Files
turso/core/incremental/view.rs
2025-09-12 08:20:40 -04:00

1099 lines
41 KiB
Rust

use super::compiler::{DbspCircuit, DbspCompiler, DeltaSet};
use super::dbsp::Delta;
use super::operator::{ComputationTracker, FilterPredicate};
use crate::schema::{BTreeTable, Column, Schema};
use crate::storage::btree::BTreeCursor;
use crate::translate::logical::LogicalPlanBuilder;
use crate::types::{IOResult, Value};
use crate::util::extract_view_columns;
use crate::{return_if_io, LimboError, Pager, Result, Statement};
use std::cell::RefCell;
use std::collections::HashMap;
use std::fmt;
use std::rc::Rc;
use std::sync::{Arc, Mutex};
use turso_parser::ast;
use turso_parser::{
ast::{Cmd, Stmt},
parser::Parser,
};
/// State machine for populating a view from its source table
pub enum PopulateState {
/// Initial state - need to prepare the query
Start,
/// Actively processing rows from the query
Processing {
stmt: Box<Statement>,
rows_processed: usize,
/// If we're in the middle of processing a row (merge_delta returned I/O)
pending_row: Option<(i64, Vec<Value>)>, // (rowid, values)
},
/// Population complete
Done,
}
/// State machine for merge_delta to handle I/O operations
impl fmt::Debug for PopulateState {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
PopulateState::Start => write!(f, "Start"),
PopulateState::Processing {
rows_processed,
pending_row,
..
} => f
.debug_struct("Processing")
.field("rows_processed", rows_processed)
.field("has_pending", &pending_row.is_some())
.finish(),
PopulateState::Done => write!(f, "Done"),
}
}
}
/// Per-connection transaction state for incremental views
#[derive(Debug, Clone, Default)]
pub struct ViewTransactionState {
// Per-table deltas for uncommitted changes
// Maps table_name -> Delta for that table
// Using RefCell for interior mutability
table_deltas: RefCell<HashMap<String, Delta>>,
}
impl ViewTransactionState {
/// Create a new transaction state
pub fn new() -> Self {
Self {
table_deltas: RefCell::new(HashMap::new()),
}
}
/// Insert a row into the delta for a specific table
pub fn insert(&self, table_name: &str, key: i64, values: Vec<Value>) {
let mut deltas = self.table_deltas.borrow_mut();
let delta = deltas.entry(table_name.to_string()).or_default();
delta.insert(key, values);
}
/// Delete a row from the delta for a specific table
pub fn delete(&self, table_name: &str, key: i64, values: Vec<Value>) {
let mut deltas = self.table_deltas.borrow_mut();
let delta = deltas.entry(table_name.to_string()).or_default();
delta.delete(key, values);
}
/// Clear all changes in the delta
pub fn clear(&self) {
self.table_deltas.borrow_mut().clear();
}
/// Get deltas organized by table
pub fn get_table_deltas(&self) -> HashMap<String, Delta> {
self.table_deltas.borrow().clone()
}
/// Check if the delta is empty
pub fn is_empty(&self) -> bool {
self.table_deltas.borrow().values().all(|d| d.is_empty())
}
/// Returns how many elements exist in the delta.
pub fn len(&self) -> usize {
self.table_deltas.borrow().values().map(|d| d.len()).sum()
}
}
/// Container for all view transaction states within a connection
/// Provides interior mutability for the map of view states
#[derive(Debug, Clone, Default)]
pub struct AllViewsTxState {
states: Rc<RefCell<HashMap<String, Rc<ViewTransactionState>>>>,
}
impl AllViewsTxState {
/// Create a new container for view transaction states
pub fn new() -> Self {
Self {
states: Rc::new(RefCell::new(HashMap::new())),
}
}
/// Get or create a transaction state for a view
pub fn get_or_create(&self, view_name: &str) -> Rc<ViewTransactionState> {
let mut states = self.states.borrow_mut();
states
.entry(view_name.to_string())
.or_insert_with(|| Rc::new(ViewTransactionState::new()))
.clone()
}
/// Get a transaction state for a view if it exists
pub fn get(&self, view_name: &str) -> Option<Rc<ViewTransactionState>> {
self.states.borrow().get(view_name).cloned()
}
/// Clear all transaction states
pub fn clear(&self) {
self.states.borrow_mut().clear();
}
/// Check if there are no transaction states
pub fn is_empty(&self) -> bool {
self.states.borrow().is_empty()
}
/// Get all view names that have transaction states
pub fn get_view_names(&self) -> Vec<String> {
self.states.borrow().keys().cloned().collect()
}
}
/// Incremental view that maintains its state through a DBSP circuit
///
/// This version keeps everything in-memory. This is acceptable for small views, since DBSP
/// doesn't have to track the history of changes. Still for very large views (think of the result
/// of create view v as select * from tbl where x > 1; and that having 1B values.
