mirror of
https://github.com/aljazceru/turso.git
synced 2025-12-18 09:04:19 +01:00
2725 lines
96 KiB
Rust
2725 lines
96 KiB
Rust
#![allow(dead_code)]
|
|
// Operator DAG for DBSP-style incremental computation
|
|
// Based on Feldera DBSP design but adapted for Turso's architecture
|
|
|
|
use crate::incremental::expr_compiler::CompiledExpression;
|
|
use crate::incremental::hashable_row::HashableRow;
|
|
use crate::types::Text;
|
|
use crate::{Connection, Database, SymbolTable, Value};
|
|
use std::collections::{HashMap, HashSet};
|
|
use std::fmt::{self, Debug, Display};
|
|
use std::sync::Arc;
|
|
use std::sync::Mutex;
|
|
use turso_macros::match_ignore_ascii_case;
|
|
|
|
/// Tracks computation counts to verify incremental behavior (for tests now), and in the future
|
|
/// should be used to provide statistics.
|
|
#[derive(Debug, Default, Clone)]
|
|
pub struct ComputationTracker {
|
|
pub filter_evaluations: usize,
|
|
pub project_operations: usize,
|
|
pub join_lookups: usize,
|
|
pub aggregation_updates: usize,
|
|
pub full_scans: usize,
|
|
}
|
|
|
|
impl ComputationTracker {
|
|
pub fn new() -> Self {
|
|
Self::default()
|
|
}
|
|
|
|
pub fn record_filter(&mut self) {
|
|
self.filter_evaluations += 1;
|
|
}
|
|
|
|
pub fn record_project(&mut self) {
|
|
self.project_operations += 1;
|
|
}
|
|
|
|
pub fn record_join_lookup(&mut self) {
|
|
self.join_lookups += 1;
|
|
}
|
|
|
|
pub fn record_aggregation(&mut self) {
|
|
self.aggregation_updates += 1;
|
|
}
|
|
|
|
pub fn record_full_scan(&mut self) {
|
|
self.full_scans += 1;
|
|
}
|
|
|
|
pub fn total_computations(&self) -> usize {
|
|
self.filter_evaluations
|
|
+ self.project_operations
|
|
+ self.join_lookups
|
|
+ self.aggregation_updates
|
|
}
|
|
}
|
|
|
|
/// A delta represents ordered changes to data
|
|
#[derive(Debug, Clone, Default)]
|
|
pub struct Delta {
|
|
/// Ordered list of changes: (row, weight) where weight is +1 for insert, -1 for delete
|
|
/// It is crucial that this is ordered. Imagine the case of an update, which becomes a delete +
|
|
/// insert. If this is not ordered, it would be applied in arbitrary order and break the view.
|
|
pub changes: Vec<(HashableRow, isize)>,
|
|
}
|
|
|
|
impl Delta {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
changes: Vec::new(),
|
|
}
|
|
}
|
|
|
|
pub fn insert(&mut self, row_key: i64, values: Vec<Value>) {
|
|
let row = HashableRow::new(row_key, values);
|
|
self.changes.push((row, 1));
|
|
}
|
|
|
|
pub fn delete(&mut self, row_key: i64, values: Vec<Value>) {
|
|
let row = HashableRow::new(row_key, values);
|
|
self.changes.push((row, -1));
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
self.changes.is_empty()
|
|
}
|
|
|
|
pub fn len(&self) -> usize {
|
|
self.changes.len()
|
|
}
|
|
|
|
/// Merge another delta into this one
|
|
/// This preserves the order of operations - no consolidation is done
|
|
/// to maintain the full history of changes
|
|
pub fn merge(&mut self, other: &Delta) {
|
|
// Simply append all changes from other, preserving order
|
|
self.changes.extend(other.changes.iter().cloned());
|
|
}
|
|
|
|
/// Consolidate changes by combining entries with the same HashableRow
|
|
pub fn consolidate(&mut self) {
|
|
if self.changes.is_empty() {
|
|
return;
|
|
}
|
|
|
|
// Use a HashMap to accumulate weights
|
|
let mut consolidated: HashMap<HashableRow, isize> = HashMap::new();
|
|
|
|
for (row, weight) in self.changes.drain(..) {
|
|
*consolidated.entry(row).or_insert(0) += weight;
|
|
}
|
|
|
|
// Convert back to vec, filtering out zero weights
|
|
self.changes = consolidated
|
|
.into_iter()
|
|
.filter(|(_, weight)| *weight != 0)
|
|
.collect();
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod hashable_row_tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_hashable_row_delta_operations() {
|
|
let mut delta = Delta::new();
|
|
|
|
// Test INSERT
|
|
delta.insert(1, vec![Value::Integer(1), Value::Integer(100)]);
|
|
assert_eq!(delta.len(), 1);
|
|
|
|
// Test UPDATE (DELETE + INSERT) - order matters!
|
|
delta.delete(1, vec![Value::Integer(1), Value::Integer(100)]);
|
|
delta.insert(1, vec![Value::Integer(1), Value::Integer(200)]);
|
|
assert_eq!(delta.len(), 3); // Should have 3 operations before consolidation
|
|
|
|
// Verify order is preserved
|
|
let ops: Vec<_> = delta.changes.iter().collect();
|
|
assert_eq!(ops[0].1, 1); // First insert
|
|
assert_eq!(ops[1].1, -1); // Delete
|
|
assert_eq!(ops[2].1, 1); // Second insert
|
|
|
|
// Test consolidation
|
|
delta.consolidate();
|
|
// After consolidation, the first insert and delete should cancel out
|
|
// leaving only the second insert
|
|
assert_eq!(delta.len(), 1);
|
|
|
|
let final_row = &delta.changes[0];
|
|
assert_eq!(final_row.0.rowid, 1);
|
|
assert_eq!(
|
|
final_row.0.values,
|
|
vec![Value::Integer(1), Value::Integer(200)]
|
|
);
|
|
assert_eq!(final_row.1, 1);
|
|
}
|
|
|
|
#[test]
|
|
fn test_duplicate_row_consolidation() {
|
|
let mut delta = Delta::new();
|
|
|
|
// Insert same row twice
|
|
delta.insert(2, vec![Value::Integer(2), Value::Integer(300)]);
|
|
delta.insert(2, vec![Value::Integer(2), Value::Integer(300)]);
|
|
|
|
assert_eq!(delta.len(), 2);
|
|
|
|
delta.consolidate();
|
|
assert_eq!(delta.len(), 1);
|
|
|
|
// Weight should be 2 (sum of both inserts)
|
|
let final_row = &delta.changes[0];
|
|
assert_eq!(final_row.0.rowid, 2);
|
|
assert_eq!(final_row.1, 2);
|
|
}
|
|
}
|
|
|
|
/// Represents an operator in the dataflow graph
|
|
#[derive(Debug, Clone)]
|
|
pub enum QueryOperator {
|
|
/// Table scan - source of data
|
|
TableScan {
|
|
table_name: String,
|
|
column_names: Vec<String>,
|
|
},
|
|
|
|
/// Filter rows based on predicate
|
|
Filter {
|
|
predicate: FilterPredicate,
|
|
input: usize, // Index of input operator
|
|
},
|
|
|
|
/// Project columns (select specific columns)
|
|
Project {
|
|
columns: Vec<ProjectColumn>,
|
|
input: usize,
|
|
},
|
|
|
|
/// Join two inputs
|
|
Join {
|
|
join_type: JoinType,
|
|
on_column: String,
|
|
left_input: usize,
|
|
right_input: usize,
|
|
},
|
|
|
|
/// Aggregate
|
|
Aggregate {
|
|
group_by: Vec<String>,
|
|
aggregates: Vec<AggregateFunction>,
|
|
input: usize,
|
|
},
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub enum FilterPredicate {
|
|
/// Column = value
|
|
Equals { column: String, value: Value },
|
|
/// Column != value
|
|
NotEquals { column: String, value: Value },
|
|
/// Column > value
|
|
GreaterThan { column: String, value: Value },
|
|
/// Column >= value
|
|
GreaterThanOrEqual { column: String, value: Value },
|
|
/// Column < value
|
|
LessThan { column: String, value: Value },
|
|
/// Column <= value
|
|
LessThanOrEqual { column: String, value: Value },
|
|
/// Logical AND of two predicates
|
|
And(Box<FilterPredicate>, Box<FilterPredicate>),
|
|
/// Logical OR of two predicates
|
|
Or(Box<FilterPredicate>, Box<FilterPredicate>),
|
|
/// No predicate (accept all rows)
|
|
None,
|
|
}
|
|
|
|
impl FilterPredicate {
|
|
/// Parse a SQL AST expression into a FilterPredicate
|
|
/// This centralizes all SQL-to-predicate parsing logic
|
|
pub fn from_sql_expr(expr: &turso_parser::ast::Expr) -> crate::Result<Self> {
|
|
use turso_parser::ast::*;
|
|
|
|
let Expr::Binary(lhs, op, rhs) = expr else {
|
|
return Err(crate::LimboError::ParseError(
|
|
"Unsupported WHERE clause for incremental views: not a binary expression"
|
|
.to_string(),
|
|
));
|
|
};
|
|
|
|
// Handle AND/OR logical operators
|
|
match op {
|
|
Operator::And => {
|
|
let left = Self::from_sql_expr(lhs)?;
|
|
let right = Self::from_sql_expr(rhs)?;
|
|
return Ok(FilterPredicate::And(Box::new(left), Box::new(right)));
|
|
}
|
|
Operator::Or => {
|
|
let left = Self::from_sql_expr(lhs)?;
|
|
let right = Self::from_sql_expr(rhs)?;
|
|
return Ok(FilterPredicate::Or(Box::new(left), Box::new(right)));
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
// Handle comparison operators
|
|
let Expr::Id(column_name) = &**lhs else {
|
|
return Err(crate::LimboError::ParseError(
|
|
"Unsupported WHERE clause for incremental views: left-hand-side is not a column reference".to_string(),
|
|
));
|
|
};
|
|
|
|
let column = column_name.as_str().to_string();
|
|
|
|
// Parse the right-hand side value
|
|
let value = match &**rhs {
|
|
Expr::Literal(Literal::String(s)) => {
|
|
// Strip quotes from string literals
|
|
let cleaned = s.trim_matches('\'').trim_matches('"');
|
|
Value::Text(Text::new(cleaned))
|
|
}
|
|
Expr::Literal(Literal::Numeric(n)) => {
|
|
// Try to parse as integer first, then float
|
|
if let Ok(i) = n.parse::<i64>() {
|
|
Value::Integer(i)
|
|
} else if let Ok(f) = n.parse::<f64>() {
|
|
Value::Float(f)
|
|
} else {
|
|
return Err(crate::LimboError::ParseError(
|
|
"Unsupported WHERE clause for incremental views: right-hand-side is not a numeric literal".to_string(),
|
|
));
|
|
}
|
|
}
|
|
Expr::Literal(Literal::Null) => Value::Null,
|
|
Expr::Literal(Literal::Blob(_)) => {
|
|
// Blob comparison not yet supported
|
|
return Err(crate::LimboError::ParseError(
|
|
"Unsupported WHERE clause for incremental views: comparison with blob literals is not supported".to_string(),
|
|
));
|
|
}
|
|
other => {
|
|
// Complex expressions not yet supported
|
|
return Err(crate::LimboError::ParseError(
|
|
format!("Unsupported WHERE clause for incremental views: comparison with {other:?} is not supported"),
|
|
));
|
|
}
|
|
};
|
|
|
|
// Create the appropriate predicate based on operator
|
|
match op {
|
|
Operator::Equals => Ok(FilterPredicate::Equals { column, value }),
|
|
Operator::NotEquals => Ok(FilterPredicate::NotEquals { column, value }),
|
|
Operator::Greater => Ok(FilterPredicate::GreaterThan { column, value }),
|
|
Operator::GreaterEquals => Ok(FilterPredicate::GreaterThanOrEqual { column, value }),
|
|
Operator::Less => Ok(FilterPredicate::LessThan { column, value }),
|
|
Operator::LessEquals => Ok(FilterPredicate::LessThanOrEqual { column, value }),
|
|
other => Err(crate::LimboError::ParseError(
|
|
format!("Unsupported WHERE clause for incremental views: comparison operator {other:?} is not supported"),
|
|
)),
|
|
}
|
|
}
|
|
|
|
/// Parse a WHERE clause from a SELECT statement
|
|
pub fn from_select(select: &turso_parser::ast::Select) -> crate::Result<Self> {
|
|
use turso_parser::ast::*;
|
|
|
|
if let OneSelect::Select {
|
|
ref where_clause, ..
