Files
turso/core/storage/pager.rs
Jussi Saurio 3ba9f2ab97 Small cleanups to pager/wal/vdbe - mostly naming
- Instead of using a confusing CheckpointStatus for many different things,
  introduce the following statuses:
    * PagerCacheflushStatus - cacheflush can result in either:
      - the WAL being written to disk and fsynced
      - but also a checkpoint to the main BD file, and fsyncing the main DB file

      Reflect this in the type.
    * WalFsyncStatus - previously CheckpointStatus was also used for this, even
      though fsyncing the WAL doesn't checkpoint.
    * CheckpointStatus/CheckpointResult is now used only for actual checkpointing.

- Rename HaltState to CommitState (program.halt_state -> program.commit_state)
- Make WAL a non-optional property in Pager
  * This gets rid of a lot of if let Some(...) boilerplate
  * For ephemeral indexes, provide a DummyWAL implementation that does nothing.
- Rename program.halt() to program.commit_txn()
- Add some documentation comments to structs and functions
2025-05-26 10:37:34 +03:00

784 lines
28 KiB
Rust

use crate::fast_lock::SpinLock;
use crate::result::LimboResult;
use crate::storage::btree::BTreePageInner;
use crate::storage::buffer_pool::BufferPool;
use crate::storage::database::DatabaseStorage;
use crate::storage::sqlite3_ondisk::{self, DatabaseHeader, PageContent, PageType};
use crate::storage::wal::{CheckpointResult, Wal, WalFsyncStatus};
use crate::{Buffer, LimboError, Result};
use parking_lot::RwLock;
use std::cell::{RefCell, UnsafeCell};
use std::collections::HashSet;
use std::rc::Rc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
use tracing::trace;
use super::btree::BTreePage;
use super::page_cache::{CacheError, CacheResizeResult, DumbLruPageCache, PageCacheKey};
use super::wal::{CheckpointMode, CheckpointStatus};
pub struct PageInner {
pub flags: AtomicUsize,
pub contents: Option<PageContent>,
pub id: usize,
}
#[derive(Debug)]
pub struct Page {
pub inner: UnsafeCell<PageInner>,
}
// Concurrency control of pages will be handled by the pager, we won't wrap Page with RwLock
// because that is bad bad.
pub type PageRef = Arc<Page>;
/// Page is up-to-date.
const PAGE_UPTODATE: usize = 0b001;
/// Page is locked for I/O to prevent concurrent access.
const PAGE_LOCKED: usize = 0b010;
/// Page had an I/O error.
const PAGE_ERROR: usize = 0b100;
/// Page is dirty. Flush needed.
const PAGE_DIRTY: usize = 0b1000;
/// Page's contents are loaded in memory.
const PAGE_LOADED: usize = 0b10000;
impl Page {
pub fn new(id: usize) -> Self {
Self {
inner: UnsafeCell::new(PageInner {
flags: AtomicUsize::new(0),
contents: None,
id,
}),
}
}
#[allow(clippy::mut_from_ref)]
pub fn get(&self) -> &mut PageInner {
unsafe { &mut *self.inner.get() }
}
pub fn get_contents(&self) -> &mut PageContent {
self.get().contents.as_mut().unwrap()
}
pub fn is_uptodate(&self) -> bool {
self.get().flags.load(Ordering::SeqCst) & PAGE_UPTODATE != 0
}
pub fn set_uptodate(&self) {
self.get().flags.fetch_or(PAGE_UPTODATE, Ordering::SeqCst);
}
pub fn clear_uptodate(&self) {
self.get().flags.fetch_and(!PAGE_UPTODATE, Ordering::SeqCst);