///
/// We should have a version of this that materializes the results. Materializing will also be good
/// for large aggregations, because then we don't have to re-compute when opening the database
/// again.
///
/// Uses DBSP circuits for incremental computation.
#[derive(Debug)]
pub struct IncrementalView {
name: String,
// WHERE clause predicate for filtering (kept for compatibility)
pub where_predicate: FilterPredicate,
// The SELECT statement that defines how to transform input data
pub select_stmt: ast::Select,
// DBSP circuit that encapsulates the computation
circuit: DbspCircuit,
// All tables referenced by this view (from FROM clause and JOINs)
referenced_tables: Vec<Arc<BTreeTable>>,
// The view's output columns with their types
pub columns: Vec<Column>,
// State machine for population
populate_state: PopulateState,
// Computation tracker for statistics
// We will use this one day to export rows_read, but for now, will just test that we're doing the expected amount of compute
#[cfg_attr(not(test), allow(dead_code))]
pub tracker: Arc<Mutex<ComputationTracker>>,
// Root page of the btree storing the materialized state (0 for unmaterialized)
root_page: usize,
}
impl IncrementalView {
/// Validate that a CREATE MATERIALIZED VIEW statement can be handled by IncrementalView
/// This should be called early, before updating sqlite_master
pub fn can_create_view(select: &ast::Select) -> Result<()> {
// Check for JOINs
let (join_tables, join_condition) = Self::extract_join_info(select);
if join_tables.is_some() || join_condition.is_some() {
return Err(LimboError::ParseError(
"JOINs in views are not yet supported".to_string(),
));
}
Ok(())
}
/// Try to compile the SELECT statement into a DBSP circuit
fn try_compile_circuit(
select: &ast::Select,
schema: &Schema,
main_data_root: usize,
internal_state_root: usize,
) -> Result<DbspCircuit> {
// Build the logical plan from the SELECT statement
let mut builder = LogicalPlanBuilder::new(schema);
// Convert Select to a Stmt for the builder
let stmt = ast::Stmt::Select(select.clone());
let logical_plan = builder.build_statement(&stmt)?;
// Compile the logical plan to a DBSP circuit with the storage roots
let compiler = DbspCompiler::new(main_data_root, internal_state_root);
let circuit = compiler.compile(&logical_plan)?;
Ok(circuit)
}
/// Get an iterator over column names, using enumerated naming for unnamed columns
pub fn column_names(&self) -> impl Iterator<Item = String> + '_ {
self.columns.iter().enumerate().map(|(i, col)| {
col.name
.clone()
.unwrap_or_else(|| format!("column{}", i + 1))
})
}
/// Check if this view has the same SQL definition as the provided SQL string
pub fn has_same_sql(&self, sql: &str) -> bool {
// Parse the SQL to extract just the SELECT statement
if let Ok(Some(Cmd::Stmt(Stmt::CreateMaterializedView { select, .. }))) =
Parser::new(sql.as_bytes()).next_cmd()
{
// Compare the SELECT statements as SQL strings
return self.select_stmt == select;
}
false
}
/// Validate a SELECT statement and extract the columns it would produce
/// This is used during CREATE MATERIALIZED VIEW to validate the view before storing it
pub fn validate_and_extract_columns(
select: &ast::Select,
schema: &Schema,
) -> Result<Vec<crate::schema::Column>> {
// For now, just extract columns from a simple select
// This will need to be expanded to handle joins, aggregates, etc.
