mirror of
https://github.com/aljazceru/turso.git
synced 2025-12-17 08:34:19 +01:00
The side of the binary expression no longer needs to be stored in `ConstraintInfo`, since the optimizer now guarantees that it is always on the right. As a result, only the index of the corresponding constraint needs to be preserved.
785 lines
24 KiB
Rust
785 lines
24 KiB
Rust
use std::sync::Arc;
|
|
|
|
use turso_ext::{
|
|
Connection, ConstraintInfo, ConstraintOp, ConstraintUsage, ExtensionApi, IndexInfo,
|
|
OrderByInfo, ResultCode, VTabCursor, VTabKind, VTabModule, VTabModuleDerive, VTable, Value,
|
|
};
|
|
|
|
pub fn register_extension(ext_api: &mut ExtensionApi) {
|
|
// FIXME: Add macro magic to register functions automatically.
|
|
unsafe {
|
|
GenerateSeriesVTabModule::register_GenerateSeriesVTabModule(ext_api);
|
|
}
|
|
}
|
|
|
|
macro_rules! extract_arg_integer {
|
|
($args:expr, $idx:expr, $unknown_type_default:expr) => {
|
|
$args
|
|
.get($idx)
|
|
.map(|v| v.to_integer().unwrap_or($unknown_type_default))
|
|
.unwrap_or(-1)
|
|
};
|
|
}
|
|
|
|
/// A virtual table that generates a sequence of integers
|
|
#[derive(Debug, VTabModuleDerive, Default)]
|
|
struct GenerateSeriesVTabModule;
|
|
|
|
impl VTabModule for GenerateSeriesVTabModule {
|
|
type Table = GenerateSeriesTable;
|
|
const NAME: &'static str = "generate_series";
|
|
const VTAB_KIND: VTabKind = VTabKind::TableValuedFunction;
|
|
|
|
fn create(_args: &[Value]) -> Result<(String, Self::Table), ResultCode> {
|
|
let schema = "CREATE TABLE generate_series (
|
|
value INTEGER,
|
|
start INTEGER HIDDEN,
|
|
stop INTEGER HIDDEN,
|
|
step INTEGER HIDDEN
|
|
)"
|
|
.into();
|
|
Ok((schema, GenerateSeriesTable {}))
|
|
}
|
|
}
|
|
|
|
struct GenerateSeriesTable {}
|
|
|
|
impl VTable for GenerateSeriesTable {
|
|
type Cursor = GenerateSeriesCursor;
|
|
type Error = ResultCode;
|
|
|
|
fn open(&self, _conn: Option<Arc<Connection>>) -> Result<Self::Cursor, Self::Error> {
|
|
Ok(GenerateSeriesCursor {
|
|
start: 0,
|
|
stop: 0,
|
|
step: 0,
|
|
current: 0,
|
|
})
|
|
}
|
|
|
|
fn best_index(
|
|
constraints: &[ConstraintInfo],
|
|
_order_by: &[OrderByInfo],
|
|
) -> Result<IndexInfo, ResultCode> {
|
|
const START_COLUMN_INDEX: u32 = 1;
|
|
const STEP_COLUMN_INDEX: u32 = 3;
|
|
|
|
// The bits of `idx_num` are used to indicate which arguments are available to the filter method:
|
|
// - Bit 0 set -> 'start' is available
|
|
// - Bit 1 set -> 'stop' is available
|
|
// - Bit 2 set -> 'step' is available
|
|
let mut idx_num = 0;
|
|
let mut positions = [None; 4]; // maps column index to constraint position
|
|
let mut start_exists = false;
|
|
let mut usable = true;
|
|
|
|
for (i, c) in constraints.iter().enumerate() {
|
|
if c.column_index == START_COLUMN_INDEX && c.op == ConstraintOp::Eq {
