Files
turso/core/translate/planner.rs
2025-02-08 14:50:05 +02:00

840 lines
32 KiB
Rust

use super::{
plan::{
Aggregate, JoinInfo, Operation, Plan, ResultSetColumn, SelectPlan, SelectQueryType,
TableReference, WhereTerm,
},
select::prepare_select_plan,
SymbolTable,
};
use crate::{
function::Func,
schema::{Schema, Table},
util::{exprs_are_equivalent, normalize_ident},
vdbe::BranchOffset,
Result, VirtualTable,
};
use sqlite3_parser::ast::{
self, Expr, FromClause, JoinType, Limit, Materialized, UnaryOperator, With,
};
pub const ROWID: &str = "rowid";
pub fn resolve_aggregates(expr: &Expr, aggs: &mut Vec<Aggregate>) -> bool {
if aggs
.iter()
.any(|a| exprs_are_equivalent(&a.original_expr, expr))
{
return true;
}
match expr {
Expr::FunctionCall { name, args, .. } => {
let args_count = if let Some(args) = &args {
args.len()
} else {
0
};
match Func::resolve_function(normalize_ident(name.0.as_str()).as_str(), args_count) {
Ok(Func::Agg(f)) => {
aggs.push(Aggregate {
func: f,
args: args.clone().unwrap_or_default(),
original_expr: expr.clone(),
});
true
}
_ => {
let mut contains_aggregates = false;
if let Some(args) = args {
for arg in args.iter() {
contains_aggregates |= resolve_aggregates(arg, aggs);
}
}
contains_aggregates
}
}
}
Expr::FunctionCallStar { name, .. } => {
if let Ok(Func::Agg(f)) =
Func::resolve_function(normalize_ident(name.0.as_str()).as_str(), 0)
{
aggs.push(Aggregate {
func: f,
args: vec![],
original_expr: expr.clone(),
});
true
} else {
false
}
}
Expr::Binary(lhs, _, rhs) => {
let mut contains_aggregates = false;
contains_aggregates |= resolve_aggregates(lhs, aggs);
contains_aggregates |= resolve_aggregates(rhs, aggs);
contains_aggregates
}
Expr::Unary(_, expr) => {
let mut contains_aggregates = false;
contains_aggregates |= resolve_aggregates(expr, aggs);
contains_aggregates
}
// TODO: handle other expressions that may contain aggregates
_ => false,
}
}
pub fn bind_column_references(
expr: &mut Expr,
referenced_tables: &[TableReference],
result_columns: Option<&[ResultSetColumn]>,
) -> Result<()> {
match expr {
Expr::Id(id) => {
// true and false are special constants that are effectively aliases for 1 and 0
// and not identifiers of columns
if id.0.eq_ignore_ascii_case("true") || id.0.eq_ignore_ascii_case("false") {
return Ok(());
}
let normalized_id = normalize_ident(id.0.as_str());
if !referenced_tables.is_empty() {
if let Some(row_id_expr) =
parse_row_id(&normalized_id, 0, || referenced_tables.len() != 1)?
{
*expr = row_id_expr;
return Ok(());
}
}
let mut match_result = None;
for (tbl_idx, table) in referenced_tables.iter().enumerate() {
let col_idx = table.columns().iter().position(|c| {
c.name
.as_ref()
.map_or(false, |name| name.eq_ignore_ascii_case(&normalized_id))
});
if col_idx.is_some() {
if match_result.is_some() {
crate::bail_parse_error!("Column {} is ambiguous", id.0);
}
let col = table.columns().get(col_idx.unwrap()).unwrap();
match_result = Some((tbl_idx, col_idx.unwrap(), col.is_rowid_alias));
}
}
if let Some((tbl_idx, col_idx, is_rowid_alias)) = match_result {
*expr = Expr::Column {
database: None, // TODO: support different databases
table: tbl_idx,
column: col_idx,
is_rowid_alias,
};
return Ok(());
}
if let Some(result_columns) = result_columns {
for result_column in result_columns.iter() {
if result_column
.name(referenced_tables)
.map_or(false, |name| name == &normalized_id)
{
*expr = result_column.expr.clone();
return Ok(());
}
}
}
crate::bail_parse_error!("Column {} not found", id.0);
}
Expr::Qualified(tbl, id) => {
let normalized_table_name = normalize_ident(tbl.0.as_str());
let matching_tbl_idx = referenced_tables
.iter()
.position(|t| t.identifier.eq_ignore_ascii_case(&normalized_table_name));
if matching_tbl_idx.is_none() {