}
pub fn is_locked(&self) -> bool {
self.get().flags.load(Ordering::SeqCst) & PAGE_LOCKED != 0
}
pub fn set_locked(&self) {
self.get().flags.fetch_or(PAGE_LOCKED, Ordering::SeqCst);
}
pub fn clear_locked(&self) {
self.get().flags.fetch_and(!PAGE_LOCKED, Ordering::SeqCst);
}
pub fn is_error(&self) -> bool {
self.get().flags.load(Ordering::SeqCst) & PAGE_ERROR != 0
}
pub fn set_error(&self) {
self.get().flags.fetch_or(PAGE_ERROR, Ordering::SeqCst);
}
pub fn clear_error(&self) {
self.get().flags.fetch_and(!PAGE_ERROR, Ordering::SeqCst);
}
pub fn is_dirty(&self) -> bool {
self.get().flags.load(Ordering::SeqCst) & PAGE_DIRTY != 0
}
pub fn set_dirty(&self) {
tracing::debug!("set_dirty(page={})", self.get().id);
self.get().flags.fetch_or(PAGE_DIRTY, Ordering::SeqCst);
}
pub fn clear_dirty(&self) {
tracing::debug!("clear_dirty(page={})", self.get().id);
self.get().flags.fetch_and(!PAGE_DIRTY, Ordering::SeqCst);
}
pub fn is_loaded(&self) -> bool {
self.get().flags.load(Ordering::SeqCst) & PAGE_LOADED != 0
}
pub fn set_loaded(&self) {
self.get().flags.fetch_or(PAGE_LOADED, Ordering::SeqCst);
}
pub fn clear_loaded(&self) {
tracing::debug!("clear loaded {}", self.get().id);
self.get().flags.fetch_and(!PAGE_LOADED, Ordering::SeqCst);
}
pub fn is_index(&self) -> bool {
match self.get_contents().page_type() {
PageType::IndexLeaf | PageType::IndexInterior => true,
PageType::TableLeaf | PageType::TableInterior => false,
}
}
}
#[derive(Clone, Copy, Debug)]
/// The state of the current pager cache flush.
enum FlushState {
/// Idle.
Start,
/// Waiting for all in-flight writes to the on-disk WAL to complete.
WaitAppendFrames,
/// Fsync the on-disk WAL.
SyncWal,
/// Checkpoint the WAL to the database file (if needed).
Checkpoint,
/// Fsync the database file.
SyncDbFile,
/// Waiting for the database file to be fsynced.
WaitSyncDbFile,
}
#[derive(Clone, Debug, Copy)]
enum CheckpointState {
Checkpoint,
SyncDbFile,
WaitSyncDbFile,
CheckpointDone,
}
/// This will keep track of the state of current cache flush in order to not repeat work
struct FlushInfo {
state: FlushState,
/// Number of writes taking place. When in_flight gets to 0 we can schedule a fsync.
in_flight_writes: Rc<RefCell<usize>>,
}
/// The pager interface implements the persistence layer by providing access
/// to pages of the database file, including caching, concurrency control, and
/// transaction management.
pub struct Pager {
/// Source of the database pages.
pub db_file: Arc<dyn DatabaseStorage>,
/// The write-ahead log (WAL) for the database.
wal: Rc<RefCell<dyn Wal>>,
/// A page cache for the database.
page_cache: Arc<RwLock<DumbLruPageCache>>,
/// Buffer pool for temporary data storage.
buffer_pool: Rc<BufferPool>,
/// I/O interface for input/output operations.
pub io: Arc<dyn crate::io::IO>,
dirty_pages: Rc<RefCell<HashSet<usize>>>,
pub db_header: Arc<SpinLock<DatabaseHeader>>,
flush_info: RefCell<FlushInfo>,
checkpoint_state: RefCell<CheckpointState>,
checkpoint_inflight: Rc<RefCell<usize>>,
syncing: Rc<RefCell<bool>>,
}
#[derive(Debug, Copy, Clone)]
/// The status of the current cache flush.