|
|
start_exists = true;
|
|
}
|
|
if c.column_index >= START_COLUMN_INDEX && c.column_index <= STEP_COLUMN_INDEX {
|
|
if !c.usable {
|
|
usable = false;
|
|
} else if c.op == ConstraintOp::Eq {
|
|
let bit = 1 << (c.column_index - 1);
|
|
idx_num |= bit;
|
|
positions[c.column_index as usize] = Some(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
if !start_exists {
|
|
return Err(ResultCode::InvalidArgs);
|
|
}
|
|
if !usable {
|
|
return Err(ResultCode::ConstraintViolation);
|
|
}
|
|
|
|
// Assign argv indexes contiguously
|
|
let mut argv_idx = 1;
|
|
let mut argv_indexes = [None; 4];
|
|
|
|
for (i, pos) in positions.iter().enumerate() {
|
|
if pos.is_some() {
|
|
argv_indexes[i] = Some(argv_idx);
|
|
argv_idx += 1;
|
|
}
|
|
}
|
|
|
|
let constraint_usages = constraints
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(idx, c)| {
|
|
let argv_index = positions.get(c.column_index as usize).and_then(|&pos| {
|
|
pos.filter(|&i| i == idx)
|
|
.and_then(|_| argv_indexes[c.column_index as usize])
|
|
});
|
|
|
|
ConstraintUsage {
|
|
argv_index,
|
|
omit: argv_index.is_some(),
|
|
}
|
|
})
|
|
.collect();
|
|
|
|
Ok(IndexInfo {
|
|
idx_num,
|
|
idx_str: Some(idx_num.to_string()),
|
|
constraint_usages,
|
|
..Default::default()
|
|
})
|
|
}
|
|
}
|
|
|
|
/// The cursor for iterating over the generated sequence
|
|
#[derive(Debug)]
|
|
struct GenerateSeriesCursor {
|
|
start: i64,
|
|
stop: i64,
|
|
step: i64,
|
|
current: i64,
|
|
}
|
|
|
|
impl GenerateSeriesCursor {
|
|
/// Returns true if this is an ascending series (positive step) but start > stop
|
|
fn is_invalid_ascending_series(&self) -> bool {
|
|
self.step > 0 && self.start > self.stop
|
|
}
|
|
|
|
/// Returns true if this is a descending series (negative step) but start < stop
|
|
fn is_invalid_descending_series(&self) -> bool {
|
|
self.step < 0 && self.start < self.stop
|
|
}
|
|
|
|
/// Returns true if this is an invalid range that should produce an empty series
|
|
fn is_invalid_range(&self) -> bool {
|
|
self.is_invalid_ascending_series() || self.is_invalid_descending_series()
|
|
}
|
|
|
|
/// Returns true if we would exceed the stop value in the current direction
|
|
fn would_exceed(&self) -> bool {
|
|
(self.step > 0 && self.current.saturating_add(self.step) > self.stop)
|
|
|| (self.step < 0 && self.current.saturating_add(self.step) < self.stop)
|
|
}
|
|
}
|
|
|
|
impl VTabCursor for GenerateSeriesCursor {
|
|
type Error = ResultCode;
|
|
|
|
fn filter(&mut self, args: &[Value], idx_info: Option<(&str, i32)>) -> ResultCode {
|
|
let mut start = -1;
|
|
let mut stop = -1;
|
|
let mut step = 1;
|
|
|
|
if let Some((_, idx_num)) = idx_info {
|
|
let mut arg_idx = 0;
|
|
// For the semantics of `idx_num`, see the comment in the `best_index` method.