crate::bail_parse_error!("Table {} not found", normalized_table_name);
}
let tbl_idx = matching_tbl_idx.unwrap();
let normalized_id = normalize_ident(id.0.as_str());
if let Some(row_id_expr) = parse_row_id(&normalized_id, tbl_idx, || false)? {
*expr = row_id_expr;
return Ok(());
}
let col_idx = referenced_tables[tbl_idx].columns().iter().position(|c| {
c.name
.as_ref()
.map_or(false, |name| name.eq_ignore_ascii_case(&normalized_id))
});
if col_idx.is_none() {
crate::bail_parse_error!("Column {} not found", normalized_id);
}
let col = referenced_tables[tbl_idx]
.columns()
.get(col_idx.unwrap())
.unwrap();
*expr = Expr::Column {
database: None, // TODO: support different databases
table: tbl_idx,
column: col_idx.unwrap(),
is_rowid_alias: col.is_rowid_alias,
};
Ok(())
}
Expr::Between {
lhs,
not: _,
start,
end,
} => {
bind_column_references(lhs, referenced_tables, result_columns)?;
bind_column_references(start, referenced_tables, result_columns)?;
bind_column_references(end, referenced_tables, result_columns)?;
Ok(())
}
Expr::Binary(expr, _operator, expr1) => {
bind_column_references(expr, referenced_tables, result_columns)?;
bind_column_references(expr1, referenced_tables, result_columns)?;
Ok(())
}
Expr::Case {
base,
when_then_pairs,
else_expr,
} => {
if let Some(base) = base {
bind_column_references(base, referenced_tables, result_columns)?;
}
for (when, then) in when_then_pairs {
bind_column_references(when, referenced_tables, result_columns)?;
bind_column_references(then, referenced_tables, result_columns)?;
}
if let Some(else_expr) = else_expr {
bind_column_references(else_expr, referenced_tables, result_columns)?;
}
Ok(())
}
Expr::Cast { expr, type_name: _ } => {
bind_column_references(expr, referenced_tables, result_columns)
}
Expr::Collate(expr, _string) => {
bind_column_references(expr, referenced_tables, result_columns)
}
Expr::FunctionCall {
name: _,
distinctness: _,
args,
order_by: _,
filter_over: _,
} => {
if let Some(args) = args {
for arg in args {
bind_column_references(arg, referenced_tables, result_columns)?;
}
}
Ok(())
}
// Already bound earlier
Expr::Column { .. } | Expr::RowId { .. } => Ok(()),
Expr::DoublyQualified(_, _, _) => todo!(),
Expr::Exists(_) => todo!(),
Expr::FunctionCallStar { .. } => Ok(()),
Expr::InList { lhs, not: _, rhs } => {
bind_column_references(lhs, referenced_tables, result_columns)?;
if let Some(rhs) = rhs {
for arg in rhs {
bind_column_references(arg, referenced_tables, result_columns)?;
}
}
Ok(())
}
Expr::InSelect { .. } => todo!(),
Expr::InTable { .. } => todo!(),
Expr::IsNull(expr) => {
bind_column_references(expr, referenced_tables, result_columns)?;
Ok(())
}
Expr::Like { lhs, rhs, .. } => {
bind_column_references(lhs, referenced_tables, result_columns)?;
bind_column_references(rhs, referenced_tables, result_columns)?;
Ok(())
}
Expr::Literal(_) => Ok(()),
Expr::Name(_) => todo!(),
Expr::NotNull(expr) => {
bind_column_references(expr, referenced_tables, result_columns)?;
Ok(())
}
Expr::Parenthesized(expr) => {
for e in expr.iter_mut() {
bind_column_references(e, referenced_tables, result_columns)?;
}
Ok(())
}
Expr::Raise(_, _) => todo!(),
Expr::Subquery(_) => todo!(),
Expr::Unary(_, expr) => {
bind_column_references(expr, referenced_tables, result_columns)?;
Ok(())
}
Expr::Variable(_) => Ok(()),
}
}
fn parse_from_clause_table<'a>(
schema: &Schema,
table: ast::SelectTable,
scope: &mut Scope<'a>,
syms: &SymbolTable,
) -> Result<()> {
match table {
ast::SelectTable::Table(qualified_name, maybe_alias, _) => {
let normalized_qualified_name = normalize_ident(qualified_name.name.0.as_str());
// Check if the FROM clause table is referring to a CTE in the current scope.
if let Some(cte) = scope
.ctes
.iter()
.find(|cte| cte.name == normalized_qualified_name)
{
// CTE can be rewritten as a subquery.