|
|
} = select.body.select
|
|
{
|
|
if let Some(where_clause) = where_clause {
|
|
Self::from_sql_expr(where_clause)
|
|
} else {
|
|
Ok(FilterPredicate::None)
|
|
}
|
|
} else {
|
|
Err(crate::LimboError::ParseError(
|
|
"Unsupported WHERE clause for incremental views: not a single SELECT statement"
|
|
.to_string(),
|
|
))
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct ProjectColumn {
|
|
/// The original SQL expression (for debugging/fallback)
|
|
pub expr: turso_parser::ast::Expr,
|
|
/// Optional alias for the column
|
|
pub alias: Option<String>,
|
|
/// Compiled expression (handles both trivial columns and complex expressions)
|
|
pub compiled: CompiledExpression,
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub enum JoinType {
|
|
Inner,
|
|
Left,
|
|
Right,
|
|
}
|
|
|
|
#[derive(Debug, Clone, PartialEq)]
|
|
pub enum AggregateFunction {
|
|
Count,
|
|
Sum(String),
|
|
Avg(String),
|
|
// MIN and MAX are not supported - see comment in compiler.rs for explanation
|
|
}
|
|
|
|
impl Display for AggregateFunction {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self {
|
|
AggregateFunction::Count => write!(f, "COUNT(*)"),
|
|
AggregateFunction::Sum(col) => write!(f, "SUM({col})"),
|
|
AggregateFunction::Avg(col) => write!(f, "AVG({col})"),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl AggregateFunction {
|
|
/// Get the default output column name for this aggregate function
|
|
#[inline]
|
|
pub fn default_output_name(&self) -> String {
|
|
self.to_string()
|
|
}
|
|
|
|
/// Create an AggregateFunction from a SQL function and its arguments
|
|
/// Returns None if the function is not a supported aggregate
|
|
pub fn from_sql_function(
|
|
func: &crate::function::Func,
|
|
input_column: Option<String>,
|
|
) -> Option<Self> {
|
|
use crate::function::{AggFunc, Func};
|
|
|
|
match func {
|
|
Func::Agg(agg_func) => {
|
|
match agg_func {
|
|
AggFunc::Count | AggFunc::Count0 => Some(AggregateFunction::Count),
|
|
AggFunc::Sum => input_column.map(AggregateFunction::Sum),
|
|
AggFunc::Avg => input_column.map(AggregateFunction::Avg),
|
|
// MIN and MAX are not supported in incremental views - see compiler.rs
|
|
AggFunc::Min | AggFunc::Max => None,
|
|
_ => None, // Other aggregate functions not yet supported in DBSP
|
|
}
|
|
}
|
|
_ => None, // Not an aggregate function
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Operator DAG (Directed Acyclic Graph)
|
|
/// Base trait for incremental operators
|
|
pub trait IncrementalOperator: Debug {
|
|
/// Initialize with base data
|
|
fn initialize(&mut self, data: Delta);
|
|
|
|
/// Evaluate the operator with a delta, without modifying internal state
|
|
/// This is used during query execution to compute results including uncommitted changes
|
|
///
|
|
/// # Arguments
|
|
/// * `delta` - The committed delta to process
|
|
/// * `uncommitted` - Optional uncommitted changes from the current transaction
|
|
fn eval(&self, delta: Delta, uncommitted: Option<Delta>) -> Delta;
|
|
|
|
/// Commit a delta to the operator's internal state and return the output
|
|
/// This is called when a transaction commits, making changes permanent
|
|
/// Returns the output delta (what downstream operators should see)
|
|
fn commit(&mut self, delta: Delta) -> Delta;
|
|
|
|
/// Get current accumulated state
|
|
fn get_current_state(&self) -> Delta;
|
|
|
|
/// Set computation tracker
|
|
fn set_tracker(&mut self, tracker: Arc<Mutex<ComputationTracker>>);
|
|
}
|
|
|
|
/// Filter operator - filters rows based on predicate
|
|
#[derive(Debug)]
|
|
pub struct FilterOperator {
|
|
predicate: FilterPredicate,
|
|
current_state: Delta,
|
|
column_names: Vec<String>,
|
|
tracker: Option<Arc<Mutex<ComputationTracker>>>,
|
|
}
|
|
|
|
impl FilterOperator {
|
|
pub fn new(predicate: FilterPredicate, column_names: Vec<String>) -> Self {
|
|
Self {
|
|
predicate,
|
|
current_state: Delta::new(),
|
|
column_names,
|
|
tracker: None,
|
|
}
|
|
}
|
|
|
|
/// Get the predicate for this filter
|
|
pub fn predicate(&self) -> &FilterPredicate {
|
|
&self.predicate
|
|
}
|
|
|
|
pub fn evaluate_predicate(&self, values: &[Value]) -> bool {
|
|
match &self.predicate {
|
|
FilterPredicate::None => true,
|
|
FilterPredicate::Equals { column, value } => {
|
|
if let Some(idx) = self.column_names.iter().position(|c| c == column) {
|
|
if let Some(v) = values.get(idx) {
|
|
return v == value;
|
|
}
|
|
}
|
|
false
|
|
}
|
|
FilterPredicate::NotEquals { column, value } => {
|
|
if let Some(idx) = self.column_names.iter().position(|c| c == column) {
|
|
if let Some(v) = values.get(idx) {
|
|
return v != value;
|
|
}
|
|
}
|
|
false
|
|
}
|
|
FilterPredicate::GreaterThan { column, value } => {
|
|
if let Some(idx) = self.column_names.iter().position(|c| c == column) {
|
|
if let Some(v) = values.get(idx) {
|
|
// Compare based on value types
|
|
match (v, value) {
|
|
(Value::Integer(a), Value::Integer(b)) => return a > b,
|
|
(Value::Float(a), Value::Float(b)) => return a > b,
|
|
(Value::Text(a), Value::Text(b)) => return a.as_str() > b.as_str(),
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
false
|
|
}
|
|
FilterPredicate::GreaterThanOrEqual { column, value } => {
|
|
if let Some(idx) = self.column_names.iter().position(|c| c == column) {
|
|
if let Some(v) = values.get(idx) {
|
|
match (v, value) {
|
|
(Value::Integer(a), Value::Integer(b)) => return a >= b,
|
|
(Value::Float(a), Value::Float(b)) => return a >= b,
|
|
(Value::Text(a), Value::Text(b)) => return a.as_str() >= b.as_str(),
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
false
|
|
}
|
|
FilterPredicate::LessThan { column, value } => {
|
|
if let Some(idx) = self.column_names.iter().position(|c| c == column) {
|
|
if let Some(v) = values.get(idx) {
|
|
match (v, value) {
|
|
(Value::Integer(a), Value::Integer(b)) => return a < b,
|
|
(Value::Float(a), Value::Float(b)) => return a < b,
|
|
(Value::Text(a), Value::Text(b)) => return a.as_str() < b.as_str(),
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
false
|
|
}
|
|
FilterPredicate::LessThanOrEqual { column, value } => {
|
|
if let Some(idx) = self.column_names.iter().position(|c| c == column) {
|
|
if let Some(v) = values.get(idx) {
|
|
match (v, value) {
|
|
(Value::Integer(a), Value::Integer(b)) => return a <= b,
|
|
(Value::Float(a), Value::Float(b)) => return a <= b,
|
|
(Value::Text(a), Value::Text(b)) => return a.as_str() <= b.as_str(),
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
false
|
|
}
|
|
FilterPredicate::And(left, right) => {
|
|
// Temporarily create sub-filters to evaluate
|
|
let left_filter = FilterOperator::new((**left).clone(), self.column_names.clone());
|
|
let right_filter =
|
|
FilterOperator::new((**right).clone(), self.column_names.clone());
|
|
left_filter.evaluate_predicate(values) && right_filter.evaluate_predicate(values)
|
|
}
|
|
FilterPredicate::Or(left, right) => {
|
|
let left_filter = FilterOperator::new((**left).clone(), self.column_names.clone());
|
|
let right_filter =
|
|
FilterOperator::new((**right).clone(), self.column_names.clone());
|
|
left_filter.evaluate_predicate(values) || right_filter.evaluate_predicate(values)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl IncrementalOperator for FilterOperator {
|
|
fn initialize(&mut self, data: Delta) {
|
|
// Process initial data through filter
|
|
for (row, weight) in data.changes {
|
|
if let Some(tracker) = &self.tracker {
|
|
tracker.lock().unwrap().record_filter();
|
|
}
|
|
|
|
if self.evaluate_predicate(&row.values) {
|
|
self.current_state.changes.push((row, weight));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn eval(&self, delta: Delta, uncommitted: Option<Delta>) -> Delta {
|
|
let mut output_delta = Delta::new();
|
|
|
|
// Merge delta with uncommitted if present
|
|
let combined_delta = if let Some(uncommitted) = uncommitted {
|
|
let mut combined = delta;
|
|
combined.merge(&uncommitted);
|
|
combined
|
|
} else {
|
|
delta
|
|
};
|
|
|
|
// Process the combined delta through the filter
|
|
for (row, weight) in combined_delta.changes {
|
|
if let Some(tracker) = &self.tracker {
|
|
tracker.lock().unwrap().record_filter();
|
|
}
|
|
|
|
// Only pass through rows that satisfy the filter predicate
|
|
// For deletes (weight < 0), we only pass them if the row values
|
|
// would have passed the filter (meaning it was in the view)
|
|
if self.evaluate_predicate(&row.values) {
|
|
output_delta.changes.push((row, weight));
|
|
}
|
|
}
|
|
|
|
output_delta
|
|
}
|
|
|
|
fn commit(&mut self, delta: Delta) -> Delta {
|
|
let mut output_delta = Delta::new();
|
|
|
|
// Commit the delta to our internal state
|
|
// Only pass through and track rows that satisfy the filter predicate
|
|
for (row, weight) in delta.changes {
|
|
if let Some(tracker) = &self.tracker {
|
|
tracker.lock().unwrap().record_filter();
|
|
}
|
|
|
|
// Only track and output rows that pass the filter
|
|
// For deletes, this means the row was in the view (its values pass the filter)
|
|
// For inserts, this means the row should be in the view
|
|
if self.evaluate_predicate(&row.values) {
|
|
self.current_state.changes.push((row.clone(), weight));
|
|
output_delta.changes.push((row, weight));
|
|
}
|
|
}
|
|
|
|
output_delta
|
|
}
|
|
|
|
fn get_current_state(&self) -> Delta {
|
|
// Return a consolidated view of the current state
|
|
let mut consolidated = self.current_state.clone();
|
|
consolidated.consolidate();
|
|
consolidated
|
|
}
|
|
|
|
fn set_tracker(&mut self, tracker: Arc<Mutex<ComputationTracker>>) {
|
|
self.tracker = Some(tracker);
|
|
}
|
|
}
|
|
|
|
/// Project operator - selects/transforms columns
|
|
#[derive(Clone)]
|
|
pub struct ProjectOperator {
|
|
columns: Vec<ProjectColumn>,
|
|
input_column_names: Vec<String>,
|
|
output_column_names: Vec<String>,
|
|
current_state: Delta,
|
|
tracker: Option<Arc<Mutex<ComputationTracker>>>,
|
|
// Internal in-memory connection for expression evaluation
|
|
// Programs are very dependent on having a connection, so give it one.
|
|
//
|
|
// We could in theory pass the current connection, but there are a host of problems with that.
|
|
// For example: during a write transaction, where views are usually updated, we have autocommit
|
|
// on. When the program we are executing calls Halt, it will try to commit the current
|
|
// transaction, which is absolutely incorrect.
|
|
//
|
|
// There are other ways to solve this, but a read-only connection to an empty in-memory
|
|
// database gives us the closest environment we need to execute expressions.
|
|
internal_conn: Arc<Connection>,
|
|
}
|
|
|
|
impl std::fmt::Debug for ProjectOperator {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
f.debug_struct("ProjectOperator")
|
|
.field("columns", &self.columns)
|
|
.field("input_column_names", &self.input_column_names)
|
|
.field("output_column_names", &self.output_column_names)
|
|
.field("current_state", &self.current_state)
|
|
.field("tracker", &self.tracker)
|
|
.finish_non_exhaustive()
|
|
}
|
|
}
|
|
|
|
impl ProjectOperator {
|
|
/// Create a new ProjectOperator from a SELECT statement, extracting projection columns
|
|
pub fn from_select(
|
|
select: &turso_parser::ast::Select,
|
|
input_column_names: Vec<String>,
|
|
schema: &crate::schema::Schema,
|
|
) -> crate::Result<Self> {
|
|
use turso_parser::ast::*;
|
|
|
|
// Set up internal connection for expression evaluation
|
|
let io = Arc::new(crate::MemoryIO::new());
|
|
let db = Database::open_file(
|
|
io, ":memory:", false, // no MVCC needed for expression evaluation
|
|
false, // no indexes needed
|
|
)?;
|
|
let internal_conn = db.connect()?;
|
|
// Set to read-only mode and disable auto-commit since we're only evaluating expressions
|
|
internal_conn.query_only.set(true);
|
|
internal_conn.auto_commit.set(false);
|
|
|
|
let temp_syms = SymbolTable::new();
|
|
|
|
// Extract columns from SELECT statement
|
|
let columns = if let OneSelect::Select {
|
|
columns: ref select_columns,
|
|
..