/// A Done state means that the WAL was committed to disk and fsynced,
/// plus potentially checkpointed to the DB (and the DB then fsynced).
pub enum PagerCacheflushStatus {
Done(PagerCacheflushResult),
IO,
}
#[derive(Debug, Copy, Clone)]
pub enum PagerCacheflushResult {
/// The WAL was written to disk and fsynced.
WalWritten,
/// The WAL was written, fsynced, and a checkpoint was performed.
/// The database file was then also fsynced.
Checkpointed(CheckpointResult),
}
impl Pager {
/// Begins opening a database by reading the database header.
pub fn begin_open(db_file: Arc<dyn DatabaseStorage>) -> Result<Arc<SpinLock<DatabaseHeader>>> {
sqlite3_ondisk::begin_read_database_header(db_file)
}
/// Completes opening a database by initializing the Pager with the database header.
pub fn finish_open(
db_header_ref: Arc<SpinLock<DatabaseHeader>>,
db_file: Arc<dyn DatabaseStorage>,
wal: Rc<RefCell<dyn Wal>>,
io: Arc<dyn crate::io::IO>,
page_cache: Arc<RwLock<DumbLruPageCache>>,
buffer_pool: Rc<BufferPool>,
) -> Result<Self> {
Ok(Self {
db_file,
wal,
page_cache,
io,
dirty_pages: Rc::new(RefCell::new(HashSet::new())),
db_header: db_header_ref.clone(),
flush_info: RefCell::new(FlushInfo {
state: FlushState::Start,
in_flight_writes: Rc::new(RefCell::new(0)),
}),
syncing: Rc::new(RefCell::new(false)),
checkpoint_state: RefCell::new(CheckpointState::Checkpoint),
checkpoint_inflight: Rc::new(RefCell::new(0)),
buffer_pool,
})
}
// FIXME: handle no room in page cache
pub fn btree_create(&self, flags: &CreateBTreeFlags) -> u32 {
let page_type = match flags {
_ if flags.is_table() => PageType::TableLeaf,
_ if flags.is_index() => PageType::IndexLeaf,
_ => unreachable!("Invalid flags state"),
};
let page = self.do_allocate_page(page_type, 0);
let id = page.get().get().id;
id as u32
}
/// Allocate a new overflow page.
/// This is done when a cell overflows and new space is needed.
// FIXME: handle no room in page cache
pub fn allocate_overflow_page(&self) -> PageRef {
let page = self.allocate_page().unwrap();
tracing::debug!("Pager::allocate_overflow_page(id={})", page.get().id);
// setup overflow page
let contents = page.get().contents.as_mut().unwrap();
let buf = contents.as_ptr();
buf.fill(0);
page
}
/// Allocate a new page to the btree via the pager.
/// This marks the page as dirty and writes the page header.
// FIXME: handle no room in page cache
pub fn do_allocate_page(&self, page_type: PageType, offset: usize) -> BTreePage {
let page = self.allocate_page().unwrap();
let page = Arc::new(BTreePageInner {
page: RefCell::new(page),
});
crate::btree_init_page(&page, page_type, offset, self.usable_space() as u16);
tracing::debug!(
"do_allocate_page(id={}, page_type={:?})",
page.get().get().id,
page.get().get_contents().page_type()
);
page
}
/// The "usable size" of a database page is the page size specified by the 2-byte integer at offset 16
/// in the header, minus the "reserved" space size recorded in the 1-byte integer at offset 20 in the header.
/// The usable size of a page might be an odd number. However, the usable size is not allowed to be less than 480.