|
|
if idx_num & 1 != 0 {
|
|
start = extract_arg_integer!(args, arg_idx, -1);
|
|
arg_idx += 1;
|
|
}
|
|
if idx_num & 2 != 0 {
|
|
stop = extract_arg_integer!(args, arg_idx, i64::MAX);
|
|
arg_idx += 1;
|
|
}
|
|
if idx_num & 4 != 0 {
|
|
step = args
|
|
.get(arg_idx)
|
|
.map(|v| v.to_integer().unwrap_or(1))
|
|
.unwrap_or(1);
|
|
}
|
|
}
|
|
|
|
if start == -1 {
|
|
return ResultCode::InvalidArgs;
|
|
}
|
|
if stop == -1 {
|
|
return ResultCode::EOF; // Sqlite returns an empty series for wacky args
|
|
}
|
|
|
|
// Convert zero step to 1, matching SQLite behavior
|
|
if step == 0 {
|
|
step = 1;
|
|
}
|
|
|
|
self.start = start;
|
|
self.step = step;
|
|
self.stop = stop;
|
|
|
|
// Set initial value based on range validity
|
|
// For invalid input SQLite returns an empty series
|
|
self.current = if self.is_invalid_range() {
|
|
return ResultCode::EOF;
|
|
} else {
|
|
start
|
|
};
|
|
|
|
ResultCode::OK
|
|
}
|
|
|
|
fn next(&mut self) -> ResultCode {
|
|
if self.eof() {
|
|
return ResultCode::EOF;
|
|
}
|
|
|
|
self.current = match self.current.checked_add(self.step) {
|
|
Some(val) => val,
|
|
None => {
|
|
return ResultCode::EOF;
|
|
}
|
|
};
|
|
|
|
ResultCode::OK
|
|
}
|
|
|
|
fn eof(&self) -> bool {
|
|
// Check for invalid ranges (empty series) first
|
|
if self.is_invalid_range() {
|
|
return true;
|
|
}
|
|
|
|
// Check if we would exceed the stop value in the current direction
|
|
if self.would_exceed() {
|
|
return true;
|
|
}
|
|
|
|
if self.current == i64::MAX && self.step > 0 {
|
|
return true;
|
|
}
|
|
|
|
if self.current == i64::MIN && self.step < 0 {
|
|
return true;
|
|
}
|
|
|
|
false
|
|
}
|
|
|
|
fn column(&self, idx: u32) -> Result<Value, Self::Error> {
|
|
Ok(match idx {
|
|
0 => Value::from_integer(self.current),
|
|
1 => Value::from_integer(self.start),
|
|
2 => Value::from_integer(self.stop),
|
|
3 => Value::from_integer(self.step),
|
|
_ => Value::null(),
|
|
})
|
|
}
|
|
|
|
fn rowid(&self) -> i64 {
|
|
let sub = self.current.saturating_sub(self.start);
|
|
|
|
// Handle overflow in rowid calculation by capping at MAX/MIN
|
|
match sub.checked_div(self.step) {
|
|
Some(val) => val.saturating_add(1),
|
|
None => {
|
|
if self.step > 0 {
|
|
i64::MAX
|
|
} else {
|
|
i64::MIN
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use quickcheck::{Arbitrary, Gen};
|
|
use quickcheck_macros::quickcheck;
|
|
|
|
#[derive(Debug, Clone)]
|
|
struct Series {
|
|
start: i64,
|
|
stop: i64,
|
|
step: i64,
|
|
}
|
|
|
|
impl Arbitrary for Series {
|
|
fn arbitrary(g: &mut Gen) -> Self {
|
|
let mut start = i64::arbitrary(g);
|
|
let mut stop = i64::arbitrary(g);
|
|
let mut iters = 0;
|
|
while stop.checked_sub(start).is_none() {
|
|
start = i64::arbitrary(g);
|
|
stop = i64::arbitrary(g);
|
|
iters += 1;
|
|
if iters > 1000 {
|
|
panic!("Failed to generate valid range after 1000 attempts");
|
|
}
|
|
}
|
|
// step should be a reasonable value proportional to the range
|
|
let mut divisor = i8::arbitrary(g);
|
|
if divisor == 0 {
|
|
divisor = 1;
|
|
}
|
|
let step = (stop - start).saturating_abs() / divisor as i64;
|
|
Series { start, stop, step }
|
|
}
|
|
}
|
|
// Helper function to collect all values from a cursor, returns Result with error code
|
|
fn collect_series(series: Series) -> Result<Vec<i64>, ResultCode> {
|
|
let tbl = GenerateSeriesTable {};
|
|
let mut cursor = tbl.open(None)?;
|
|
|
|
// Create args array for filter
|
|
let args = vec![
|
|