// Get the base table name
let base_table_name = Self::extract_base_table(select).ok_or_else(|| {
LimboError::ParseError("Cannot extract base table from SELECT".to_string())
})?;
// Get the table from schema
let table = schema
.get_table(&base_table_name)
.and_then(|t| t.btree())
.ok_or_else(|| LimboError::ParseError(format!("Table {base_table_name} not found")))?;
// For now, return all columns from the base table
// In the future, this should parse the select list and handle projections
Ok(table.columns.clone())
}
pub fn from_sql(
sql: &str,
schema: &Schema,
main_data_root: usize,
internal_state_root: usize,
) -> Result<Self> {
let mut parser = Parser::new(sql.as_bytes());
let cmd = parser.next_cmd()?;
let cmd = cmd.expect("View is an empty statement");
match cmd {
Cmd::Stmt(Stmt::CreateMaterializedView {
if_not_exists: _,
view_name,
columns: _,
select,
}) => IncrementalView::from_stmt(
view_name,
select,
schema,
main_data_root,
internal_state_root,
),
_ => Err(LimboError::ParseError(format!(
"View is not a CREATE MATERIALIZED VIEW statement: {sql}"
))),
}
}
pub fn from_stmt(
view_name: ast::QualifiedName,
select: ast::Select,
schema: &Schema,
main_data_root: usize,
internal_state_root: usize,
) -> Result<Self> {
let name = view_name.name.as_str().to_string();
let where_predicate = FilterPredicate::from_select(&select)?;
// Extract output columns using the shared function
let view_columns = extract_view_columns(&select, schema);
let (join_tables, join_condition) = Self::extract_join_info(&select);
if join_tables.is_some() || join_condition.is_some() {
return Err(LimboError::ParseError(
"JOINs in views are not yet supported".to_string(),
));
}
// Get all tables from FROM clause and JOINs
let referenced_tables = Self::extract_all_tables(&select, schema)?;
Self::new(
name,
where_predicate,
select.clone(),
referenced_tables,
view_columns,
schema,
main_data_root,
internal_state_root,
)
}
#[allow(clippy::too_many_arguments)]
pub fn new(
name: String,
where_predicate: FilterPredicate,
select_stmt: ast::Select,
referenced_tables: Vec<Arc<BTreeTable>>,
columns: Vec<Column>,
schema: &Schema,
main_data_root: usize,
internal_state_root: usize,
) -> Result<Self> {
// Create the tracker that will be shared by all operators
let tracker = Arc::new(Mutex::new(ComputationTracker::new()));
// Compile the SELECT statement into a DBSP circuit
let circuit =
Self::try_compile_circuit(&select_stmt, schema, main_data_root, internal_state_root)?;
Ok(Self {
name,
where_predicate,
select_stmt,
circuit,
referenced_tables,
columns,
populate_state: PopulateState::Start,
tracker,
root_page: main_data_root,
})
}
pub fn name(&self) -> &str {
&self.name
}
/// Execute the circuit with uncommitted changes to get processed delta
pub fn execute_with_uncommitted(
&mut self,
uncommitted: DeltaSet,
pager: Rc<Pager>,
execute_state: &mut crate::incremental::compiler::ExecuteState,
) -> crate::Result<crate::types::IOResult<Delta>> {
// Initialize execute_state with the input data
*execute_state = crate::incremental::compiler::ExecuteState::Init {
input_data: uncommitted,
};
self.circuit.execute(pager, execute_state)
}
/// Get the root page for this materialized view's btree
pub fn get_root_page(&self) -> usize {
self.root_page
}
/// Get all table names referenced by this view
pub fn get_referenced_table_names(&self) -> Vec<String> {
self.referenced_tables
.iter()
.map(|t| t.name.clone())
.collect()
}
/// Get all tables referenced by this view
pub fn get_referenced_tables(&self) -> Vec<Arc<BTreeTable>> {
self.referenced_tables.clone()
}
/// Extract all table names from a SELECT statement (including JOINs)
fn extract_all_tables(select: &ast::Select, schema: &Schema) -> Result<Vec<Arc<BTreeTable>>> {
let mut tables = Vec::new();
if let ast::OneSelect::Select {
from: Some(ref from),
..