// TODO: find a way not to clone the CTE plan here.
let cte_table =
TableReference::new_subquery(cte.name.clone(), cte.plan.clone(), None);
scope.tables.push(cte_table);
return Ok(());
};
// Check if our top level schema has this table.
if let Some(table) = schema.get_table(&normalized_qualified_name) {
let alias = maybe_alias
.map(|a| match a {
ast::As::As(id) => id,
ast::As::Elided(id) => id,
})
.map(|a| a.0);
scope.tables.push(TableReference {
op: Operation::Scan { iter_dir: None },
table: Table::BTree(table.clone()),
identifier: alias.unwrap_or(normalized_qualified_name),
join_info: None,
});
return Ok(());
};
// Check if the outer query scope has this table.
if let Some(outer_scope) = scope.parent {
if let Some(table_ref_idx) = outer_scope
.tables
.iter()
.position(|t| t.identifier == normalized_qualified_name)
{
// TODO: avoid cloning the table reference here.
scope.tables.push(outer_scope.tables[table_ref_idx].clone());
return Ok(());
}
if let Some(cte) = outer_scope
.ctes
.iter()
.find(|cte| cte.name == normalized_qualified_name)
{
// TODO: avoid cloning the CTE plan here.
let cte_table =
TableReference::new_subquery(cte.name.clone(), cte.plan.clone(), None);
scope.tables.push(cte_table);
return Ok(());
}
}
crate::bail_parse_error!("Table {} not found", normalized_qualified_name);
}
ast::SelectTable::Select(subselect, maybe_alias) => {
let Plan::Select(mut subplan) =
prepare_select_plan(schema, *subselect, syms, Some(scope))?
else {
unreachable!();
};
subplan.query_type = SelectQueryType::Subquery {
yield_reg: usize::MAX, // will be set later in bytecode emission
coroutine_implementation_start: BranchOffset::Placeholder, // will be set later in bytecode emission
};
let cur_table_index = scope.tables.len();
let identifier = maybe_alias
.map(|a| match a {
ast::As::As(id) => id.0.clone(),
ast::As::Elided(id) => id.0.clone(),
})
.unwrap_or(format!("subquery_{}", cur_table_index));
scope
.tables
.push(TableReference::new_subquery(identifier, subplan, None));
Ok(())
}
ast::SelectTable::TableCall(qualified_name, maybe_args, maybe_alias) => {
let normalized_name = &normalize_ident(qualified_name.name.0.as_str());
let Some(vtab) = syms.vtabs.get(normalized_name) else {
crate::bail_parse_error!("Virtual table {} not found", normalized_name);
};
let alias = maybe_alias
.as_ref()
.map(|a| match a {
ast::As::As(id) => id.0.clone(),
ast::As::Elided(id) => id.0.clone(),
})
.unwrap_or(normalized_name.to_string());
scope.tables.push(TableReference {
op: Operation::Scan { iter_dir: None },
join_info: None,
table: Table::Virtual(
VirtualTable {
name: normalized_name.clone(),
args: maybe_args,
implementation: vtab.implementation.clone(),
columns: vtab.columns.clone(),
}
.into(),
)
.into(),
identifier: alias.clone(),
});
Ok(())
}
_ => todo!(),
}
}
/// A scope is a list of tables that are visible to the current query.
/// It is used to resolve table references in the FROM clause.
/// To resolve table references that are potentially ambiguous, the resolution
/// first looks at schema tables and tables in the current scope (which currently just means CTEs in the current query),
/// and only after that looks at whether a table from an outer (upper) query level matches.
///
/// For example:
///
/// WITH nested AS (SELECT foo FROM bar)
/// WITH sub AS (SELECT foo FROM bar)
/// SELECT * FROM sub
///
/// 'sub' would preferentially refer to the 'foo' column from the 'bar' table in the catalog.
/// With an explicit reference like:
///
/// SELECT nested.foo FROM sub
///
/// 'nested.foo' would refer to the 'foo' column from the 'nested' CTE.
///
/// TODO: we should probably use Scope in all of our identifier resolution, because it allows for e.g.
/// WITH users AS (SELECT * FROM products) SELECT * FROM users <-- returns products, even if there is a table named 'users' in the catalog!