/// In other words, if the page size is 512, then the reserved space size cannot exceed 32.
pub fn usable_space(&self) -> usize {
let db_header = self.db_header.lock();
(db_header.get_page_size() - db_header.reserved_space as u32) as usize
}
#[inline(always)]
pub fn begin_read_tx(&self) -> Result<LimboResult> {
self.wal.borrow_mut().begin_read_tx()
}
#[inline(always)]
pub fn begin_write_tx(&self) -> Result<LimboResult> {
self.wal.borrow_mut().begin_write_tx()
}
pub fn end_tx(&self) -> Result<PagerCacheflushStatus> {
let cacheflush_status = self.cacheflush()?;
return match cacheflush_status {
PagerCacheflushStatus::IO => Ok(PagerCacheflushStatus::IO),
PagerCacheflushStatus::Done(_) => {
self.wal.borrow().end_write_tx()?;
self.wal.borrow().end_read_tx()?;
Ok(cacheflush_status)
}
};
}
pub fn end_read_tx(&self) -> Result<()> {
self.wal.borrow().end_read_tx()?;
Ok(())
}
/// Reads a page from the database.
pub fn read_page(&self, page_idx: usize) -> Result<PageRef, LimboError> {
tracing::trace!("read_page(page_idx = {})", page_idx);
let mut page_cache = self.page_cache.write();
let max_frame = self.wal.borrow().get_max_frame();
let page_key = PageCacheKey::new(page_idx, Some(max_frame));
if let Some(page) = page_cache.get(&page_key) {
tracing::trace!("read_page(page_idx = {}) = cached", page_idx);
return Ok(page.clone());
}
let page = Arc::new(Page::new(page_idx));
page.set_locked();
if let Some(frame_id) = self.wal.borrow().find_frame(page_idx as u64)? {
self.wal
.borrow()
.read_frame(frame_id, page.clone(), self.buffer_pool.clone())?;
{
page.set_uptodate();
}
// TODO(pere) should probably first insert to page cache, and if successful,
// read frame or page
match page_cache.insert(page_key, page.clone()) {
Ok(_) => {}
Err(CacheError::Full) => return Err(LimboError::CacheFull),
Err(CacheError::KeyExists) => {
unreachable!("Page should not exist in cache after get() miss")
}
Err(e) => {
return Err(LimboError::InternalError(format!(
"Failed to insert page into cache: {:?}",
e
)))
}
}
return Ok(page);
}
sqlite3_ondisk::begin_read_page(
self.db_file.clone(),
self.buffer_pool.clone(),
page.clone(),
page_idx,
)?;
match page_cache.insert(page_key, page.clone()) {
Ok(_) => {}
Err(CacheError::Full) => return Err(LimboError::CacheFull),
Err(CacheError::KeyExists) => {
unreachable!("Page should not exist in cache after get() miss")
}
Err(e) => {
return Err(LimboError::InternalError(format!(
"Failed to insert page into cache: {:?}",
e
)))
}
}
Ok(page)
}
/// Writes the database header.
pub fn write_database_header(&self, header: &DatabaseHeader) {
sqlite3_ondisk::begin_write_database_header(header, self).expect("failed to write header");
}
/// Changes the size of the page cache.
pub fn change_page_cache_size(&self, capacity: usize) -> Result<CacheResizeResult> {
let mut page_cache = self.page_cache.write();
Ok(page_cache.resize(capacity))
}
pub fn add_dirty(&self, page_id: usize) {
// TODO: check duplicates?
let mut dirty_pages = RefCell::borrow_mut(&self.dirty_pages);
dirty_pages.insert(page_id);
}
pub fn wal_frame_count(&self) -> Result<u64> {
Ok(self.wal.borrow().get_max_frame_in_wal())
}
/// Flush dirty pages to disk.
/// In the base case, it will write the dirty pages to the WAL and then fsync the WAL.