} = select.body.select
{
// Get the main table from FROM clause
if let ast::SelectTable::Table(name, _, _) = from.select.as_ref() {
let table_name = name.name.as_str();
if let Some(table) = schema.get_btree_table(table_name) {
tables.push(table.clone());
} else {
return Err(LimboError::ParseError(format!(
"Table '{table_name}' not found in schema"
)));
}
}
// Get all tables from JOIN clauses
for join in &from.joins {
if let ast::SelectTable::Table(name, _, _) = join.table.as_ref() {
let table_name = name.name.as_str();
if let Some(table) = schema.get_btree_table(table_name) {
tables.push(table.clone());
} else {
return Err(LimboError::ParseError(format!(
"Table '{table_name}' not found in schema"
)));
}
}
}
}
if tables.is_empty() {
return Err(LimboError::ParseError(
"No tables found in SELECT statement".to_string(),
));
}
Ok(tables)
}
/// Extract the base table name from a SELECT statement (for non-join cases)
fn extract_base_table(select: &ast::Select) -> Option<String> {
if let ast::OneSelect::Select {
from: Some(ref from),
..
} = select.body.select
{
if let ast::SelectTable::Table(name, _, _) = from.select.as_ref() {
return Some(name.name.as_str().to_string());
}
}
None
}
/// Generate the SQL query for populating the view from its source table
fn sql_for_populate(&self) -> crate::Result<String> {
// Get the first table from referenced tables
if self.referenced_tables.is_empty() {
return Err(LimboError::ParseError(
"No tables to populate from".to_string(),
));
}
let table = &self.referenced_tables[0];
// Check if the table has a rowid alias (INTEGER PRIMARY KEY column)
let has_rowid_alias = table.columns.iter().any(|col| col.is_rowid_alias);
// For now, select all columns since we don't have the static operators
// The circuit will handle filtering and projection
// If there's a rowid alias, we don't need to select rowid separately
let select_clause = if has_rowid_alias {
"*".to_string()
} else {
"*, rowid".to_string()
};
// Build WHERE clause from the where_predicate
let where_clause = self.build_where_clause(&self.where_predicate)?;
// Construct the final query
let query = if where_clause.is_empty() {
format!("SELECT {} FROM {}", select_clause, table.name)
} else {
format!(
"SELECT {} FROM {} WHERE {}",
select_clause, table.name, where_clause
)
};
Ok(query)
}
/// Build a WHERE clause from a FilterPredicate
fn build_where_clause(&self, predicate: &FilterPredicate) -> crate::Result<String> {
match predicate {
FilterPredicate::None => Ok(String::new()),
FilterPredicate::Equals { column, value } => {
Ok(format!("{} = {}", column, self.value_to_sql(value)))
}
FilterPredicate::NotEquals { column, value } => {
Ok(format!("{} != {}", column, self.value_to_sql(value)))
}
FilterPredicate::GreaterThan { column, value } => {
Ok(format!("{} > {}", column, self.value_to_sql(value)))
}
FilterPredicate::GreaterThanOrEqual { column, value } => {
Ok(format!("{} >= {}", column, self.value_to_sql(value)))
}
FilterPredicate::LessThan { column, value } => {
Ok(format!("{} < {}", column, self.value_to_sql(value)))
}
FilterPredicate::LessThanOrEqual { column, value } => {
Ok(format!("{} <= {}", column, self.value_to_sql(value)))
}
FilterPredicate::And(left, right) => {
let left_clause = self.build_where_clause(left)?;
let right_clause = self.build_where_clause(right)?;
Ok(format!("({left_clause} AND {right_clause})"))
}
FilterPredicate::Or(left, right) => {
let left_clause = self.build_where_clause(left)?;
let right_clause = self.build_where_clause(right)?;
Ok(format!("({left_clause} OR {right_clause})"))