|
|
} = &select.body.select
|
|
{
|
|
let mut columns = Vec::new();
|
|
for result_col in select_columns {
|
|
match result_col {
|
|
ResultColumn::Expr(expr, alias) => {
|
|
let alias_str = if let Some(As::As(alias_name)) = alias {
|
|
Some(alias_name.as_str().to_string())
|
|
} else {
|
|
None
|
|
};
|
|
// Try to compile the expression (handles both columns and complex expressions)
|
|
let compiled = CompiledExpression::compile(
|
|
expr,
|
|
&input_column_names,
|
|
schema,
|
|
&temp_syms,
|
|
internal_conn.clone(),
|
|
)?;
|
|
columns.push(ProjectColumn {
|
|
expr: (**expr).clone(),
|
|
alias: alias_str,
|
|
compiled,
|
|
});
|
|
}
|
|
ResultColumn::Star => {
|
|
// Select all columns - create trivial column references
|
|
for name in &input_column_names {
|
|
// Create an Id expression for the column
|
|
let expr = Expr::Id(Name::Ident(name.clone()));
|
|
let compiled = CompiledExpression::compile(
|
|
&expr,
|
|
&input_column_names,
|
|
schema,
|
|
&temp_syms,
|
|
internal_conn.clone(),
|
|
)?;
|
|
columns.push(ProjectColumn {
|
|
expr,
|
|
alias: None,
|
|
compiled,
|
|
});
|
|
}
|
|
}
|
|
x => {
|
|
return Err(crate::LimboError::ParseError(format!(
|
|
"Unsupported {x:?} clause when compiling project operator",
|
|
)));
|
|
}
|
|
}
|
|
}
|
|
|
|
if columns.is_empty() {
|
|
return Err(crate::LimboError::ParseError(
|
|
"No columns found when compiling project operator".to_string(),
|
|
));
|
|
}
|
|
columns
|
|
} else {
|
|
return Err(crate::LimboError::ParseError(
|
|
"Expression is not a valid SELECT expression".to_string(),
|
|
));
|
|
};
|
|
|
|
// Generate output column names based on aliases or expressions
|
|
let output_column_names = columns
|
|
.iter()
|
|
.map(|c| {
|
|
c.alias.clone().unwrap_or_else(|| match &c.expr {
|
|
Expr::Id(name) => name.as_str().to_string(),
|
|
Expr::Qualified(table, column) => {
|
|
format!("{}.{}", table.as_str(), column.as_str())
|
|
}
|
|
Expr::DoublyQualified(db, table, column) => {
|
|
format!("{}.{}.{}", db.as_str(), table.as_str(), column.as_str())
|
|
}
|
|
_ => c.expr.to_string(),
|
|
})
|
|
})
|
|
.collect();
|
|
|
|
Ok(Self {
|
|
columns,
|
|
input_column_names,
|
|
output_column_names,
|
|
current_state: Delta::new(),
|
|
tracker: None,
|
|
internal_conn,
|
|
})
|
|
}
|
|
|
|
/// Create a ProjectOperator from pre-compiled expressions
|
|
pub fn from_compiled(
|
|
compiled_exprs: Vec<CompiledExpression>,
|
|
aliases: Vec<Option<String>>,
|
|
input_column_names: Vec<String>,
|
|
output_column_names: Vec<String>,
|
|
) -> crate::Result<Self> {
|
|
// Set up internal connection for expression evaluation
|
|
let io = Arc::new(crate::MemoryIO::new());
|
|
let db = Database::open_file(
|
|
io, ":memory:", false, // no MVCC needed for expression evaluation
|
|
false, // no indexes needed
|
|
)?;
|
|
let internal_conn = db.connect()?;
|
|
// Set to read-only mode and disable auto-commit since we're only evaluating expressions
|
|
internal_conn.query_only.set(true);
|
|
internal_conn.auto_commit.set(false);
|
|
|
|
// Create ProjectColumn structs from compiled expressions
|
|
let columns: Vec<ProjectColumn> = compiled_exprs
|
|
.into_iter()
|
|
.zip(aliases)
|
|
.map(|(compiled, alias)| ProjectColumn {
|
|
// Create a placeholder AST expression since we already have the compiled version
|
|
expr: turso_parser::ast::Expr::Literal(turso_parser::ast::Literal::Null),
|
|
alias,
|
|
compiled,
|
|
})
|
|
.collect();
|
|
|
|
Ok(Self {
|
|
columns,
|
|
input_column_names,
|
|
output_column_names,
|
|
current_state: Delta::new(),
|
|
tracker: None,
|
|
internal_conn,
|
|
})
|
|
}
|
|
|
|
/// Get the columns for this projection
|
|
pub fn columns(&self) -> &[ProjectColumn] {
|
|
&self.columns
|
|
}
|
|
|
|
fn project_values(&self, values: &[Value]) -> Vec<Value> {
|
|
let mut output = Vec::new();
|
|
|
|
for col in &self.columns {
|
|
// Use the internal connection's pager for expression evaluation
|
|
let internal_pager = self.internal_conn.pager.borrow().clone();
|
|
|
|
// Execute the compiled expression (handles both columns and complex expressions)
|
|
let result = col
|
|
.compiled
|
|
.execute(values, internal_pager)
|
|
.expect("Failed to execute compiled expression for the Project operator");
|
|
output.push(result);
|
|
}
|
|
|
|
output
|
|
}
|
|
|
|
fn evaluate_expression(&self, expr: &turso_parser::ast::Expr, values: &[Value]) -> Value {
|
|
use turso_parser::ast::*;
|
|
match expr {
|
|
Expr::Id(name) => {
|
|
if let Some(idx) = self
|
|
.input_column_names
|
|
.iter()
|
|
.position(|c| c == name.as_str())
|
|
{
|
|
if let Some(v) = values.get(idx) {
|
|
return v.clone();
|
|
}
|
|
}
|
|
Value::Null
|
|
}
|
|
Expr::Literal(lit) => {
|
|
match lit {
|
|
Literal::Numeric(n) => {
|
|
if let Ok(i) = n.parse::<i64>() {
|
|
Value::Integer(i)
|
|
} else if let Ok(f) = n.parse::<f64>() {
|
|
Value::Float(f)
|
|
} else {
|
|
Value::Null
|
|
}
|
|
}
|
|
Literal::String(s) => {
|
|
let cleaned = s.trim_matches('\'').trim_matches('"');
|
|
Value::Text(Text::new(cleaned))
|
|
}
|
|
Literal::Null => Value::Null,
|
|
Literal::Blob(_)
|
|
| Literal::Keyword(_)
|
|
| Literal::CurrentDate
|
|
| Literal::CurrentTime
|
|
| Literal::CurrentTimestamp => Value::Null, // Not supported yet
|
|
}
|
|
}
|
|
Expr::Binary(left, op, right) => {
|
|
let left_val = self.evaluate_expression(left, values);
|
|
let right_val = self.evaluate_expression(right, values);
|
|
|
|
match op {
|
|
Operator::Add => match (&left_val, &right_val) {
|
|
(Value::Integer(a), Value::Integer(b)) => Value::Integer(a + b),
|
|
(Value::Float(a), Value::Float(b)) => Value::Float(a + b),
|
|
(Value::Integer(a), Value::Float(b)) => Value::Float(*a as f64 + b),
|
|
(Value::Float(a), Value::Integer(b)) => Value::Float(a + *b as f64),
|
|
_ => Value::Null,
|
|
},
|
|
Operator::Subtract => match (&left_val, &right_val) {
|
|
(Value::Integer(a), Value::Integer(b)) => Value::Integer(a - b),
|
|
(Value::Float(a), Value::Float(b)) => Value::Float(a - b),
|
|
(Value::Integer(a), Value::Float(b)) => Value::Float(*a as f64 - b),
|
|
(Value::Float(a), Value::Integer(b)) => Value::Float(a - *b as f64),
|
|
_ => Value::Null,
|
|
},
|
|
Operator::Multiply => match (&left_val, &right_val) {
|
|
(Value::Integer(a), Value::Integer(b)) => Value::Integer(a * b),
|
|
(Value::Float(a), Value::Float(b)) => Value::Float(a * b),
|
|
(Value::Integer(a), Value::Float(b)) => Value::Float(*a as f64 * b),
|
|
(Value::Float(a), Value::Integer(b)) => Value::Float(a * *b as f64),
|
|
_ => Value::Null,
|
|
},
|
|
Operator::Divide => match (&left_val, &right_val) {
|
|
(Value::Integer(a), Value::Integer(b)) => {
|
|
if *b != 0 {
|
|
Value::Integer(a / b)
|
|
} else {
|
|
Value::Null
|
|
}
|
|
}
|
|
(Value::Float(a), Value::Float(b)) => {
|
|
if *b != 0.0 {
|
|
Value::Float(a / b)
|
|
} else {
|
|
Value::Null
|
|
}
|
|
}
|
|
(Value::Integer(a), Value::Float(b)) => {
|
|
if *b != 0.0 {
|
|
Value::Float(*a as f64 / b)
|
|
} else {
|
|
Value::Null
|
|
}
|
|
}
|
|
(Value::Float(a), Value::Integer(b)) => {
|
|
if *b != 0 {
|
|
Value::Float(a / *b as f64)
|
|
} else {
|
|
Value::Null
|
|
}
|
|
}
|
|
_ => Value::Null,
|
|
},
|
|
_ => Value::Null, // Other operators not supported yet
|
|
}
|
|
}
|
|
Expr::FunctionCall { name, args, .. } => {
|
|
let name_bytes = name.as_str().as_bytes();
|
|
match_ignore_ascii_case!(match name_bytes {
|
|
b"hex" => {
|
|
if args.len() == 1 {
|
|
let arg_val = self.evaluate_expression(&args[0], values);
|
|
match arg_val {
|
|
Value::Integer(i) => Value::Text(Text::new(&format!("{i:X}"))),
|
|
_ => Value::Null,
|
|
}
|
|
} else {
|
|
Value::Null
|
|
}
|
|
}
|
|
_ => Value::Null, // Other functions not supported yet
|
|
})
|
|
}
|
|
Expr::Parenthesized(inner) => {
|
|
assert!(
|
|
inner.len() <= 1,
|
|
"Parenthesized expressions with multiple elements are not supported"
|
|
);
|
|
if !inner.is_empty() {
|
|
self.evaluate_expression(&inner[0], values)
|
|
} else {
|
|
Value::Null
|
|
}
|
|
}
|
|
_ => Value::Null, // Other expression types not supported yet
|
|
}
|
|
}
|
|
}
|
|
|
|
impl IncrementalOperator for ProjectOperator {
|
|
fn initialize(&mut self, data: Delta) {
|
|
for (row, weight) in &data.changes {
|
|
if let Some(tracker) = &self.tracker {
|
|
tracker.lock().unwrap().record_project();
|
|
}
|
|
|
|
let projected = self.project_values(&row.values);
|
|
let projected_row = HashableRow::new(row.rowid, projected);
|
|
self.current_state.changes.push((projected_row, *weight));
|
|
}
|
|
}
|
|
|
|
fn eval(&self, delta: Delta, uncommitted: Option<Delta>) -> Delta {
|
|
let mut output_delta = Delta::new();
|
|
|
|
// Merge delta with uncommitted if present
|
|
let combined_delta = if let Some(uncommitted) = uncommitted {
|
|
let mut combined = delta;
|
|
combined.merge(&uncommitted);
|
|
combined
|
|
} else {
|
|
delta
|
|
};
|
|
|
|
for (row, weight) in &combined_delta.changes {
|
|
if let Some(tracker) = &self.tracker {
|
|
tracker.lock().unwrap().record_project();
|
|
}
|
|
|
|
let projected = self.project_values(&row.values);
|
|
let projected_row = HashableRow::new(row.rowid, projected);
|
|
output_delta.changes.push((projected_row, *weight));
|
|
}
|
|
|
|
output_delta
|
|
}
|
|
|
|
fn commit(&mut self, delta: Delta) -> Delta {
|
|
let mut output_delta = Delta::new();
|
|
|
|
// Commit the delta to our internal state and build output
|
|
for (row, weight) in &delta.changes {
|
|
if let Some(tracker) = &self.tracker {
|
|
tracker.lock().unwrap().record_project();
|
|
}
|
|
let projected = self.project_values(&row.values);
|
|
let projected_row = HashableRow::new(row.rowid, projected);
|
|
self.current_state
|
|
.changes
|
|
.push((projected_row.clone(), *weight));
|
|
output_delta.changes.push((projected_row, *weight));
|
|
}
|
|
|
|
output_delta
|
|
}
|
|
|
|
fn get_current_state(&self) -> Delta {
|
|
// Return a consolidated view of the current state
|
|
let mut consolidated = self.current_state.clone();
|
|
consolidated.consolidate();
|
|
consolidated
|
|
}
|
|
|
|
fn set_tracker(&mut self, tracker: Arc<Mutex<ComputationTracker>>) {
|
|
self.tracker = Some(tracker);
|
|
}
|
|
}
|
|
|
|
/// Aggregate operator - performs incremental aggregation with GROUP BY
|
|
/// Maintains running totals/counts that are updated incrementally
|
|
#[derive(Debug, Clone)]
|
|
pub struct AggregateOperator {
|
|
// GROUP BY columns
|
|
group_by: Vec<String>,
|
|
// Aggregate functions to compute
|
|
aggregates: Vec<AggregateFunction>,
|
|
// Column names from input
|
|
pub input_column_names: Vec<String>,
|
|
// Aggregation state: group_key_str -> aggregate values
|
|
// For each group, we store the aggregate results
|
|
// We use String representation of group keys since Value doesn't implement Hash
|
|
group_states: HashMap<String, AggregateState>,
|
|
// Map to keep track of actual group key values for output
|
|
group_key_values: HashMap<String, Vec<Value>>,
|
|
// Current output state as a Delta
|
|
current_state: Delta,
|
|
tracker: Option<Arc<Mutex<ComputationTracker>>>,
|
|
}
|
|
|
|
/// State for a single group's aggregates
|
|
#[derive(Debug, Clone)]
|
|
struct AggregateState {
|
|
// For COUNT: just the count
|
|
count: i64,
|
|
// For SUM: column_name -> sum value
|
|
sums: HashMap<String, f64>,
|
|
// For AVG: column_name -> (sum, count) for computing average
|
|
avgs: HashMap<String, (f64, i64)>,
|
|
// MIN/MAX are not supported - they require O(n) storage overhead for handling deletions
|
|
// correctly. See comment in apply_delta() for details.