/// If the WAL size is over the checkpoint threshold, it will checkpoint the WAL to
/// the database file and then fsync the database file.
pub fn cacheflush(&self) -> Result<PagerCacheflushStatus> {
let mut checkpoint_result = CheckpointResult::default();
loop {
let state = self.flush_info.borrow().state;
trace!("cacheflush {:?}", state);
match state {
FlushState::Start => {
let db_size = self.db_header.lock().database_size;
let max_frame = self.wal.borrow().get_max_frame();
for page_id in self.dirty_pages.borrow().iter() {
let mut cache = self.page_cache.write();
let page_key = PageCacheKey::new(*page_id, Some(max_frame));
let page = cache.get(&page_key).expect("we somehow added a page to dirty list but we didn't mark it as dirty, causing cache to drop it.");
let page_type = page.get().contents.as_ref().unwrap().maybe_page_type();
trace!("cacheflush(page={}, page_type={:?}", page_id, page_type);
self.wal.borrow_mut().append_frame(
page.clone(),
db_size,
self.flush_info.borrow().in_flight_writes.clone(),
)?;
page.clear_dirty();
}
// This is okay assuming we use shared cache by default.
{
let mut cache = self.page_cache.write();
cache.clear().unwrap();
}
self.dirty_pages.borrow_mut().clear();
self.flush_info.borrow_mut().state = FlushState::WaitAppendFrames;
return Ok(PagerCacheflushStatus::IO);
}
FlushState::WaitAppendFrames => {
let in_flight = *self.flush_info.borrow().in_flight_writes.borrow();
if in_flight == 0 {
self.flush_info.borrow_mut().state = FlushState::SyncWal;
} else {
return Ok(PagerCacheflushStatus::IO);
}
}
FlushState::SyncWal => {
if WalFsyncStatus::IO == self.wal.borrow_mut().sync()? {
return Ok(PagerCacheflushStatus::IO);
}
if !self.wal.borrow().should_checkpoint() {
self.flush_info.borrow_mut().state = FlushState::Start;
return Ok(PagerCacheflushStatus::Done(
PagerCacheflushResult::WalWritten,
));
}
self.flush_info.borrow_mut().state = FlushState::Checkpoint;
}
FlushState::Checkpoint => {
match self.checkpoint()? {
CheckpointStatus::Done(res) => {
checkpoint_result = res;
self.flush_info.borrow_mut().state = FlushState::SyncDbFile;
}
CheckpointStatus::IO => return Ok(PagerCacheflushStatus::IO),
};
}
FlushState::SyncDbFile => {
sqlite3_ondisk::begin_sync(self.db_file.clone(), self.syncing.clone())?;
self.flush_info.borrow_mut().state = FlushState::WaitSyncDbFile;
}
FlushState::WaitSyncDbFile => {
if *self.syncing.borrow() {
return Ok(PagerCacheflushStatus::IO);
} else {
self.flush_info.borrow_mut().state = FlushState::Start;
break;
}
}
}
}
Ok(PagerCacheflushStatus::Done(
PagerCacheflushResult::Checkpointed(checkpoint_result),
))
}
pub fn checkpoint(&self) -> Result<CheckpointStatus> {
let mut checkpoint_result = CheckpointResult::default();
loop {
let state = *self.checkpoint_state.borrow();
trace!("pager_checkpoint(state={:?})", state);
match state {
CheckpointState::Checkpoint => {
let in_flight = self.checkpoint_inflight.clone();
match self.wal.borrow_mut().checkpoint(
self,
in_flight,
CheckpointMode::Passive,
)? {
CheckpointStatus::IO => return Ok(CheckpointStatus::IO),
CheckpointStatus::Done(res) => {
checkpoint_result = res;
self.checkpoint_state.replace(CheckpointState::SyncDbFile);
}
};
}
CheckpointState::SyncDbFile => {
sqlite3_ondisk::begin_sync(self.db_file.clone(), self.syncing.clone())?;
self.checkpoint_state
.replace(CheckpointState::WaitSyncDbFile);
}
CheckpointState::WaitSyncDbFile => {
if *self.syncing.borrow() {
return Ok(CheckpointStatus::IO);
} else {
self.checkpoint_state
.replace(CheckpointState::CheckpointDone);
}
}
CheckpointState::CheckpointDone => {
return if *self.checkpoint_inflight.borrow() > 0 {
Ok(CheckpointStatus::IO)
} else {
self.checkpoint_state.replace(CheckpointState::Checkpoint);
Ok(CheckpointStatus::Done(checkpoint_result))
};
}
}
}
}
// WARN: used for testing purposes
pub fn clear_page_cache(&self) -> CheckpointResult {
let checkpoint_result: CheckpointResult;
loop {
match self.wal.borrow_mut().checkpoint(
self,
Rc::new(RefCell::new(0)),
CheckpointMode::Passive,
) {
Ok(CheckpointStatus::IO) => {
let _ = self.io.run_once();
}
Ok(CheckpointStatus::Done(res)) => {
checkpoint_result = res;
break;
}
Err(err) => panic!("error while clearing cache {}", err),
}
}
// TODO: only clear cache of things that are really invalidated
self.page_cache
.write()
.clear()
.expect("Failed to clear page cache");
checkpoint_result
}
// Providing a page is optional, if provided it will be used to avoid reading the page from disk.