}
}
}
/// Convert a Value to SQL literal representation
fn value_to_sql(&self, value: &Value) -> String {
match value {
Value::Null => "NULL".to_string(),
Value::Integer(i) => i.to_string(),
Value::Float(f) => f.to_string(),
Value::Text(t) => format!("'{}'", t.as_str().replace('\'', "''")),
Value::Blob(_) => "NULL".to_string(), // Blob literals not supported in WHERE clause yet
}
}
/// Populate the view by scanning the source table using a state machine
/// This can be called multiple times and will resume from where it left off
/// This method is only for materialized views and will persist data to the btree
pub fn populate_from_table(
&mut self,
conn: &std::sync::Arc<crate::Connection>,
pager: &std::rc::Rc<crate::Pager>,
_btree_cursor: &mut BTreeCursor,
) -> crate::Result<IOResult<()>> {
// If already populated, return immediately
if matches!(self.populate_state, PopulateState::Done) {
return Ok(IOResult::Done(()));
}
// Assert that this is a materialized view with a root page
assert!(
self.root_page != 0,
"populate_from_table should only be called for materialized views with root_page"
);
loop {
// To avoid borrow checker issues, we need to handle state transitions carefully
let needs_start = matches!(self.populate_state, PopulateState::Start);
if needs_start {
// Generate the SQL query for populating the view
// It is best to use a standard query than a cursor for two reasons:
// 1) Using a sql query will allow us to be much more efficient in cases where we only want
// some rows, in particular for indexed filters
// 2) There are two types of cursors: index and table. In some situations (like for example
// if the table has an integer primary key), the key will be exclusively in the index
// btree and not in the table btree. Using cursors would force us to be aware of this
// distinction (and others), and ultimately lead to reimplementing the whole query
// machinery (next step is which index is best to use, etc)
let query = self.sql_for_populate()?;
// Prepare the statement
let stmt = conn.prepare(&query)?;
self.populate_state = PopulateState::Processing {
stmt: Box::new(stmt),
rows_processed: 0,
pending_row: None,
};
// Continue to next state
continue;
}
// Handle Done state
if matches!(self.populate_state, PopulateState::Done) {
return Ok(IOResult::Done(()));
}
// Handle Processing state - extract state to avoid borrow issues
let (mut stmt, mut rows_processed, pending_row) =
match std::mem::replace(&mut self.populate_state, PopulateState::Done) {
PopulateState::Processing {
stmt,
rows_processed,
pending_row,
} => (stmt, rows_processed, pending_row),
_ => unreachable!("We already handled Start and Done states"),
};
// If we have a pending row from a previous I/O interruption, process it first
if let Some((rowid, values)) = pending_row {
// Create a single-row delta for the pending row
let mut single_row_delta = Delta::new();
single_row_delta.insert(rowid, values.clone());
// Create a DeltaSet with this delta for the first table (for now)
let mut delta_set = DeltaSet::new();
// TODO: When we support JOINs, determine which table this row came from
delta_set.insert(self.referenced_tables[0].name.clone(), single_row_delta);
// Process the pending row with the pager
match self.merge_delta(delta_set, pager.clone())? {
IOResult::Done(_) => {
// Row processed successfully, continue to next row
rows_processed += 1;
// Continue to fetch next row from statement
}
IOResult::IO(io) => {
// Still not done, save state with pending row
self.populate_state = PopulateState::Processing {