|
|
}
|
|
|
|
impl AggregateState {
|
|
fn new() -> Self {
|
|
Self {
|
|
count: 0,
|
|
sums: HashMap::new(),
|
|
avgs: HashMap::new(),
|
|
}
|
|
}
|
|
|
|
/// Apply a delta to this aggregate state
|
|
fn apply_delta(
|
|
&mut self,
|
|
values: &[Value],
|
|
weight: isize,
|
|
aggregates: &[AggregateFunction],
|
|
column_names: &[String],
|
|
) {
|
|
// Update COUNT
|
|
self.count += weight as i64;
|
|
|
|
// Update other aggregates
|
|
for agg in aggregates {
|
|
match agg {
|
|
AggregateFunction::Count => {
|
|
// Already handled above
|
|
}
|
|
AggregateFunction::Sum(col_name) => {
|
|
if let Some(idx) = column_names.iter().position(|c| c == col_name) {
|
|
if let Some(val) = values.get(idx) {
|
|
let num_val = match val {
|
|
Value::Integer(i) => *i as f64,
|
|
Value::Float(f) => *f,
|
|
_ => 0.0,
|
|
};
|
|
*self.sums.entry(col_name.clone()).or_insert(0.0) +=
|
|
num_val * weight as f64;
|
|
}
|
|
}
|
|
}
|
|
AggregateFunction::Avg(col_name) => {
|
|
if let Some(idx) = column_names.iter().position(|c| c == col_name) {
|
|
if let Some(val) = values.get(idx) {
|
|
let num_val = match val {
|
|
Value::Integer(i) => *i as f64,
|
|
Value::Float(f) => *f,
|
|
_ => 0.0,
|
|
};
|
|
let (sum, count) =
|
|
self.avgs.entry(col_name.clone()).or_insert((0.0, 0));
|
|
*sum += num_val * weight as f64;
|
|
*count += weight as i64;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Convert aggregate state to output values
|
|
fn to_values(&self, aggregates: &[AggregateFunction]) -> Vec<Value> {
|
|
let mut result = Vec::new();
|
|
|
|
for agg in aggregates {
|
|
match agg {
|
|
AggregateFunction::Count => {
|
|
result.push(Value::Integer(self.count));
|
|
}
|
|
AggregateFunction::Sum(col_name) => {
|
|
let sum = self.sums.get(col_name).copied().unwrap_or(0.0);
|
|
// Return as integer if it's a whole number, otherwise as float
|
|
if sum.fract() == 0.0 {
|
|
result.push(Value::Integer(sum as i64));
|
|
} else {
|
|
result.push(Value::Float(sum));
|
|
}
|
|
}
|
|
AggregateFunction::Avg(col_name) => {
|
|
if let Some((sum, count)) = self.avgs.get(col_name) {
|
|
if *count > 0 {
|
|
result.push(Value::Float(sum / *count as f64));
|
|
} else {
|
|
result.push(Value::Null);
|
|
}
|
|
} else {
|
|
result.push(Value::Null);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
result
|
|
}
|
|
}
|
|
|
|
impl AggregateOperator {
|
|
pub fn new(
|
|
group_by: Vec<String>,
|
|
aggregates: Vec<AggregateFunction>,
|
|
input_column_names: Vec<String>,
|
|
) -> Self {
|
|
Self {
|
|
group_by,
|
|
aggregates,
|
|
input_column_names,
|
|
group_states: HashMap::new(),
|
|
group_key_values: HashMap::new(),
|
|
current_state: Delta::new(),
|
|
tracker: None,
|
|
}
|
|
}
|
|
|
|
pub fn set_tracker(&mut self, tracker: Arc<Mutex<ComputationTracker>>) {
|
|
self.tracker = Some(tracker);
|
|
}
|
|
|
|
/// Extract group key values from a row
|
|
fn extract_group_key(&self, values: &[Value]) -> Vec<Value> {
|
|
let mut key = Vec::new();
|
|
|
|
for group_col in &self.group_by {
|
|
if let Some(idx) = self.input_column_names.iter().position(|c| c == group_col) {
|
|
if let Some(val) = values.get(idx) {
|
|
key.push(val.clone());
|
|
} else {
|
|
key.push(Value::Null);
|
|
}
|
|
} else {
|
|
key.push(Value::Null);
|
|
}
|
|
}
|
|
|
|
key
|
|
}
|
|
|
|
/// Convert group key to string for indexing (since Value doesn't implement Hash)
|
|
fn group_key_to_string(key: &[Value]) -> String {
|
|
key.iter()
|
|
.map(|v| format!("{v:?}"))
|
|
.collect::<Vec<_>>()
|
|
.join(",")
|
|
}
|
|
|
|
/// Process a delta and update aggregate state incrementally
|
|
pub fn process_delta(&mut self, delta: Delta) -> Delta {
|
|
let mut output_delta = Delta::new();
|
|
|
|
// Track which groups were modified and their old values
|
|
let mut modified_groups = HashSet::new();
|
|
let mut old_values: HashMap<String, Vec<Value>> = HashMap::new();
|
|
|
|
// Process each change in the delta
|
|
for (row, weight) in &delta.changes {
|
|
if let Some(tracker) = &self.tracker {
|
|
tracker.lock().unwrap().record_aggregation();
|
|
}
|
|
|
|
// Extract group key
|
|
let group_key = self.extract_group_key(&row.values);
|
|
let group_key_str = Self::group_key_to_string(&group_key);
|
|
|
|
// Store old aggregate values BEFORE applying the delta
|
|
// (only for the first time we see this group in this batch)
|
|
if !modified_groups.contains(&group_key_str) {
|
|
if let Some(state) = self.group_states.get(&group_key_str) {
|
|
let mut old_row = group_key.clone();
|
|
old_row.extend(state.to_values(&self.aggregates));
|
|
old_values.insert(group_key_str.clone(), old_row);
|
|
}
|
|
}
|
|
|
|
modified_groups.insert(group_key_str.clone());
|
|
|
|
// Store the actual group key values
|
|
self.group_key_values
|
|
.insert(group_key_str.clone(), group_key.clone());
|
|
|
|
// Get or create aggregate state for this group
|
|
let state = self
|
|
.group_states
|
|
.entry(group_key_str.clone())
|
|
.or_insert_with(AggregateState::new);
|
|
|
|
// Apply the delta to the aggregate state
|
|
state.apply_delta(
|
|
&row.values,
|
|
*weight,
|
|
&self.aggregates,
|
|
&self.input_column_names,
|
|
);
|
|
}
|
|
|
|
// Generate output delta for modified groups
|
|
for group_key_str in modified_groups {
|
|
// Get the actual group key values
|
|
let group_key = self
|
|
.group_key_values
|
|
.get(&group_key_str)
|
|
.cloned()
|
|
.unwrap_or_default();
|
|
|
|
// Generate a unique key for this group
|
|
// We use a hash of the group key to ensure consistency
|
|
let result_key = group_key_str
|
|
.bytes()
|
|
.fold(0i64, |acc, b| acc.wrapping_mul(31).wrapping_add(b as i64));
|
|
|
|
// Emit retraction for old value if it existed
|
|
if let Some(old_row_values) = old_values.get(&group_key_str) {
|
|
let old_row = HashableRow::new(result_key, old_row_values.clone());
|
|
output_delta.changes.push((old_row.clone(), -1));
|
|
// Also remove from current state
|
|
self.current_state.changes.push((old_row, -1));
|
|
}
|
|
|
|
if let Some(state) = self.group_states.get(&group_key_str) {
|
|
// Build output row: group_by columns + aggregate values
|
|
let mut output_values = group_key.clone();
|
|
output_values.extend(state.to_values(&self.aggregates));
|
|
|
|
// Check if group should be removed (count is 0)
|
|
if state.count > 0 {
|
|
// Add to output delta with positive weight
|
|
let output_row = HashableRow::new(result_key, output_values.clone());
|
|
output_delta.changes.push((output_row.clone(), 1));
|
|
|
|
// Update current state
|
|
self.current_state.changes.push((output_row, 1));
|
|
} else {
|
|
// Group has count=0, remove from state
|
|
// (we already emitted the retraction above if needed)
|
|
self.group_states.remove(&group_key_str);
|
|
self.group_key_values.remove(&group_key_str);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Consolidate current state to handle removals
|
|
self.current_state.consolidate();
|
|
|
|
output_delta
|
|
}
|
|
|
|
pub fn get_current_state(&self) -> &Delta {
|
|
&self.current_state
|
|
}
|
|
}
|
|
|
|
impl IncrementalOperator for AggregateOperator {
|
|
fn initialize(&mut self, data: Delta) {
|
|
// Process all initial data - this modifies state during initialization
|
|
let _ = self.process_delta(data);
|
|
}
|
|
|
|
fn eval(&self, delta: Delta, uncommitted: Option<Delta>) -> Delta {
|
|
// Clone the current state to work with temporarily
|
|
let mut temp_group_states = self.group_states.clone();
|
|
let mut temp_group_key_values = self.group_key_values.clone();
|
|
|
|
// Merge delta with uncommitted if present
|
|
let combined_delta = if let Some(uncommitted) = uncommitted {
|
|
let mut combined = delta;
|
|
combined.merge(&uncommitted);
|
|
combined
|
|
} else {
|
|
delta
|
|
};
|
|
|
|
let mut output_delta = Delta::new();
|
|
let mut modified_groups = HashSet::new();
|
|
let mut old_values: HashMap<String, Vec<Value>> = HashMap::new();
|
|
|
|
// Process each change in the combined delta using temporary state
|
|
for (row, weight) in &combined_delta.changes {
|
|
if let Some(tracker) = &self.tracker {
|
|
tracker.lock().unwrap().record_aggregation();
|
|
}
|
|
|
|
// Extract group key
|
|
let group_key = self.extract_group_key(&row.values);
|
|
let group_key_str = Self::group_key_to_string(&group_key);
|
|
|
|
// Store old aggregate values BEFORE applying the delta
|
|
if !modified_groups.contains(&group_key_str) {
|
|
if let Some(state) = temp_group_states.get(&group_key_str) {
|
|
let mut old_row = group_key.clone();
|
|
old_row.extend(state.to_values(&self.aggregates));
|
|
old_values.insert(group_key_str.clone(), old_row);
|
|
}
|
|
}
|
|
|
|
modified_groups.insert(group_key_str.clone());
|
|
temp_group_key_values.insert(group_key_str.clone(), group_key.clone());
|
|
|
|
// Get or create aggregate state for this group in temporary state
|
|
let state = temp_group_states
|
|
.entry(group_key_str.clone())
|
|
.or_insert_with(AggregateState::new);
|
|
|
|
// Apply the delta to the temporary aggregate state
|
|
state.apply_delta(
|
|
&row.values,
|
|
*weight,
|
|
&self.aggregates,
|
|
&self.input_column_names,
|
|
);
|
|
}
|
|
|
|
// Generate output delta for modified groups using temporary state
|
|
for group_key_str in modified_groups {
|
|
let group_key = temp_group_key_values
|
|
.get(&group_key_str)
|
|
.cloned()
|
|
.unwrap_or_default();
|
|
|
|
// Generate a unique key for this group
|
|
let result_key = group_key_str
|
|
.bytes()
|
|
.fold(0i64, |acc, b| acc.wrapping_mul(31).wrapping_add(b as i64));
|
|
|
|
// Emit retraction for old value if it existed
|
|
if let Some(old_row_values) = old_values.get(&group_key_str) {
|
|
let old_row = HashableRow::new(result_key, old_row_values.clone());
|
|
output_delta.changes.push((old_row, -1));
|
|
}
|
|
|
|
if let Some(state) = temp_group_states.get(&group_key_str) {
|
|
// Build output row: group_by columns + aggregate values
|
|
