free the column names returned from get_column_names
/// # Safety
/// This function is unsafe because it derefs a raw pointer, this fn
/// should only be called with the pointer returned from get_column_names
/// only when they will no longer be used.
pub unsafe fn free_column_names(names: *mut *mut c_char, count: i32) {
if names.is_null() || count < 1 {
return;
}
let slice = std::slice::from_raw_parts_mut(names, count as usize);
for name in slice {
if !name.is_null() {
let _ = CString::from_raw(*name);
}
}
let _ = Box::from_raw(names);
}