stmt,
rows_processed,
pending_row: Some((rowid, values)), // Keep the pending row
};
return Ok(IOResult::IO(io));
}
}
}
// Process rows one at a time - no batching
loop {
// This step() call resumes from where the statement left off
match stmt.step()? {
crate::vdbe::StepResult::Row => {
// Get the row
let row = stmt.row().unwrap();
// Extract values from the row
let all_values: Vec<crate::types::Value> =
row.get_values().cloned().collect();
// Determine how to extract the rowid
// If there's a rowid alias (INTEGER PRIMARY KEY), the rowid is one of the columns
// Otherwise, it's the last value we explicitly selected
let (rowid, values) = if let Some((idx, _)) =
self.referenced_tables[0].get_rowid_alias_column()
{
// The rowid is the value at the rowid alias column index
let rowid = match all_values.get(idx) {
Some(crate::types::Value::Integer(id)) => *id,
_ => {
// This shouldn't happen - rowid alias must be an integer
rows_processed += 1;
continue;
}
};
// All values are table columns (no separate rowid was selected)
(rowid, all_values)
} else {
// The last value is the explicitly selected rowid
let rowid = match all_values.last() {
Some(crate::types::Value::Integer(id)) => *id,
_ => {
// This shouldn't happen - rowid must be an integer
rows_processed += 1;
continue;
}
};
// Get all values except the rowid
let values = all_values[..all_values.len() - 1].to_vec();
(rowid, values)
};
// Create a single-row delta and process it immediately
let mut single_row_delta = Delta::new();
single_row_delta.insert(rowid, values.clone());
// Create a DeltaSet with this delta for the first table (for now)
let mut delta_set = DeltaSet::new();
// TODO: When we support JOINs, determine which table this row came from
delta_set.insert(self.referenced_tables[0].name.clone(), single_row_delta);
// Process this single row through merge_delta with the pager
match self.merge_delta(delta_set, pager.clone())? {
IOResult::Done(_) => {
// Row processed successfully, continue to next row
rows_processed += 1;
}
IOResult::IO(io) => {
// Save state and return I/O
// We'll resume at the SAME row when called again (don't increment rows_processed)
// The circuit still has unfinished work for this row
self.populate_state = PopulateState::Processing {
stmt,
rows_processed, // Don't increment - row not done yet!
pending_row: Some((rowid, values)), // Save the row for resumption
};
return Ok(IOResult::IO(io));
}
}
}
crate::vdbe::StepResult::Done => {
// All rows processed, we're done
self.populate_state = PopulateState::Done;
return Ok(IOResult::Done(()));
}
crate::vdbe::StepResult::Interrupt | crate::vdbe::StepResult::Busy => {
// Save state before returning error
self.populate_state = PopulateState::Processing {
stmt,
rows_processed,
pending_row: None, // No pending row when interrupted between rows
};
return Err(LimboError::Busy);
}
crate::vdbe::StepResult::IO => {
// Statement needs I/O - save state and return
self.populate_state = PopulateState::Processing {
stmt,
rows_processed,
pending_row: None, // No pending row when interrupted between rows
};
// TODO: Get the actual I/O completion from the statement
let completion = crate::io::Completion::new_dummy();
return Ok(IOResult::IO(crate::types::IOCompletions::Single(
completion,
)));
}
}
}
}
}
/// Extract JOIN information from SELECT statement
#[allow(clippy::type_complexity)]
pub fn extract_join_info(
select: &ast::Select,
) -> (Option<(String, String)>, Option<(String, String)>) {
use turso_parser::ast::*;
if let OneSelect::Select {
from: Some(ref from),
..