let mut output_values = group_key.clone();
|
|
output_values.extend(state.to_values(&self.aggregates));
|
|
|
|
// Check if group should be included (count > 0)
|
|
if state.count > 0 {
|
|
let output_row = HashableRow::new(result_key, output_values);
|
|
output_delta.changes.push((output_row, 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
output_delta
|
|
}
|
|
|
|
fn commit(&mut self, delta: Delta) -> Delta {
|
|
// Actually update the internal state when committing and return the output
|
|
self.process_delta(delta)
|
|
}
|
|
|
|
fn get_current_state(&self) -> Delta {
|
|
// Return a consolidated view of the current state
|
|
let mut consolidated = self.current_state.clone();
|
|
consolidated.consolidate();
|
|
consolidated
|
|
}
|
|
|
|
fn set_tracker(&mut self, tracker: Arc<Mutex<ComputationTracker>>) {
|
|
self.tracker = Some(tracker);
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use crate::types::Text;
|
|
use crate::Value;
|
|
use std::sync::{Arc, Mutex};
|
|
|
|
/// Assert that we're doing incremental work, not full recomputation
|
|
fn assert_incremental(tracker: &ComputationTracker, expected_ops: usize, data_size: usize) {
|
|
assert!(
|
|
tracker.total_computations() <= expected_ops,
|
|
"Expected <= {} operations for incremental update, got {}",
|
|
expected_ops,
|
|
tracker.total_computations()
|
|
);
|
|
assert!(
|
|
tracker.total_computations() < data_size,
|
|
"Computation count {} suggests full recomputation (data size: {})",
|
|
tracker.total_computations(),
|
|
data_size
|
|
);
|
|
assert_eq!(
|
|
tracker.full_scans, 0,
|
|
"Incremental computation should not perform full scans"
|
|
);
|
|
}
|
|
|
|
// Aggregate tests
|
|
#[test]
|
|
fn test_aggregate_incremental_update_emits_retraction() {
|
|
// This test verifies that when an aggregate value changes,
|
|
// the operator emits both a retraction (-1) of the old value
|
|
// and an insertion (+1) of the new value.
|
|
|
|
// Create an aggregate operator for SUM(age) with no GROUP BY
|
|
let mut agg = AggregateOperator::new(
|
|
vec![], // No GROUP BY
|
|
vec![AggregateFunction::Sum("age".to_string())],
|
|
vec!["id".to_string(), "name".to_string(), "age".to_string()],
|
|
);
|
|
|
|
// Initial data: 3 users
|
|
let mut initial_delta = Delta::new();
|
|
initial_delta.insert(
|
|
1,
|
|
vec![
|
|
Value::Integer(1),
|
|
Value::Text("Alice".to_string().into()),
|
|
Value::Integer(25),
|
|
],
|
|
);
|
|
initial_delta.insert(
|
|
2,
|
|
vec![
|
|
Value::Integer(2),
|
|
Value::Text("Bob".to_string().into()),
|
|
Value::Integer(30),
|
|
],
|
|
);
|
|
initial_delta.insert(
|
|
3,
|
|
vec![
|
|
Value::Integer(3),
|
|
Value::Text("Charlie".to_string().into()),
|
|
Value::Integer(35),
|
|
],
|
|
);
|
|
|
|
// Initialize with initial data
|
|
agg.initialize(initial_delta);
|
|
|
|
// Verify initial state: SUM(age) = 25 + 30 + 35 = 90
|
|
let state = agg.get_current_state();
|
|
assert_eq!(state.changes.len(), 1, "Should have one aggregate row");
|
|
let (row, weight) = &state.changes[0];
|
|
assert_eq!(*weight, 1, "Aggregate row should have weight 1");
|
|
assert_eq!(row.values[0], Value::Float(90.0), "SUM should be 90");
|
|
|
|
// Now add a new user (incremental update)
|
|
let mut update_delta = Delta::new();
|
|
update_delta.insert(
|
|
4,
|
|
vec![
|
|
Value::Integer(4),
|
|
Value::Text("David".to_string().into()),
|
|
Value::Integer(40),
|
|
],
|
|
);
|
|
|
|
// Process the incremental update
|
|
let output_delta = agg.eval(update_delta.clone(), None);
|
|
agg.commit(update_delta);
|
|
|
|
// CRITICAL: The output delta should contain TWO changes:
|
|
// 1. Retraction of old aggregate value (90) with weight -1
|
|
// 2. Insertion of new aggregate value (130) with weight +1
|
|
assert_eq!(
|
|
output_delta.changes.len(),
|
|
2,
|
|
"Expected 2 changes (retraction + insertion), got {}: {:?}",
|
|
output_delta.changes.len(),
|
|
output_delta.changes
|
|
);
|
|
|
|
// Verify the retraction comes first
|
|
let (retraction_row, retraction_weight) = &output_delta.changes[0];
|
|
assert_eq!(
|
|
*retraction_weight, -1,
|
|
"First change should be a retraction"
|
|
);
|
|
assert_eq!(
|
|
retraction_row.values[0],
|
|
Value::Float(90.0),
|
|
"Retracted value should be the old sum (90)"
|
|
);
|
|
|
|
// Verify the insertion comes second
|
|
let (insertion_row, insertion_weight) = &output_delta.changes[1];
|
|
assert_eq!(*insertion_weight, 1, "Second change should be an insertion");
|
|
assert_eq!(
|
|
insertion_row.values[0],
|
|
Value::Float(130.0),
|
|
"Inserted value should be the new sum (130)"
|
|
);
|
|
|
|
// Both changes should have the same row ID (since it's the same aggregate group)
|
|
assert_eq!(
|
|
retraction_row.rowid, insertion_row.rowid,
|
|
"Retraction and insertion should have the same row ID"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_aggregate_with_group_by_emits_retractions() {
|
|
// This test verifies that when aggregate values change for grouped data,
|
|
// the operator emits both retractions and insertions correctly for each group.
|
|
|
|
// Create an aggregate operator for SUM(score) GROUP BY team
|
|
let mut agg = AggregateOperator::new(
|
|
vec!["team".to_string()], // GROUP BY team
|
|
vec![AggregateFunction::Sum("score".to_string())],
|
|
vec![
|
|
"id".to_string(),
|
|
"team".to_string(),
|
|
"player".to_string(),
|
|
"score".to_string(),
|
|
],
|
|
);
|
|
|
|
// Initial data: players on different teams
|
|
let mut initial_delta = Delta::new();
|
|
initial_delta.insert(
|
|
1,
|
|
vec![
|
|
Value::Integer(1),
|
|
Value::Text("red".to_string().into()),
|
|
Value::Text("Alice".to_string().into()),
|
|
Value::Integer(10),
|
|
],
|
|
);
|
|
initial_delta.insert(
|
|
2,
|
|
vec![
|
|
Value::Integer(2),
|
|
Value::Text("blue".to_string().into()),
|
|
Value::Text("Bob".to_string().into()),
|
|
Value::Integer(15),
|
|
],
|
|
);
|
|
initial_delta.insert(
|
|
3,
|
|
vec![
|
|
Value::Integer(3),
|
|
Value::Text("red".to_string().into()),
|
|
Value::Text("Charlie".to_string().into()),
|
|
Value::Integer(20),
|
|
],
|
|
);
|
|
|
|
// Initialize with initial data
|
|
agg.initialize(initial_delta);
|
|
|
|
// Verify initial state: red team = 30, blue team = 15
|
|
let state = agg.get_current_state();
|
|
assert_eq!(state.changes.len(), 2, "Should have two groups");
|
|
|
|
// Find the red and blue team aggregates
|
|
let mut red_sum = None;
|
|
let mut blue_sum = None;
|
|
for (row, weight) in &state.changes {
|
|
assert_eq!(*weight, 1);
|
|
if let Value::Text(team) = &row.values[0] {
|
|
if team.as_str() == "red" {
|
|
red_sum = Some(&row.values[1]);
|
|
} else if team.as_str() == "blue" {
|
|
blue_sum = Some(&row.values[1]);
|
|
}
|
|
}
|
|
}
|
|
assert_eq!(
|
|
red_sum,
|
|
Some(&Value::Float(30.0)),
|
|
"Red team sum should be 30"
|
|
);
|
|
assert_eq!(
|
|
blue_sum,
|
|
Some(&Value::Float(15.0)),
|
|
"Blue team sum should be 15"
|
|
);
|
|
|
|
// Now add a new player to the red team (incremental update)
|
|
let mut update_delta = Delta::new();
|
|
update_delta.insert(
|
|
4,
|
|
vec![
|
|
Value::Integer(4),
|
|
Value::Text("red".to_string().into()),
|
|
Value::Text("David".to_string().into()),
|
|
Value::Integer(25),
|
|
],
|
|
);
|
|
|
|
// Process the incremental update
|
|
let output_delta = agg.eval(update_delta.clone(), None);
|
|
agg.commit(update_delta);
|
|
|
|
// Should have 2 changes: retraction of old red team sum, insertion of new red team sum
|
|
// Blue team should NOT be affected
|
|
assert_eq!(
|
|
output_delta.changes.len(),
|
|
2,
|
|
"Expected 2 changes for red team only, got {}: {:?}",
|
|
output_delta.changes.len(),
|
|
output_delta.changes
|
|
);
|
|
|
|
// Both changes should be for the red team
|
|
let mut found_retraction = false;
|
|
let mut found_insertion = false;
|
|
|
|
for (row, weight) in &output_delta.changes {
|
|
if let Value::Text(team) = &row.values[0] {
|
|
assert_eq!(team.as_str(), "red", "Only red team should have changes");
|
|
|
|
if *weight == -1 {
|
|
// Retraction of old value
|
|
assert_eq!(
|
|
row.values[1],
|
|
Value::Float(30.0),
|
|
"Should retract old sum of 30"
|
|
);
|
|
found_retraction = true;
|
|
} else if *weight == 1 {
|
|
// Insertion of new value
|
|
assert_eq!(
|
|
row.values[1],
|
|
Value::Float(55.0),
|
|
"Should insert new sum of 55"
|
|
);
|
|
found_insertion = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert!(found_retraction, "Should have found retraction");
|
|
assert!(found_insertion, "Should have found insertion");
|
|
}
|
|
|
|
// Aggregation tests
|
|
#[test]
|
|
fn test_count_increments_not_recounts() {
|
|
let tracker = Arc::new(Mutex::new(ComputationTracker::new()));
|
|
|
|
// Create COUNT(*) GROUP BY category
|
|
let mut agg = AggregateOperator::new(
|
|
vec!["category".to_string()],
|
|
vec![AggregateFunction::Count],
|
|
vec![
|
|
"item_id".to_string(),
|
|
"category".to_string(),
|
|
"price".to_string(),
|
|
],
|
|
);
|
|
agg.set_tracker(tracker.clone());
|
|
|
|
// Initial: 100 items in 10 categories (10 items each)
|
|
let mut initial = Delta::new();
|
|
for i in 0..100 {
|
|
let category = format!("cat_{}", i / 10);
|
|
initial.insert(
|
|
i,
|
|
vec![
|
|
Value::Integer(i),
|
|
Value::Text(Text::new(&category)),
|
|
Value::Integer(i * 10),
|
|
],
|
|
);
|
|
}
|
|
agg.initialize(initial);
|
|
|
|
// Reset tracker for delta processing
|
|
tracker.lock().unwrap().aggregation_updates = 0;
|
|
|
|
// Add one item to category 'cat_0'
|
|
let mut delta = Delta::new();
|
|
delta.insert(
|
|
100,
|
|
vec![
|
|
Value::Integer(100),
|
|
Value::Text(Text::new("cat_0")),
|
|
Value::Integer(1000),
|
|
],
|
|
);
|
|
|
|
let _output = agg.eval(delta.clone(), None);
|
|
agg.commit(delta);
|
|
|
|
// Should update one group (cat_0) twice - once in eval, once in commit
|
|
// This is still incremental - we're not recounting all groups
|
|