// This is implemented in accordance with sqlite freepage2() function.
pub fn free_page(&self, page: Option<PageRef>, page_id: usize) -> Result<()> {
const TRUNK_PAGE_HEADER_SIZE: usize = 8;
const LEAF_ENTRY_SIZE: usize = 4;
const RESERVED_SLOTS: usize = 2;
const TRUNK_PAGE_NEXT_PAGE_OFFSET: usize = 0; // Offset to next trunk page pointer
const TRUNK_PAGE_LEAF_COUNT_OFFSET: usize = 4; // Offset to leaf count
if page_id < 2 || page_id > self.db_header.lock().database_size as usize {
return Err(LimboError::Corrupt(format!(
"Invalid page number {} for free operation",
page_id
)));
}
let page = match page {
Some(page) => {
assert_eq!(page.get().id, page_id, "Page id mismatch");
page
}
None => self.read_page(page_id)?,
};
self.db_header.lock().freelist_pages += 1;
let trunk_page_id = self.db_header.lock().freelist_trunk_page;
if trunk_page_id != 0 {
// Add as leaf to current trunk
let trunk_page = self.read_page(trunk_page_id as usize)?;
let trunk_page_contents = trunk_page.get().contents.as_ref().unwrap();
let number_of_leaf_pages = trunk_page_contents.read_u32(TRUNK_PAGE_LEAF_COUNT_OFFSET);
// Reserve 2 slots for the trunk page header which is 8 bytes or 2*LEAF_ENTRY_SIZE
let max_free_list_entries = (self.usable_size() / LEAF_ENTRY_SIZE) - RESERVED_SLOTS;
if number_of_leaf_pages < max_free_list_entries as u32 {
trunk_page.set_dirty();
self.add_dirty(trunk_page_id as usize);
trunk_page_contents
.write_u32(TRUNK_PAGE_LEAF_COUNT_OFFSET, number_of_leaf_pages + 1);
trunk_page_contents.write_u32(
TRUNK_PAGE_HEADER_SIZE + (number_of_leaf_pages as usize * LEAF_ENTRY_SIZE),
page_id as u32,
);
page.clear_uptodate();
page.clear_loaded();
return Ok(());
}
}
// If we get here, need to make this page a new trunk
page.set_dirty();
self.add_dirty(page_id);
let contents = page.get().contents.as_mut().unwrap();
// Point to previous trunk
contents.write_u32(TRUNK_PAGE_NEXT_PAGE_OFFSET, trunk_page_id);
// Zero leaf count
contents.write_u32(TRUNK_PAGE_LEAF_COUNT_OFFSET, 0);
// Update page 1 to point to new trunk
self.db_header.lock().freelist_trunk_page = page_id as u32;
// Clear flags
page.clear_uptodate();
page.clear_loaded();
Ok(())
}
/*
Gets a new page that increasing the size of the page or uses a free page.
Currently free list pages are not yet supported.