} = select.body.select
{
// Check if there are any joins
if !from.joins.is_empty() {
// Get the first (left) table name
let left_table = match from.select.as_ref() {
SelectTable::Table(name, _, _) => Some(name.name.as_str().to_string()),
_ => None,
};
// Get the first join (right) table and condition
if let Some(first_join) = from.joins.first() {
let right_table = match &first_join.table.as_ref() {
SelectTable::Table(name, _, _) => Some(name.name.as_str().to_string()),
_ => None,
};
// Extract join condition (simplified - assumes single equality)
let join_condition = if let Some(ref constraint) = &first_join.constraint {
match constraint {
JoinConstraint::On(expr) => Self::extract_join_columns_from_expr(expr),
_ => None,
}
} else {
None
};
if let (Some(left), Some(right)) = (left_table, right_table) {
return (Some((left, right)), join_condition);
}
}
}
}
(None, None)
}
/// Extract join column names from a join condition expression
fn extract_join_columns_from_expr(expr: &ast::Expr) -> Option<(String, String)> {
use turso_parser::ast::*;
// Look for expressions like: t1.col = t2.col
if let Expr::Binary(left, op, right) = expr {
if matches!(op, Operator::Equals) {
// Extract column names from both sides
let left_col = match &**left {
Expr::Qualified(name, _) => Some(name.as_str().to_string()),
Expr::Id(name) => Some(name.as_str().to_string()),
_ => None,
};
let right_col = match &**right {
Expr::Qualified(name, _) => Some(name.as_str().to_string()),
Expr::Id(name) => Some(name.as_str().to_string()),
_ => None,
};
if let (Some(l), Some(r)) = (left_col, right_col) {
return Some((l, r));
}
}
}
None
}
/// Merge a delta set of changes into the view's current state
pub fn merge_delta(
&mut self,
delta_set: DeltaSet,
pager: std::rc::Rc<crate::Pager>,
) -> crate::Result<IOResult<()>> {
// Early return if all deltas are empty
if delta_set.is_empty() {
return Ok(IOResult::Done(()));
}
// Use the circuit to process the deltas and write to btree
let input_data = delta_set.into_map();
// The circuit now handles all btree I/O internally with the provided pager
let _delta = return_if_io!(self.circuit.commit(input_data, pager));
Ok(IOResult::Done(()))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::schema::{BTreeTable, Column as SchemaColumn, Schema, Type};
use std::sync::Arc;
use turso_parser::ast;
use turso_parser::parser::Parser;
// Helper function to create a test schema with multiple tables
fn create_test_schema() -> Schema {
let mut schema = Schema::new(false);
// Create customers table
let customers_table = BTreeTable {
name: "customers".to_string(),
root_page: 2,
primary_key_columns: vec![("id".to_string(), ast::SortOrder::Asc)],
columns: vec![
SchemaColumn {
name: Some("id".to_string()),
ty: Type::Integer,
ty_str: "INTEGER".to_string(),
primary_key: true,
is_rowid_alias: true,
notnull: true,
default: None,
unique: false,
collation: None,
hidden: false,
},
SchemaColumn {
name: Some("name".to_string()),
ty: Type::Text,
ty_str: "TEXT".to_string(),
primary_key: false,
is_rowid_alias: false,
notnull: false,
default: None,
unique: false,
collation: None,
hidden: false,
},
],
has_rowid: true,
is_strict: false,
unique_sets: vec![],
};
// Create orders table
let orders_table = BTreeTable {
name: "orders".to_string(),
root_page: 3,
primary_key_columns: vec![("id".to_string(), ast::SortOrder::Asc)],
columns: vec![
SchemaColumn {
name: Some("id".to_string()),
ty: Type::Integer,
ty_str: "INTEGER".to_string(),
primary_key: true,
is_rowid_alias: true,
notnull: true,
default: None,
unique: false,
collation: None,
hidden: false,
},
SchemaColumn {
name: Some("customer_id".to_string()),
ty: Type::Integer,
ty_str: "INTEGER".to_string(),
primary_key: false,
is_rowid_alias: false,
notnull: false,
default: None,
unique: false,
collation: None,
hidden: false,
},
SchemaColumn {
name: Some("total".to_string()),
ty: Type::Integer,
ty_str: "INTEGER".to_string(),
primary_key: false,
is_rowid_alias: false,
notnull: false,
default: None,
unique: false,
collation: None,
hidden: false,
},
],
has_rowid: true,
is_strict: false,
unique_sets: vec![],
};
// Create products table