assert_eq!(tracker.lock().unwrap().aggregation_updates, 2);
|
|
|
|
// Check the final state - cat_0 should now have count 11
|
|
let final_state = agg.get_current_state();
|
|
let cat_0 = final_state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text(Text::new("cat_0")))
|
|
.unwrap();
|
|
assert_eq!(cat_0.0.values[1], Value::Integer(11));
|
|
|
|
// Verify incremental behavior - we process the delta twice (eval + commit)
|
|
let t = tracker.lock().unwrap();
|
|
assert_incremental(&t, 2, 101);
|
|
}
|
|
|
|
#[test]
|
|
fn test_sum_updates_incrementally() {
|
|
let tracker = Arc::new(Mutex::new(ComputationTracker::new()));
|
|
|
|
// Create SUM(amount) GROUP BY product
|
|
let mut agg = AggregateOperator::new(
|
|
vec!["product".to_string()],
|
|
vec![AggregateFunction::Sum("amount".to_string())],
|
|
vec![
|
|
"sale_id".to_string(),
|
|
"product".to_string(),
|
|
"amount".to_string(),
|
|
],
|
|
);
|
|
agg.set_tracker(tracker.clone());
|
|
|
|
// Initial sales
|
|
let mut initial = Delta::new();
|
|
initial.insert(
|
|
1,
|
|
vec![
|
|
Value::Integer(1),
|
|
Value::Text(Text::new("Widget")),
|
|
Value::Integer(100),
|
|
],
|
|
);
|
|
initial.insert(
|
|
2,
|
|
vec![
|
|
Value::Integer(2),
|
|
Value::Text(Text::new("Gadget")),
|
|
Value::Integer(200),
|
|
],
|
|
);
|
|
initial.insert(
|
|
3,
|
|
vec![
|
|
Value::Integer(3),
|
|
Value::Text(Text::new("Widget")),
|
|
Value::Integer(150),
|
|
],
|
|
);
|
|
agg.initialize(initial);
|
|
|
|
// Check initial state: Widget=250, Gadget=200
|
|
let state = agg.get_current_state();
|
|
let widget_sum = state
|
|
.changes
|
|
.iter()
|
|
.find(|(c, _)| c.values[0] == Value::Text(Text::new("Widget")))
|
|
.map(|(c, _)| c)
|
|
.unwrap();
|
|
assert_eq!(widget_sum.values[1], Value::Integer(250));
|
|
|
|
// Reset tracker
|
|
tracker.lock().unwrap().aggregation_updates = 0;
|
|
|
|
// Add sale of 50 for Widget
|
|
let mut delta = Delta::new();
|
|
delta.insert(
|
|
4,
|
|
vec![
|
|
Value::Integer(4),
|
|
Value::Text(Text::new("Widget")),
|
|
Value::Integer(50),
|
|
],
|
|
);
|
|
|
|
let _output = agg.eval(delta.clone(), None);
|
|
agg.commit(delta);
|
|
|
|
// Should update Widget group twice (once in eval, once in commit)
|
|
assert_eq!(tracker.lock().unwrap().aggregation_updates, 2);
|
|
|
|
// Check final state - Widget should now be 300 (250 + 50)
|
|
let final_state = agg.get_current_state();
|
|
let widget = final_state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text(Text::new("Widget")))
|
|
.unwrap();
|
|
assert_eq!(widget.0.values[1], Value::Integer(300));
|
|
}
|
|
|
|
#[test]
|
|
fn test_count_and_sum_together() {
|
|
// Test the example from DBSP_ROADMAP: COUNT(*) and SUM(amount) GROUP BY user_id
|
|
let mut agg = AggregateOperator::new(
|
|
vec!["user_id".to_string()],
|
|
vec![
|
|
AggregateFunction::Count,
|
|
AggregateFunction::Sum("amount".to_string()),
|
|
],
|
|
vec![
|
|
"order_id".to_string(),
|
|
"user_id".to_string(),
|
|
"amount".to_string(),
|
|
],
|
|
);
|
|
|
|
// Initial orders
|
|
let mut initial = Delta::new();
|
|
initial.insert(
|
|
1,
|
|
vec![Value::Integer(1), Value::Integer(1), Value::Integer(100)],
|
|
);
|
|
initial.insert(
|
|
2,
|
|
vec![Value::Integer(2), Value::Integer(1), Value::Integer(200)],
|
|
);
|
|
initial.insert(
|
|
3,
|
|
vec![Value::Integer(3), Value::Integer(2), Value::Integer(150)],
|
|
);
|
|
agg.initialize(initial);
|
|
|
|
// Check initial state
|
|
// User 1: count=2, sum=300
|
|
// User 2: count=1, sum=150
|
|
let state = agg.get_current_state();
|
|
assert_eq!(state.changes.len(), 2);
|
|
|
|
let user1 = state
|
|
.changes
|
|
.iter()
|
|
.find(|(c, _)| c.values[0] == Value::Integer(1))
|
|
.map(|(c, _)| c)
|
|
.unwrap();
|
|
assert_eq!(user1.values[1], Value::Integer(2)); // count
|
|
assert_eq!(user1.values[2], Value::Integer(300)); // sum
|
|
|
|
let user2 = state
|
|
.changes
|
|
.iter()
|
|
.find(|(c, _)| c.values[0] == Value::Integer(2))
|
|
.map(|(c, _)| c)
|
|
.unwrap();
|
|
assert_eq!(user2.values[1], Value::Integer(1)); // count
|
|
assert_eq!(user2.values[2], Value::Integer(150)); // sum
|
|
|
|
// Add order for user 1
|
|
let mut delta = Delta::new();
|
|
delta.insert(
|
|
4,
|
|
vec![Value::Integer(4), Value::Integer(1), Value::Integer(50)],
|
|
);
|
|
let _output = agg.eval(delta.clone(), None);
|
|
agg.commit(delta);
|
|
|
|
// Check final state - user 1 should have updated count and sum
|
|
let final_state = agg.get_current_state();
|
|
let user1 = final_state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Integer(1))
|
|
.unwrap();
|
|
assert_eq!(user1.0.values[1], Value::Integer(3)); // count: 2 + 1
|
|
assert_eq!(user1.0.values[2], Value::Integer(350)); // sum: 300 + 50
|
|
}
|
|
|
|
#[test]
|
|
fn test_avg_maintains_sum_and_count() {
|
|
// Test AVG aggregation
|
|
let mut agg = AggregateOperator::new(
|
|
vec!["category".to_string()],
|
|
vec![AggregateFunction::Avg("value".to_string())],
|
|
vec![
|
|
"id".to_string(),
|
|
"category".to_string(),
|
|
"value".to_string(),
|
|
],
|
|
);
|
|
|
|
// Initial data
|
|
let mut initial = Delta::new();
|
|
initial.insert(
|
|
1,
|
|
vec![
|
|
Value::Integer(1),
|
|
Value::Text(Text::new("A")),
|
|
Value::Integer(10),
|
|
],
|
|
);
|
|
initial.insert(
|
|
2,
|
|
vec![
|
|
Value::Integer(2),
|
|
Value::Text(Text::new("A")),
|
|
Value::Integer(20),
|
|
],
|
|
);
|
|
initial.insert(
|
|
3,
|
|
vec![
|
|
Value::Integer(3),
|
|
Value::Text(Text::new("B")),
|
|
Value::Integer(30),
|
|
],
|
|
);
|
|
agg.initialize(initial);
|
|
|
|
// Check initial averages
|
|
// Category A: avg = (10 + 20) / 2 = 15
|
|
// Category B: avg = 30 / 1 = 30
|
|
let state = agg.get_current_state();
|
|
let cat_a = state
|
|
.changes
|
|
.iter()
|
|
.find(|(c, _)| c.values[0] == Value::Text(Text::new("A")))
|
|
.map(|(c, _)| c)
|
|
.unwrap();
|
|
assert_eq!(cat_a.values[1], Value::Float(15.0));
|
|
|
|
let cat_b = state
|
|
.changes
|
|
.iter()
|
|
.find(|(c, _)| c.values[0] == Value::Text(Text::new("B")))
|
|
.map(|(c, _)| c)
|
|
.unwrap();
|
|
assert_eq!(cat_b.values[1], Value::Float(30.0));
|
|
|
|
// Add value to category A
|
|
let mut delta = Delta::new();
|
|
delta.insert(
|
|
4,
|
|
vec![
|
|
Value::Integer(4),
|
|
Value::Text(Text::new("A")),
|
|
Value::Integer(30),
|
|
],
|
|
);
|
|
let _output = agg.eval(delta.clone(), None);
|
|
agg.commit(delta);
|
|
|
|
// Check final state - Category A avg should now be (10 + 20 + 30) / 3 = 20
|
|
let final_state = agg.get_current_state();
|
|
let cat_a = final_state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text(Text::new("A")))
|
|
.unwrap();
|
|
assert_eq!(cat_a.0.values[1], Value::Float(20.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_delete_updates_aggregates() {
|
|
// Test that deletes (negative weights) properly update aggregates
|
|
let mut agg = AggregateOperator::new(
|
|
vec!["category".to_string()],
|
|
vec![
|
|
AggregateFunction::Count,
|
|
AggregateFunction::Sum("value".to_string()),
|
|
],
|
|
vec![
|
|
"id".to_string(),
|
|
"category".to_string(),
|
|
"value".to_string(),
|
|
],
|
|
);
|
|
|
|
// Initial data
|
|
let mut initial = Delta::new();
|
|
initial.insert(
|
|
1,
|
|
vec![
|
|
Value::Integer(1),
|
|
Value::Text(Text::new("A")),
|
|
Value::Integer(100),
|
|
],
|
|
);
|
|
initial.insert(
|
|
2,
|
|
vec![
|
|
Value::Integer(2),
|
|
Value::Text(Text::new("A")),
|
|
Value::Integer(200),
|
|
],
|
|
);
|
|
agg.initialize(initial);
|
|
|
|
// Check initial state: count=2, sum=300
|
|
let state = agg.get_current_state();
|
|
assert!(!state.changes.is_empty());
|
|
let (row, _weight) = &state.changes[0];
|
|
assert_eq!(row.values[1], Value::Integer(2)); // count
|
|
assert_eq!(row.values[2], Value::Integer(300)); // sum
|
|
|
|
// Delete one row
|
|
let mut delta = Delta::new();
|
|
delta.delete(
|
|
1,
|
|
vec![
|
|
Value::Integer(1),
|
|
Value::Text(Text::new("A")),
|
|
Value::Integer(100),
|
|
],
|
|
);
|
|
|
|
let _output = agg.eval(delta.clone(), None);
|
|
agg.commit(delta);
|
|
|
|
// Check final state - should update to count=1, sum=200
|
|
let final_state = agg.get_current_state();
|
|
let cat_a = final_state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text(Text::new("A")))
|
|
.unwrap();
|
|
assert_eq!(cat_a.0.values[1], Value::Integer(1)); // count: 2 - 1
|
|
assert_eq!(cat_a.0.values[2], Value::Integer(200)); // sum: 300 - 100
|
|
}
|
|
|
|
#[test]
|
|
fn test_count_aggregation_with_deletions() {
|
|
let aggregates = vec![AggregateFunction::Count];
|
|
let group_by = vec!["category".to_string()];
|
|
let input_columns = vec!["category".to_string(), "value".to_string()];
|
|
|
|
let mut agg = AggregateOperator::new(group_by, aggregates.clone(), input_columns);
|
|
|
|
// Initialize with data
|
|
let mut init_data = Delta::new();
|
|
init_data.insert(1, vec![Value::Text("A".into()), Value::Integer(10)]);
|
|
init_data.insert(2, vec![Value::Text("A".into()), Value::Integer(20)]);
|
|
init_data.insert(3, vec![Value::Text("B".into()), Value::Integer(30)]);
|
|
agg.initialize(init_data);
|
|
|
|
// Check initial counts
|
|
let state = agg.get_current_state();
|
|
assert_eq!(state.changes.len(), 2);
|
|
|
|
// Find group A and B
|
|
let group_a = state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("A".into()))
|
|
.unwrap();
|
|
let group_b = state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("B".into()))
|
|
.unwrap();
|
|
|
|
assert_eq!(group_a.0.values[1], Value::Integer(2)); // COUNT = 2 for A
|
|
assert_eq!(group_b.0.values[1], Value::Integer(1)); // COUNT = 1 for B
|
|
|
|
// Delete one row from group A
|
|
let mut delete_delta = Delta::new();
|
|
delete_delta.delete(1, vec![Value::Text("A".into()), Value::Integer(10)]);
|
|
|
|
let output = agg.eval(delete_delta.clone(), None);
|
|
agg.commit(delete_delta);
|
|
|
|
// Should emit retraction for old count and insertion for new count
|
|