*/
// FIXME: handle no room in page cache
#[allow(clippy::readonly_write_lock)]
pub fn allocate_page(&self) -> Result<PageRef> {
let header = &self.db_header;
let mut header = header.lock();
header.database_size += 1;
{
// update database size
// read sync for now
loop {
let first_page_ref = self.read_page(1)?;
if first_page_ref.is_locked() {
self.io.run_once()?;
continue;
}
first_page_ref.set_dirty();
self.add_dirty(1);
let contents = first_page_ref.get().contents.as_ref().unwrap();
contents.write_database_header(&header);
break;
}
}
// FIXME: should reserve page cache entry before modifying the database
let page = allocate_page(header.database_size as usize, &self.buffer_pool, 0);
{
// setup page and add to cache
page.set_dirty();
self.add_dirty(page.get().id);
let max_frame = self.wal.borrow().get_max_frame();
let page_key = PageCacheKey::new(page.get().id, Some(max_frame));
let mut cache = self.page_cache.write();
match cache.insert(page_key, page.clone()) {
Err(CacheError::Full) => return Err(LimboError::CacheFull),
Err(_) => {
return Err(LimboError::InternalError(
"Unknown error inserting page to cache".into(),
))
}
Ok(_) => return Ok(page),
}
}
}
pub fn update_dirty_loaded_page_in_cache(
&self,
id: usize,
page: PageRef,
) -> Result<(), LimboError> {
let mut cache = self.page_cache.write();
let max_frame = self.wal.borrow().get_max_frame();
let page_key = PageCacheKey::new(id, Some(max_frame));
// FIXME: use specific page key for writer instead of max frame, this will make readers not conflict
assert!(page.is_dirty());
cache
.insert_ignore_existing(page_key, page.clone())
.map_err(|e| {
LimboError::InternalError(format!(
"Failed to insert loaded page {} into cache: {:?}",
id, e
))
})?;
page.set_loaded();
Ok(())
}
pub fn usable_size(&self) -> usize {
let db_header = self.db_header.lock();
(db_header.get_page_size() - db_header.reserved_space as u32) as usize
}
}
pub fn allocate_page(page_id: usize, buffer_pool: &Rc<BufferPool>, offset: usize) -> PageRef {
let page = Arc::new(Page::new(page_id));
{
let buffer = buffer_pool.get();
let bp = buffer_pool.clone();
let drop_fn = Rc::new(move |buf| {
bp.put(buf);
});
let buffer = Arc::new(RefCell::new(Buffer::new(buffer, drop_fn)));
page.set_loaded();
page.get().contents = Some(PageContent::new(offset, buffer));
}
page
}
#[derive(Debug)]
pub struct CreateBTreeFlags(pub u8);
impl CreateBTreeFlags {
pub const TABLE: u8 = 0b0001;
pub const INDEX: u8 = 0b0010;
pub fn new_table() -> Self {
Self(CreateBTreeFlags::TABLE)
}
pub fn new_index() -> Self {
Self(CreateBTreeFlags::INDEX)
}
pub fn is_table(&self) -> bool {
(self.0 & CreateBTreeFlags::TABLE) != 0
}
pub fn is_index(&self) -> bool {
(self.0 & CreateBTreeFlags::INDEX) != 0
}
pub fn get_flags(&self) -> u8 {
self.0
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use parking_lot::RwLock;
use crate::storage::page_cache::{DumbLruPageCache, PageCacheKey};
use super::Page;
#[test]
fn test_shared_cache() {
// ensure cache can be shared between threads
let cache = Arc::new(RwLock::new(DumbLruPageCache::new(10)));
let thread = {
let cache = cache.clone();
std::thread::spawn(move || {
let mut cache = cache.write();
let page_key = PageCacheKey::new(1, None);
cache.insert(page_key, Arc::new(Page::new(1))).unwrap();
})
};
let _ = thread.join();
let mut cache = cache.write();
let page_key = PageCacheKey::new(1, None);
let page = cache.get(&page_key);
assert_eq!(page.unwrap().get().id, 1);
}
}