Value::from_integer(series.start),
|
|
Value::from_integer(series.stop),
|
|
Value::from_integer(series.step),
|
|
];
|
|
|
|
// Initialize cursor through filter
|
|
match cursor.filter(&args, Some(("idx", 1 | 2 | 4))) {
|
|
ResultCode::OK => (),
|
|
ResultCode::EOF => return Ok(vec![]),
|
|
err => return Err(err),
|
|
}
|
|
|
|
let mut values = Vec::new();
|
|
loop {
|
|
values.push(cursor.column(0)?.to_integer().unwrap());
|
|
if values.len() > 1000 {
|
|
panic!(
|
|
"Generated more than 1000 values, expected this many: {:?}",
|
|
(series.stop - series.start) / series.step + 1
|
|
);
|
|
}
|
|
match cursor.next() {
|
|
ResultCode::OK => (),
|
|
ResultCode::EOF => break,
|
|
err => return Err(err),
|
|
}
|
|
}
|
|
Ok(values)
|
|
}
|
|
|
|
#[quickcheck]
|
|
/// Test that the series length is correct
|
|
/// Example:
|
|
/// start = 1, stop = 10, step = 1
|
|
/// expected length = 10
|
|
fn prop_series_length(series: Series) {
|
|
let start = series.start;
|
|
let stop = series.stop;
|
|
let step = series.step;
|
|
let values = collect_series(series.clone()).unwrap_or_else(|e| {
|
|
panic!("Failed to generate series for start={start}, stop={stop}, step={step}: {e:?}")
|
|
});
|
|
|
|
if series_is_invalid_or_empty(&series) {
|
|
assert!(
|
|
values.is_empty(),
|
|
"Series should be empty for invalid range: start={start}, stop={stop}, step={step}, got {values:?}"
|
|
);
|
|
} else {
|
|
let expected_len = series_expected_length(&series);
|
|
assert_eq!(
|
|
values.len(),
|
|
expected_len,
|
|
"Series length mismatch for start={}, stop={}, step={}: expected {}, got {}, values: {:?}",
|
|
start,
|
|
stop,
|
|
step,
|
|
expected_len,
|
|
values.len(),
|
|
values
|
|
);
|
|
}
|
|
}
|
|
|
|
#[quickcheck]
|
|
/// Test that the series is monotonically increasing
|
|
/// Example:
|
|
/// start = 1, stop = 10, step = 1
|
|
/// expected series = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
|
fn prop_series_monotonic_increasing_or_decreasing(series: Series) {
|
|
let start = series.start;
|
|
let stop = series.stop;
|
|
let step = series.step;
|
|
|
|
let values = collect_series(series.clone()).unwrap_or_else(|e| {
|
|
panic!("Failed to generate series for start={start}, stop={stop}, step={step}: {e:?}")
|
|
});
|
|
|
|
if series_is_invalid_or_empty(&series) {
|
|
assert!(
|
|
values.is_empty(),
|
|
"Series should be empty for invalid range: start={start}, stop={stop}, step={step}"
|
|
);
|
|
} else {
|
|
assert!(
|
|
values
|
|
.windows(2)
|
|
.all(|w| if step > 0 { w[0] < w[1] } else { w[0] > w[1] }),
|
|
"Series not monotonically {}: {:?} (start={}, stop={}, step={})",
|
|
if step > 0 { "increasing" } else { "decreasing" },
|
|
values,
|
|
start,
|
|
stop,
|
|
step
|
|
);
|
|
}
|
|
}
|
|
|
|
#[quickcheck]
|
|
/// Test that the series step size is consistent
|
|
/// Example:
|
|
/// start = 1, stop = 10, step = 1
|
|
/// expected step size = 1
|
|
fn prop_series_step_size(series: Series) {
|
|
let start = series.start;
|
|
let stop = series.stop;
|
|
let step = series.step;
|
|
|
|
let values = collect_series(series.clone()).unwrap_or_else(|e| {
|
|
panic!("Failed to generate series for start={start}, stop={stop}, step={step}: {e:?}")
|
|
});
|
|
|
|
if series_is_invalid_or_empty(&series) {
|
|
assert!(
|
|
values.is_empty(),
|
|
"Series should be empty for invalid range: start={start}, stop={stop}, step={step}"
|
|
);
|
|
} else if !values.is_empty() {
|
|
assert!(
|
|
values
|
|
.windows(2)