assert_eq!(output.changes.len(), 2);
|
|
|
|
// Check final state
|
|
let final_state = agg.get_current_state();
|
|
let group_a_final = final_state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("A".into()))
|
|
.unwrap();
|
|
assert_eq!(group_a_final.0.values[1], Value::Integer(1)); // COUNT = 1 for A after deletion
|
|
|
|
// Delete all rows from group B
|
|
let mut delete_all_b = Delta::new();
|
|
delete_all_b.delete(3, vec![Value::Text("B".into()), Value::Integer(30)]);
|
|
|
|
let output_b = agg.eval(delete_all_b.clone(), None);
|
|
agg.commit(delete_all_b);
|
|
assert_eq!(output_b.changes.len(), 1); // Only retraction, no new row
|
|
assert_eq!(output_b.changes[0].1, -1); // Retraction
|
|
|
|
// Final state should not have group B
|
|
let final_state2 = agg.get_current_state();
|
|
assert_eq!(final_state2.changes.len(), 1); // Only group A remains
|
|
assert_eq!(final_state2.changes[0].0.values[0], Value::Text("A".into()));
|
|
}
|
|
|
|
#[test]
|
|
fn test_sum_aggregation_with_deletions() {
|
|
let aggregates = vec![AggregateFunction::Sum("value".to_string())];
|
|
let group_by = vec!["category".to_string()];
|
|
let input_columns = vec!["category".to_string(), "value".to_string()];
|
|
|
|
let mut agg = AggregateOperator::new(group_by, aggregates.clone(), input_columns);
|
|
|
|
// Initialize with data
|
|
let mut init_data = Delta::new();
|
|
init_data.insert(1, vec![Value::Text("A".into()), Value::Integer(10)]);
|
|
init_data.insert(2, vec![Value::Text("A".into()), Value::Integer(20)]);
|
|
init_data.insert(3, vec![Value::Text("B".into()), Value::Integer(30)]);
|
|
init_data.insert(4, vec![Value::Text("B".into()), Value::Integer(15)]);
|
|
agg.initialize(init_data);
|
|
|
|
// Check initial sums
|
|
let state = agg.get_current_state();
|
|
let group_a = state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("A".into()))
|
|
.unwrap();
|
|
let group_b = state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("B".into()))
|
|
.unwrap();
|
|
|
|
assert_eq!(group_a.0.values[1], Value::Integer(30)); // SUM = 30 for A (10+20)
|
|
assert_eq!(group_b.0.values[1], Value::Integer(45)); // SUM = 45 for B (30+15)
|
|
|
|
// Delete one row from group A
|
|
let mut delete_delta = Delta::new();
|
|
delete_delta.delete(2, vec![Value::Text("A".into()), Value::Integer(20)]);
|
|
|
|
let _ = agg.eval(delete_delta.clone(), None);
|
|
agg.commit(delete_delta);
|
|
|
|
// Check updated sum
|
|
let state = agg.get_current_state();
|
|
let group_a = state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("A".into()))
|
|
.unwrap();
|
|
assert_eq!(group_a.0.values[1], Value::Integer(10)); // SUM = 10 for A after deletion
|
|
|
|
// Delete all from group B
|
|
let mut delete_all_b = Delta::new();
|
|
delete_all_b.delete(3, vec![Value::Text("B".into()), Value::Integer(30)]);
|
|
delete_all_b.delete(4, vec![Value::Text("B".into()), Value::Integer(15)]);
|
|
|
|
let _ = agg.eval(delete_all_b.clone(), None);
|
|
agg.commit(delete_all_b);
|
|
|
|
// Group B should be gone
|
|
let final_state = agg.get_current_state();
|
|
assert_eq!(final_state.changes.len(), 1); // Only group A remains
|
|
assert_eq!(final_state.changes[0].0.values[0], Value::Text("A".into()));
|
|
}
|
|
|
|
#[test]
|
|
fn test_avg_aggregation_with_deletions() {
|
|
let aggregates = vec![AggregateFunction::Avg("value".to_string())];
|
|
let group_by = vec!["category".to_string()];
|
|
let input_columns = vec!["category".to_string(), "value".to_string()];
|
|
|
|
let mut agg = AggregateOperator::new(group_by, aggregates.clone(), input_columns);
|
|
|
|
// Initialize with data
|
|
let mut init_data = Delta::new();
|
|
init_data.insert(1, vec![Value::Text("A".into()), Value::Integer(10)]);
|
|
init_data.insert(2, vec![Value::Text("A".into()), Value::Integer(20)]);
|
|
init_data.insert(3, vec![Value::Text("A".into()), Value::Integer(30)]);
|
|
agg.initialize(init_data);
|
|
|
|
// Check initial average
|
|
let state = agg.get_current_state();
|
|
assert_eq!(state.changes.len(), 1);
|
|
assert_eq!(state.changes[0].0.values[1], Value::Float(20.0)); // AVG = (10+20+30)/3 = 20
|
|
|
|
// Delete the middle value
|
|
let mut delete_delta = Delta::new();
|
|
delete_delta.delete(2, vec![Value::Text("A".into()), Value::Integer(20)]);
|
|
|
|
let _ = agg.eval(delete_delta.clone(), None);
|
|
agg.commit(delete_delta);
|
|
|
|
// Check updated average
|
|
let state = agg.get_current_state();
|
|
assert_eq!(state.changes[0].0.values[1], Value::Float(20.0)); // AVG = (10+30)/2 = 20 (same!)
|
|
|
|
// Delete another to change the average
|
|
let mut delete_another = Delta::new();
|
|
delete_another.delete(3, vec![Value::Text("A".into()), Value::Integer(30)]);
|
|
|
|
let _ = agg.eval(delete_another.clone(), None);
|
|
agg.commit(delete_another);
|
|
|
|
let state = agg.get_current_state();
|
|
assert_eq!(state.changes[0].0.values[1], Value::Float(10.0)); // AVG = 10/1 = 10
|
|
}
|
|
|
|
#[test]
|
|
fn test_multiple_aggregations_with_deletions() {
|
|
// Test COUNT, SUM, and AVG together
|
|
let aggregates = vec![
|
|
AggregateFunction::Count,
|
|
AggregateFunction::Sum("value".to_string()),
|
|
AggregateFunction::Avg("value".to_string()),
|
|
];
|
|
let group_by = vec!["category".to_string()];
|
|
let input_columns = vec!["category".to_string(), "value".to_string()];
|
|
|
|
let mut agg = AggregateOperator::new(group_by, aggregates.clone(), input_columns);
|
|
|
|
// Initialize with data
|
|
let mut init_data = Delta::new();
|
|
init_data.insert(1, vec![Value::Text("A".into()), Value::Integer(100)]);
|
|
init_data.insert(2, vec![Value::Text("A".into()), Value::Integer(200)]);
|
|
init_data.insert(3, vec![Value::Text("B".into()), Value::Integer(50)]);
|
|
agg.initialize(init_data);
|
|
|
|
// Check initial state
|
|
let state = agg.get_current_state();
|
|
let group_a = state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("A".into()))
|
|
.unwrap();
|
|
|
|
assert_eq!(group_a.0.values[1], Value::Integer(2)); // COUNT = 2
|
|
assert_eq!(group_a.0.values[2], Value::Integer(300)); // SUM = 300
|
|
assert_eq!(group_a.0.values[3], Value::Float(150.0)); // AVG = 150
|
|
|
|
// Delete one row from group A
|
|
let mut delete_delta = Delta::new();
|
|
delete_delta.delete(1, vec![Value::Text("A".into()), Value::Integer(100)]);
|
|
|
|
let _ = agg.eval(delete_delta.clone(), None);
|
|
agg.commit(delete_delta);
|
|
|
|
// Check all aggregates updated correctly
|
|
let state = agg.get_current_state();
|
|
let group_a = state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("A".into()))
|
|
.unwrap();
|
|
|
|
assert_eq!(group_a.0.values[1], Value::Integer(1)); // COUNT = 1
|
|
assert_eq!(group_a.0.values[2], Value::Integer(200)); // SUM = 200
|
|
assert_eq!(group_a.0.values[3], Value::Float(200.0)); // AVG = 200
|
|
|
|
// Insert a new row with floating point value
|
|
let mut insert_delta = Delta::new();
|
|
insert_delta.insert(4, vec![Value::Text("A".into()), Value::Float(50.5)]);
|
|
|
|
let _ = agg.eval(insert_delta.clone(), None);
|
|
agg.commit(insert_delta);
|
|
|
|
let state = agg.get_current_state();
|
|
let group_a = state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("A".into()))
|
|
.unwrap();
|
|
|
|
assert_eq!(group_a.0.values[1], Value::Integer(2)); // COUNT = 2
|
|
assert_eq!(group_a.0.values[2], Value::Float(250.5)); // SUM = 250.5
|
|
assert_eq!(group_a.0.values[3], Value::Float(125.25)); // AVG = 125.25
|
|
}
|
|
|
|
#[test]
|
|
fn test_filter_operator_rowid_update() {
|
|
// When a row's rowid changes (e.g., UPDATE t SET a=1 WHERE a=3 on INTEGER PRIMARY KEY),
|
|
// the operator should properly consolidate the state
|
|
|
|
let mut filter = FilterOperator::new(
|
|
FilterPredicate::GreaterThan {
|
|
column: "b".to_string(),
|
|
value: Value::Integer(2),
|
|
},
|
|
vec!["a".to_string(), "b".to_string()],
|
|
);
|
|
|
|
// Initialize with a row (rowid=3, values=[3, 3])
|
|
let mut init_data = Delta::new();
|
|
init_data.insert(3, vec![Value::Integer(3), Value::Integer(3)]);
|
|
filter.initialize(init_data);
|
|
|
|
// Check initial state
|
|
let state = filter.get_current_state();
|
|
assert_eq!(state.changes.len(), 1);
|
|
assert_eq!(state.changes[0].0.rowid, 3);
|
|
assert_eq!(
|
|
state.changes[0].0.values,
|
|
vec![Value::Integer(3), Value::Integer(3)]
|
|
);
|
|
|
|
// Simulate an UPDATE that changes rowid from 3 to 1
|
|
// This is sent as: delete(3) + insert(1)
|
|
let mut update_delta = Delta::new();
|
|
update_delta.delete(3, vec![Value::Integer(3), Value::Integer(3)]);
|
|
update_delta.insert(1, vec![Value::Integer(1), Value::Integer(3)]);
|
|
|
|
let output = filter.eval(update_delta.clone(), None);
|
|
filter.commit(update_delta);
|
|
|
|
// The output delta should have both changes (both pass the filter b > 2)
|
|
assert_eq!(output.changes.len(), 2);
|
|
assert_eq!(output.changes[0].1, -1); // delete weight
|
|
assert_eq!(output.changes[1].1, 1); // insert weight
|
|
|
|
// The current state should be consolidated to only have rows with positive weight
|
|
let final_state = filter.get_current_state();
|
|
|
|
// After consolidation, we should have only one row with rowid=1
|
|
assert_eq!(
|
|
final_state.changes.len(),
|
|
1,
|
|
"State should be consolidated to have only one row"
|
|
);
|
|
assert_eq!(final_state.changes[0].0.rowid, 1);
|
|
assert_eq!(
|
|
final_state.changes[0].0.values,
|
|
vec![Value::Integer(1), Value::Integer(3)]
|
|
);
|
|
assert_eq!(final_state.changes[0].1, 1); // positive weight
|
|
}
|
|
|
|
// ============================================================================
|
|
// EVAL/COMMIT PATTERN TESTS
|
|
// These tests verify that the eval/commit pattern works correctly:
|
|
// - eval() computes results without modifying state
|
|
// - eval() with uncommitted data returns correct results
|
|
// - commit() updates internal state
|
|