///
/// Currently we are treating Schema as a first-class object in identifier resolution, when in reality
/// be part of the 'Scope' struct.
pub struct Scope<'a> {
/// The tables that are explicitly present in the current query, including catalog tables and CTEs.
tables: Vec<TableReference>,
ctes: Vec<Cte>,
/// The parent scope, if any. For example, a second CTE has access to the first CTE via the parent scope.
parent: Option<&'a Scope<'a>>,
}
pub struct Cte {
/// The name of the CTE.
name: String,
/// The query plan for the CTE.
/// Currently we only support SELECT queries in CTEs.
plan: SelectPlan,
}
pub fn parse_from<'a>(
schema: &Schema,
mut from: Option<FromClause>,
syms: &SymbolTable,
with: Option<With>,
out_where_clause: &mut Vec<WhereTerm>,
outer_scope: Option<&'a Scope<'a>>,
) -> Result<Vec<TableReference>> {
if from.as_ref().and_then(|f| f.select.as_ref()).is_none() {
return Ok(vec![]);
}
let mut scope = Scope {
tables: vec![],
ctes: vec![],
parent: outer_scope,
};
if let Some(with) = with {
if with.recursive {
crate::bail_parse_error!("Recursive CTEs are not yet supported");
}
for cte in with.ctes {
if cte.materialized == Materialized::Yes {
crate::bail_parse_error!("Materialized CTEs are not yet supported");
}
if cte.columns.is_some() {
crate::bail_parse_error!("CTE columns are not yet supported");
}
// Check if normalized name conflicts with catalog tables or other CTEs
// TODO: sqlite actually allows overriding a catalog table with a CTE.
// We should carry over the 'Scope' struct to all of our identifier resolution.
let cte_name_normalized = normalize_ident(&cte.tbl_name.0);
if schema.get_table(&cte_name_normalized).is_some() {
crate::bail_parse_error!(
"CTE name {} conflicts with catalog table name",
cte.tbl_name.0
);
}
if scope
.tables
.iter()
.any(|t| t.identifier == cte_name_normalized)
{
crate::bail_parse_error!("CTE name {} conflicts with table name", cte.tbl_name.0);
}
if scope.ctes.iter().any(|c| c.name == cte_name_normalized) {
crate::bail_parse_error!("duplicate WITH table name {}", cte.tbl_name.0);
}
// CTE can refer to other CTEs that came before it, plus any schema tables or tables in the outer scope.
let cte_plan = prepare_select_plan(schema, *cte.select, syms, Some(&scope))?;
let Plan::Select(mut cte_plan) = cte_plan else {
crate::bail_parse_error!("Only SELECT queries are currently supported in CTEs");
};
// CTE can be rewritten as a subquery.
cte_plan.query_type = SelectQueryType::Subquery {
yield_reg: usize::MAX, // will be set later in bytecode emission
coroutine_implementation_start: BranchOffset::Placeholder, // will be set later in bytecode emission
};
scope.ctes.push(Cte {
name: cte_name_normalized,
plan: cte_plan,
});
}
}
let mut from_owned = std::mem::take(&mut from).unwrap();
let select_owned = *std::mem::take(&mut from_owned.select).unwrap();
let joins_owned = std::mem::take(&mut from_owned.joins).unwrap_or_default();
parse_from_clause_table(schema, select_owned, &mut scope, syms)?;
for join in joins_owned.into_iter() {
parse_join(schema, join, syms, &mut scope, out_where_clause)?;
}
Ok(scope.tables)
}
pub fn parse_where(
where_clause: Option<Expr>,
table_references: &[TableReference],
result_columns: Option<&[ResultSetColumn]>,
out_where_clause: &mut Vec<WhereTerm>,
) -> Result<()> {
if let Some(where_expr) = where_clause {
let mut predicates = vec![];
break_predicate_at_and_boundaries(where_expr, &mut predicates);
for expr in predicates.iter_mut() {
bind_column_references(expr, table_references, result_columns)?;
}
for expr in predicates {
let eval_at_loop = get_rightmost_table_referenced_in_expr(&expr)?;
out_where_clause.push(WhereTerm {
expr,
from_outer_join: false,
eval_at_loop,
});
}
Ok(())
} else {
Ok(())
}
}
/**
Returns the rightmost table index that is referenced in the given AST expression.
Rightmost = innermost loop.
This is used to determine where we should evaluate a given condition expression,
and it needs to be the rightmost table referenced in the expression, because otherwise
the condition would be evaluated before a row is read from that table.