|
|
.all(|w| (w[1].saturating_sub(w[0])).abs() == step.abs()),
|
|
"Step size not consistent: {:?} (expected step size: {})",
|
|
values
|
|
.windows(2)
|
|
.map(|w| w[1].saturating_sub(w[0]))
|
|
.collect::<Vec<_>>(),
|
|
step.abs()
|
|
);
|
|
}
|
|
}
|
|
|
|
#[quickcheck]
|
|
/// Test that the series bounds are correct
|
|
/// Example:
|
|
/// start = 1, stop = 10, step = 1
|
|
/// expected bounds = [1, 10]
|
|
fn prop_series_bounds(series: Series) {
|
|
let start = series.start;
|
|
let stop = series.stop;
|
|
let step = series.step;
|
|
|
|
let values = collect_series(series.clone()).unwrap_or_else(|e| {
|
|
panic!("Failed to generate series for start={start}, stop={stop}, step={step}: {e:?}")
|
|
});
|
|
|
|
if series_is_invalid_or_empty(&series) {
|
|
assert!(
|
|
values.is_empty(),
|
|
"Series should be empty for invalid range: start={start}, stop={stop}, step={step}"
|
|
);
|
|
} else if !values.is_empty() {
|
|
assert_eq!(
|
|
values.first(),
|
|
Some(&start),
|
|
"Series doesn't start with start value: {values:?} (expected start: {start})"
|
|
);
|
|
assert!(
|
|
values.last().is_none_or(|&last| if step > 0 {
|
|
last <= stop
|
|
} else {
|
|
last >= stop
|
|
}),
|
|
"Series exceeds stop value: {values:?} (stop: {stop})"
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
|
|
fn test_series_empty_positive_step() {
|
|
let values = collect_series(Series {
|
|
start: 10,
|
|
stop: 5,
|
|
step: 1,
|
|
})
|
|
.expect("Failed to generate series");
|
|
assert!(
|
|
values.is_empty(),
|
|
"Series should be empty when start > stop with positive step"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_series_empty_negative_step() {
|
|
let values = collect_series(Series {
|
|
start: 5,
|
|
stop: 10,
|
|
step: -1,
|
|
})
|
|
.expect("Failed to generate series");
|
|
assert!(
|
|
values.is_empty(),
|
|
"Series should be empty when start < stop with negative step"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_series_single_element() {
|
|
let values = collect_series(Series {
|
|
start: 5,
|
|
stop: 5,
|
|
step: 1,
|
|
})
|
|
.expect("Failed to generate single element series");
|
|
assert_eq!(
|
|
values,
|
|
vec![5],
|
|
"Single element series should contain only the start value"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_zero_step_is_interpreted_as_1() {
|
|
let values = collect_series(Series {
|
|
start: 1,
|
|
stop: 10,
|
|
step: 0,
|
|
})
|
|
.expect("Failed to generate series");
|
|
assert_eq!(
|
|
values,
|
|
vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
|
|
"Zero step should be interpreted as 1"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_invalid_inputs() {
|
|
// Test that invalid ranges return empty series instead of errors
|
|
let values = collect_series(Series {
|
|
start: 10,
|
|
stop: 1,
|
|
step: 1,
|
|
})
|
|
.expect("Failed to generate series");
|
|
assert!(
|
|
values.is_empty(),
|
|
"Invalid positive range should return empty series, got {values:?}"
|
|
);
|
|
|
|
let values = collect_series(Series {
|
|
start: 1,
|
|
stop: 10,
|
|
step: -1,
|
|
})
|
|
.expect("Failed to generate series");
|
|
assert!(
|
|
values.is_empty(),
|
|
"Invalid negative range should return empty series"
|
|
);
|
|
|
|
// Test that extreme ranges return empty series
|
|
let values = collect_series(Series {
|
|
start: i64::MAX,
|
|
stop: i64::MIN,
|
|
step: 1,
|
|
})
|
|
.expect("Failed to generate series");
|
|
assert!(
|
|
values.is_empty(),
|
|