// - State remains unchanged when eval() is called with uncommitted data
|
|
// ============================================================================
|
|
|
|
#[test]
|
|
fn test_filter_eval_with_uncommitted() {
|
|
let mut filter = FilterOperator::new(
|
|
FilterPredicate::GreaterThan {
|
|
column: "age".to_string(),
|
|
value: Value::Integer(25),
|
|
},
|
|
vec!["id".to_string(), "name".to_string(), "age".to_string()],
|
|
);
|
|
|
|
// Initialize with some data
|
|
let mut init_data = Delta::new();
|
|
init_data.insert(
|
|
1,
|
|
vec![
|
|
Value::Integer(1),
|
|
Value::Text("Alice".into()),
|
|
Value::Integer(30),
|
|
],
|
|
);
|
|
init_data.insert(
|
|
2,
|
|
vec![
|
|
Value::Integer(2),
|
|
Value::Text("Bob".into()),
|
|
Value::Integer(20),
|
|
],
|
|
);
|
|
filter.initialize(init_data);
|
|
|
|
// Verify initial state (only Alice passes filter)
|
|
let state = filter.get_current_state();
|
|
assert_eq!(state.changes.len(), 1);
|
|
assert_eq!(state.changes[0].0.rowid, 1);
|
|
|
|
// Create uncommitted changes
|
|
let mut uncommitted = Delta::new();
|
|
uncommitted.insert(
|
|
3,
|
|
vec![
|
|
Value::Integer(3),
|
|
Value::Text("Charlie".into()),
|
|
Value::Integer(35),
|
|
],
|
|
);
|
|
uncommitted.insert(
|
|
4,
|
|
vec![
|
|
Value::Integer(4),
|
|
Value::Text("David".into()),
|
|
Value::Integer(15),
|
|
],
|
|
);
|
|
|
|
// Eval with uncommitted - should return filtered uncommitted rows
|
|
let result = filter.eval(Delta::new(), Some(uncommitted.clone()));
|
|
assert_eq!(
|
|
result.changes.len(),
|
|
1,
|
|
"Only Charlie (35) should pass filter"
|
|
);
|
|
assert_eq!(result.changes[0].0.rowid, 3);
|
|
|
|
// Verify state hasn't changed
|
|
let state_after_eval = filter.get_current_state();
|
|
assert_eq!(
|
|
state_after_eval.changes.len(),
|
|
1,
|
|
"State should still only have Alice"
|
|
);
|
|
assert_eq!(state_after_eval.changes[0].0.rowid, 1);
|
|
|
|
// Now commit the changes
|
|
filter.commit(uncommitted);
|
|
|
|
// State should now include Charlie (who passes filter)
|
|
let final_state = filter.get_current_state();
|
|
assert_eq!(
|
|
final_state.changes.len(),
|
|
2,
|
|
"State should now have Alice and Charlie"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_aggregate_eval_with_uncommitted_preserves_state() {
|
|
// This is the critical test - aggregations must not modify internal state during eval
|
|
let mut agg = AggregateOperator::new(
|
|
vec!["category".to_string()],
|
|
vec![
|
|
AggregateFunction::Count,
|
|
AggregateFunction::Sum("amount".to_string()),
|
|
],
|
|
vec![
|
|
"id".to_string(),
|
|
"category".to_string(),
|
|
"amount".to_string(),
|
|
],
|
|
);
|
|
|
|
// Initialize with data
|
|
let mut init_data = Delta::new();
|
|
init_data.insert(
|
|
1,
|
|
vec![
|
|
Value::Integer(1),
|
|
Value::Text("A".into()),
|
|
Value::Integer(100),
|
|
],
|
|
);
|
|
init_data.insert(
|
|
2,
|
|
vec![
|
|
Value::Integer(2),
|
|
Value::Text("A".into()),
|
|
Value::Integer(200),
|
|
],
|
|
);
|
|
init_data.insert(
|
|
3,
|
|
vec![
|
|
Value::Integer(3),
|
|
Value::Text("B".into()),
|
|
Value::Integer(150),
|
|
],
|
|
);
|
|
agg.initialize(init_data);
|
|
|
|
// Check initial state: A -> (count=2, sum=300), B -> (count=1, sum=150)
|
|
let initial_state = agg.get_current_state();
|
|
assert_eq!(initial_state.changes.len(), 2);
|
|
|
|
// Store initial state for comparison
|
|
let initial_a = initial_state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("A".into()))
|
|
.unwrap();
|
|
assert_eq!(initial_a.0.values[1], Value::Integer(2)); // count
|
|
assert_eq!(initial_a.0.values[2], Value::Float(300.0)); // sum
|
|
|
|
// Create uncommitted changes
|
|
let mut uncommitted = Delta::new();
|
|
uncommitted.insert(
|
|
4,
|
|
vec![
|
|
Value::Integer(4),
|
|
Value::Text("A".into()),
|
|
Value::Integer(50),
|
|
],
|
|
);
|
|
uncommitted.insert(
|
|
5,
|
|
vec![
|
|
Value::Integer(5),
|
|
Value::Text("C".into()),
|
|
Value::Integer(75),
|
|
],
|
|
);
|
|
|
|
// Eval with uncommitted should return the delta (changes to aggregates)
|
|
let result = agg.eval(Delta::new(), Some(uncommitted.clone()));
|
|
|
|
// Result should contain updates for A and new group C
|
|
// For A: retraction of old (2, 300) and insertion of new (3, 350)
|
|
// For C: insertion of (1, 75)
|
|
assert!(!result.changes.is_empty(), "Should have aggregate changes");
|
|
|
|
// CRITICAL: Verify internal state hasn't changed
|
|
let state_after_eval = agg.get_current_state();
|
|
assert_eq!(
|
|
state_after_eval.changes.len(),
|
|
2,
|
|
"State should still have only A and B"
|
|
);
|
|
|
|
let a_after_eval = state_after_eval
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("A".into()))
|
|
.unwrap();
|
|
assert_eq!(
|
|
a_after_eval.0.values[1],
|
|
Value::Integer(2),
|
|
"A count should still be 2"
|
|
);
|
|
assert_eq!(
|
|
a_after_eval.0.values[2],
|
|
Value::Float(300.0),
|
|
"A sum should still be 300"
|
|
);
|
|
|
|
// Now commit the changes
|
|
agg.commit(uncommitted);
|
|
|
|
// State should now be updated
|
|
let final_state = agg.get_current_state();
|
|
assert_eq!(final_state.changes.len(), 3, "Should now have A, B, and C");
|
|
|
|
let a_final = final_state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("A".into()))
|
|
.unwrap();
|
|
assert_eq!(
|
|
a_final.0.values[1],
|
|
Value::Integer(3),
|
|
"A count should now be 3"
|
|
);
|
|
assert_eq!(
|
|
a_final.0.values[2],
|
|
Value::Float(350.0),
|
|
"A sum should now be 350"
|
|
);
|
|
|
|
let c_final = final_state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("C".into()))
|
|
.unwrap();
|
|
assert_eq!(
|
|
c_final.0.values[1],
|
|
Value::Integer(1),
|
|
"C count should be 1"
|
|
);
|
|
assert_eq!(
|
|
c_final.0.values[2],
|
|
Value::Float(75.0),
|
|
"C sum should be 75"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_aggregate_eval_multiple_times_without_commit() {
|
|
// Test that calling eval multiple times with different uncommitted data
|
|
// doesn't pollute the internal state
|
|
let mut agg = AggregateOperator::new(
|
|
vec![], // No GROUP BY
|
|
vec![
|
|
AggregateFunction::Count,
|
|
AggregateFunction::Sum("value".to_string()),
|
|
],
|
|
vec!["id".to_string(), "value".to_string()],
|
|
);
|
|
|
|
// Initialize
|
|
let mut init_data = Delta::new();
|
|
init_data.insert(1, vec![Value::Integer(1), Value::Integer(100)]);
|
|
init_data.insert(2, vec![Value::Integer(2), Value::Integer(200)]);
|
|
agg.initialize(init_data);
|
|
|
|
// Initial state: count=2, sum=300
|
|
let initial_state = agg.get_current_state();
|
|
assert_eq!(initial_state.changes.len(), 1);
|
|
assert_eq!(initial_state.changes[0].0.values[0], Value::Integer(2));
|
|
assert_eq!(initial_state.changes[0].0.values[1], Value::Float(300.0));
|
|
|
|
// First eval with uncommitted
|
|
let mut uncommitted1 = Delta::new();
|
|
uncommitted1.insert(3, vec![Value::Integer(3), Value::Integer(50)]);
|
|
let _ = agg.eval(Delta::new(), Some(uncommitted1));
|
|
|
|
// State should be unchanged
|
|
let state1 = agg.get_current_state();
|
|
assert_eq!(state1.changes[0].0.values[0], Value::Integer(2));
|
|
assert_eq!(state1.changes[0].0.values[1], Value::Float(300.0));
|
|
|
|
// Second eval with different uncommitted
|
|
let mut uncommitted2 = Delta::new();
|
|
uncommitted2.insert(4, vec![Value::Integer(4), Value::Integer(75)]);
|
|
uncommitted2.insert(5, vec![Value::Integer(5), Value::Integer(25)]);
|
|
let _ = agg.eval(Delta::new(), Some(uncommitted2));
|
|
|
|
// State should STILL be unchanged
|
|
let state2 = agg.get_current_state();
|
|
assert_eq!(state2.changes[0].0.values[0], Value::Integer(2));
|
|
assert_eq!(state2.changes[0].0.values[1], Value::Float(300.0));
|
|
|
|
// Third eval with deletion as uncommitted
|
|
let mut uncommitted3 = Delta::new();
|
|
uncommitted3.delete(1, vec![Value::Integer(1), Value::Integer(100)]);
|
|
let _ = agg.eval(Delta::new(), Some(uncommitted3));
|
|
|
|
// State should STILL be unchanged
|
|
let state3 = agg.get_current_state();
|
|
assert_eq!(state3.changes[0].0.values[0], Value::Integer(2));
|
|
assert_eq!(state3.changes[0].0.values[1], Value::Float(300.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_aggregate_eval_with_mixed_committed_and_uncommitted() {
|
|
// Test eval with both committed delta and uncommitted changes
|
|
let mut agg = AggregateOperator::new(
|
|
vec!["type".to_string()],
|
|
vec![AggregateFunction::Count],
|
|
vec!["id".to_string(), "type".to_string()],
|
|
);
|
|
|
|
// Initialize
|
|
let mut init_data = Delta::new();
|
|
init_data.insert(1, vec![Value::Integer(1), Value::Text("X".into())]);
|
|
init_data.insert(2, vec![Value::Integer(2), Value::Text("Y".into())]);
|
|
agg.initialize(init_data);
|
|
|
|
// Create a committed delta (to be processed)
|
|
let mut committed_delta = Delta::new();
|
|
committed_delta.insert(3, vec![Value::Integer(3), Value::Text("X".into())]);
|
|
|
|
// Create uncommitted changes
|
|
let mut uncommitted = Delta::new();
|
|
uncommitted.insert(4, vec![Value::Integer(4), Value::Text("Y".into())]);
|
|
uncommitted.insert(5, vec![Value::Integer(5), Value::Text("Z".into())]);
|
|
|
|
// Eval with both - should process both but not commit
|
|
let result = agg.eval(committed_delta.clone(), Some(uncommitted));
|
|
|
|
// Result should reflect changes from both
|
|
assert!(!result.changes.is_empty());
|
|
|
|
// But internal state should be unchanged
|
|
let state = agg.get_current_state();
|
|
assert_eq!(state.changes.len(), 2, "Should still have only X and Y");
|
|
|
|
// Now commit only the committed_delta
|
|
agg.commit(committed_delta);
|
|
|
|
// State should now have X count=2, Y count=1
|
|
let final_state = agg.get_current_state();
|
|
let x = final_state
|
|
.changes
|
|
.iter()
|
|
.find(|(row, _)| row.values[0] == Value::Text("X".into()))
|
|
.unwrap();
|
|
assert_eq!(x.0.values[1], Value::Integer(2));
|
|
}
|
|
}
|