*/
fn get_rightmost_table_referenced_in_expr<'a>(predicate: &'a ast::Expr) -> Result<usize> {
let mut max_table_idx = 0;
match predicate {
ast::Expr::Binary(e1, _, e2) => {
max_table_idx = max_table_idx.max(get_rightmost_table_referenced_in_expr(e1)?);
max_table_idx = max_table_idx.max(get_rightmost_table_referenced_in_expr(e2)?);
}
ast::Expr::Column { table, .. } => {
max_table_idx = max_table_idx.max(*table);
}
ast::Expr::Id(_) => {
/* Id referring to column will already have been rewritten as an Expr::Column */
/* we only get here with literal 'true' or 'false' etc */
}
ast::Expr::Qualified(_, _) => {
unreachable!("Qualified should be resolved to a Column before optimizer")
}
ast::Expr::Literal(_) => {}
ast::Expr::Like { lhs, rhs, .. } => {
max_table_idx = max_table_idx.max(get_rightmost_table_referenced_in_expr(lhs)?);
max_table_idx = max_table_idx.max(get_rightmost_table_referenced_in_expr(rhs)?);
}
ast::Expr::FunctionCall {
args: Some(args), ..
} => {
for arg in args {
max_table_idx = max_table_idx.max(get_rightmost_table_referenced_in_expr(arg)?);
}
}
ast::Expr::InList { lhs, rhs, .. } => {
max_table_idx = max_table_idx.max(get_rightmost_table_referenced_in_expr(lhs)?);
if let Some(rhs_list) = rhs {
for rhs_expr in rhs_list {
max_table_idx =
max_table_idx.max(get_rightmost_table_referenced_in_expr(rhs_expr)?);
}
}
}
_ => {}
}
Ok(max_table_idx)
}
fn parse_join<'a>(
schema: &Schema,
join: ast::JoinedSelectTable,
syms: &SymbolTable,
scope: &mut Scope<'a>,
out_where_clause: &mut Vec<WhereTerm>,
) -> Result<()> {
let ast::JoinedSelectTable {
operator: join_operator,
table,
constraint,
} = join;
parse_from_clause_table(schema, table, scope, syms)?;
let (outer, natural) = match join_operator {
ast::JoinOperator::TypedJoin(Some(join_type)) => {
let is_outer = join_type.contains(JoinType::OUTER);
let is_natural = join_type.contains(JoinType::NATURAL);
(is_outer, is_natural)
}
_ => (false, false),
};
let mut using = None;
if natural && constraint.is_some() {
crate::bail_parse_error!("NATURAL JOIN cannot be combined with ON or USING clause");
}
let constraint = if natural {
assert!(scope.tables.len() >= 2);
let rightmost_table = scope.tables.last().unwrap();
// NATURAL JOIN is first transformed into a USING join with the common columns
let right_cols = rightmost_table.columns();
let mut distinct_names: Option<ast::DistinctNames> = None;
// TODO: O(n^2) maybe not great for large tables or big multiway joins
for right_col in right_cols.iter() {
let mut found_match = false;
for left_table in scope.tables.iter().take(scope.tables.len() - 1) {
for left_col in left_table.columns().iter() {
if left_col.name == right_col.name {
if let Some(distinct_names) = distinct_names.as_mut() {
distinct_names
.insert(ast::Name(
left_col.name.clone().expect("column name is None"),
))
.unwrap();
} else {
distinct_names = Some(ast::DistinctNames::new(ast::Name(
left_col.name.clone().expect("column name is None"),
)));
}
found_match = true;
break;
}
}
if found_match {
break;
}
}
}
if let Some(distinct_names) = distinct_names {
Some(ast::JoinConstraint::Using(distinct_names))
} else {
crate::bail_parse_error!("No columns found to NATURAL join on");
}
} else {
constraint
};
if let Some(constraint) = constraint {
match constraint {
ast::JoinConstraint::On(expr) => {
let mut preds = vec![];
break_predicate_at_and_boundaries(expr, &mut preds);
for predicate in preds.iter_mut() {
bind_column_references(predicate, &scope.tables, None)?;
}
for pred in preds {
let cur_table_idx = scope.tables.len() - 1;
let eval_at_loop = if outer {
cur_table_idx
} else {
get_rightmost_table_referenced_in_expr(&pred)?