let products_table = BTreeTable {
name: "products".to_string(),
root_page: 4,
primary_key_columns: vec![("id".to_string(), ast::SortOrder::Asc)],
columns: vec![
SchemaColumn {
name: Some("id".to_string()),
ty: Type::Integer,
ty_str: "INTEGER".to_string(),
primary_key: true,
is_rowid_alias: true,
notnull: true,
default: None,
unique: false,
collation: None,
hidden: false,
},
SchemaColumn {
name: Some("name".to_string()),
ty: Type::Text,
ty_str: "TEXT".to_string(),
primary_key: false,
is_rowid_alias: false,
notnull: false,
default: None,
unique: false,
collation: None,
hidden: false,
},
],
has_rowid: true,
is_strict: false,
unique_sets: vec![],
};
schema.add_btree_table(Arc::new(customers_table));
schema.add_btree_table(Arc::new(orders_table));
schema.add_btree_table(Arc::new(products_table));
schema
}
// Helper to parse SQL and extract the SELECT statement
fn parse_select(sql: &str) -> ast::Select {
let mut parser = Parser::new(sql.as_bytes());
let cmd = parser.next().unwrap().unwrap();
match cmd {
ast::Cmd::Stmt(ast::Stmt::Select(select)) => select,
_ => panic!("Expected SELECT statement"),
}
}
#[test]
fn test_extract_single_table() {
let schema = create_test_schema();
let select = parse_select("SELECT * FROM customers");
let tables = IncrementalView::extract_all_tables(&select, &schema).unwrap();
assert_eq!(tables.len(), 1);
assert_eq!(tables[0].name, "customers");
}
#[test]
fn test_extract_tables_from_inner_join() {
let schema = create_test_schema();
let select = parse_select(
"SELECT * FROM customers INNER JOIN orders ON customers.id = orders.customer_id",
);
let tables = IncrementalView::extract_all_tables(&select, &schema).unwrap();
assert_eq!(tables.len(), 2);
assert_eq!(tables[0].name, "customers");
assert_eq!(tables[1].name, "orders");
}
#[test]
fn test_extract_tables_from_multiple_joins() {
let schema = create_test_schema();
let select = parse_select(
"SELECT * FROM customers
INNER JOIN orders ON customers.id = orders.customer_id
INNER JOIN products ON orders.id = products.id",
);
let tables = IncrementalView::extract_all_tables(&select, &schema).unwrap();
assert_eq!(tables.len(), 3);
assert_eq!(tables[0].name, "customers");
assert_eq!(tables[1].name, "orders");
assert_eq!(tables[2].name, "products");
}
#[test]
fn test_extract_tables_from_left_join() {
let schema = create_test_schema();
let select = parse_select(
"SELECT * FROM customers LEFT JOIN orders ON customers.id = orders.customer_id",
);
let tables = IncrementalView::extract_all_tables(&select, &schema).unwrap();
assert_eq!(tables.len(), 2);
assert_eq!(tables[0].name, "customers");
assert_eq!(tables[1].name, "orders");
}
#[test]
fn test_extract_tables_from_cross_join() {
let schema = create_test_schema();
let select = parse_select("SELECT * FROM customers CROSS JOIN orders");
let tables = IncrementalView::extract_all_tables(&select, &schema).unwrap();
assert_eq!(tables.len(), 2);
assert_eq!(tables[0].name, "customers");
assert_eq!(tables[1].name, "orders");
}
#[test]
fn test_extract_tables_with_aliases() {
let schema = create_test_schema();
let select =
parse_select("SELECT * FROM customers c INNER JOIN orders o ON c.id = o.customer_id");
let tables = IncrementalView::extract_all_tables(&select, &schema).unwrap();
// Should still extract the actual table names, not aliases
assert_eq!(tables.len(), 2);
assert_eq!(tables[0].name, "customers");
assert_eq!(tables[1].name, "orders");
}
#[test]
fn test_extract_tables_nonexistent_table_error() {
let schema = create_test_schema();
let select = parse_select("SELECT * FROM nonexistent");
let result = IncrementalView::extract_all_tables(&select, &schema);
assert!(result.is_err());
assert!(result
.unwrap_err()
.to_string()
.contains("Table 'nonexistent' not found"));
}
#[test]
fn test_extract_tables_nonexistent_join_table_error() {
let schema = create_test_schema();
let select = parse_select(
"SELECT * FROM customers INNER JOIN nonexistent ON customers.id = nonexistent.id",
);
let result = IncrementalView::extract_all_tables(&select, &schema);
assert!(result.is_err());
assert!(result
.unwrap_err()
.to_string()
.contains("Table 'nonexistent' not found"));
}
}