};
out_where_clause.push(WhereTerm {
expr: pred,
from_outer_join: outer,
eval_at_loop,
});
}
}
ast::JoinConstraint::Using(distinct_names) => {
// USING join is replaced with a list of equality predicates
for distinct_name in distinct_names.iter() {
let name_normalized = normalize_ident(distinct_name.0.as_str());
let cur_table_idx = scope.tables.len() - 1;
let left_tables = &scope.tables[..cur_table_idx];
assert!(!left_tables.is_empty());
let right_table = scope.tables.last().unwrap();
let mut left_col = None;
for (left_table_idx, left_table) in left_tables.iter().enumerate() {
left_col = left_table
.columns()
.iter()
.enumerate()
.find(|(_, col)| {
col.name
.as_ref()
.map_or(false, |name| *name == name_normalized)
})
.map(|(idx, col)| (left_table_idx, idx, col));
if left_col.is_some() {
break;
}
}
if left_col.is_none() {
crate::bail_parse_error!(
"cannot join using column {} - column not present in all tables",
distinct_name.0
);
}
let right_col = right_table.columns().iter().enumerate().find(|(_, col)| {
col.name
.as_ref()
.map_or(false, |name| *name == name_normalized)
});
if right_col.is_none() {
crate::bail_parse_error!(
"cannot join using column {} - column not present in all tables",
distinct_name.0
);
}
let (left_table_idx, left_col_idx, left_col) = left_col.unwrap();
let (right_col_idx, right_col) = right_col.unwrap();
let expr = Expr::Binary(
Box::new(Expr::Column {
database: None,
table: left_table_idx,
column: left_col_idx,
is_rowid_alias: left_col.is_rowid_alias,
}),
ast::Operator::Equals,
Box::new(Expr::Column {
database: None,
table: cur_table_idx,
column: right_col_idx,
is_rowid_alias: right_col.is_rowid_alias,
}),
);
let eval_at_loop = if outer {
cur_table_idx
} else {
get_rightmost_table_referenced_in_expr(&expr)?
};
out_where_clause.push(WhereTerm {
expr,
from_outer_join: outer,
eval_at_loop,
});
}
using = Some(distinct_names);
}
}
}
assert!(scope.tables.len() >= 2);
let last_idx = scope.tables.len() - 1;
let rightmost_table = scope.tables.get_mut(last_idx).unwrap();
rightmost_table.join_info = Some(JoinInfo { outer, using });
Ok(())
}
pub fn parse_limit(limit: Limit) -> Result<(Option<isize>, Option<isize>)> {
let offset_val = match limit.offset {
Some(offset_expr) => match offset_expr {
Expr::Literal(ast::Literal::Numeric(n)) => n.parse().ok(),
// If OFFSET is negative, the result is as if OFFSET is zero
Expr::Unary(UnaryOperator::Negative, expr) => match *expr {
Expr::Literal(ast::Literal::Numeric(n)) => n.parse::<isize>().ok().map(|num| -num),
_ => crate::bail_parse_error!("Invalid OFFSET clause"),
},
_ => crate::bail_parse_error!("Invalid OFFSET clause"),
},
None => Some(0),
};
if let Expr::Literal(ast::Literal::Numeric(n)) = limit.expr {
Ok((n.parse().ok(), offset_val))
} else if let Expr::Unary(UnaryOperator::Negative, expr) = limit.expr {
if let Expr::Literal(ast::Literal::Numeric(n)) = *expr {
let limit_val = n.parse::<isize>().ok().map(|num| -num);
Ok((limit_val, offset_val))
} else {
crate::bail_parse_error!("Invalid LIMIT clause");
}
} else if let Expr::Id(id) = limit.expr {
if id.0.eq_ignore_ascii_case("true") {
Ok((Some(1), offset_val))
} else if id.0.eq_ignore_ascii_case("false") {
Ok((Some(0), offset_val))
} else {
crate::bail_parse_error!("Invalid LIMIT clause");
}
} else {
crate::bail_parse_error!("Invalid LIMIT clause");
}
}
pub fn break_predicate_at_and_boundaries(predicate: Expr, out_predicates: &mut Vec<Expr>) {
match predicate {
Expr::Binary(left, ast::Operator::And, right) => {
break_predicate_at_and_boundaries(*left, out_predicates);
break_predicate_at_and_boundaries(*right, out_predicates);
}
_ => {
out_predicates.push(predicate);
}
}
}
fn parse_row_id<F>(column_name: &str, table_id: usize, fn_check: F) -> Result<Option<Expr>>
where
F: FnOnce() -> bool,
{
if column_name.eq_ignore_ascii_case(ROWID) {
if fn_check() {
crate::bail_parse_error!("ROWID is ambiguous");
}
return Ok(Some(Expr::RowId {
database: None, // TODO: support different databases
table: table_id,
}));
}
Ok(None)
}