"Extreme range (MAX to MIN) should return empty series"
|
|
);
|
|
|
|
let values = collect_series(Series {
|
|
start: i64::MIN,
|
|
stop: i64::MAX,
|
|
step: -1,
|
|
})
|
|
.expect("Failed to generate series");
|
|
assert!(
|
|
values.is_empty(),
|
|
"Extreme range (MIN to MAX) should return empty series"
|
|
);
|
|
}
|
|
|
|
#[quickcheck]
|
|
/// Test that rowid is always monotonically increasing regardless of step direction
|
|
fn prop_series_rowid_monotonic(series: Series) {
|
|
let start = series.start;
|
|
let stop = series.stop;
|
|
let step = series.step;
|
|
let tbl = GenerateSeriesTable {};
|
|
let mut cursor = tbl.open(None).unwrap();
|
|
|
|
let args = vec![
|
|
Value::from_integer(start),
|
|
Value::from_integer(stop),
|
|
Value::from_integer(step),
|
|
];
|
|
|
|
// Initialize cursor through filter
|
|
cursor.filter(&args, Some(("idx", 1 | 2 | 4)));
|
|
|
|
let mut rowids = vec![];
|
|
while !cursor.eof() {
|
|
let cur_rowid = cursor.rowid();
|
|
match cursor.next() {
|
|
ResultCode::OK => rowids.push(cur_rowid),
|
|
ResultCode::EOF => break,
|
|
err => {
|
|
panic!("Unexpected error {err:?} for start={start}, stop={stop}, step={step}")
|
|
}
|
|
}
|
|
}
|
|
|
|
assert!(
|
|
rowids.windows(2).all(|w| w[1] == w[0] + 1),
|
|
"Rowids not monotonically increasing: {rowids:?} (start={start}, stop={stop}, step={step})"
|
|
);
|
|
}
|
|
|
|
#[quickcheck]
|
|
/// Test that empty series are handled consistently
|
|
fn prop_series_empty(series: Series) {
|
|
let start = series.start;
|
|
let stop = series.stop;
|
|
let step = series.step;
|
|
|
|
let values = collect_series(series.clone()).unwrap_or_else(|e| {
|
|
panic!("Failed to generate series for start={start}, stop={stop}, step={step}: {e:?}")
|
|
});
|
|
|
|
if series_is_invalid_or_empty(&series) {
|
|
assert!(
|
|
values.is_empty(),
|
|
"Series should be empty for invalid range: start={start}, stop={stop}, step={step}"
|
|
);
|
|
} else if start == stop {
|
|
assert_eq!(
|
|
values,
|
|
vec![start],
|
|
"Series with start==stop should contain exactly one element"
|
|
);
|
|
}
|
|
}
|
|
|
|
fn series_is_invalid_or_empty(series: &Series) -> bool {
|
|
let start = series.start;
|
|
let stop = series.stop;
|
|
let step = series.step;
|
|
(start > stop && step > 0) || (start < stop && step < 0) || (step == 0 && start != stop)
|
|
}
|
|
|
|
fn series_expected_length(series: &Series) -> usize {
|
|
let start = series.start;
|
|
let stop = series.stop;
|
|
let step = series.step;
|
|
if step == 0 {
|
|
if start == stop {
|
|
1
|
|
} else {
|
|
0
|
|
}
|
|
} else {
|
|
((stop.saturating_sub(start)).saturating_div(step)).saturating_add(1) as usize
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_best_index_argv_order_all_constraints() {
|
|
// Test when start, stop, and step constraints are present
|
|
let constraints = vec![
|
|
usable_constraint(1), // start
|
|
usable_constraint(2), // stop
|
|
usable_constraint(3), // step
|
|
];
|
|
|
|
let index_info = GenerateSeriesTable::best_index(&constraints, &[]).unwrap();
|
|
|
|
// Verify start gets argv_index 1, stop gets 2, step gets 3
|
|
assert_eq!(index_info.constraint_usages[0].argv_index, Some(1)); // start
|
|
assert_eq!(index_info.constraint_usages[1].argv_index, Some(2)); // stop
|
|
assert_eq!(index_info.constraint_usages[2].argv_index, Some(3)); // step
|
|
assert_eq!(index_info.idx_num, 7); // All bits set (1 | 2 | 4)
|
|
}
|
|
|
|
#[test]
|
|
fn test_best_index_argv_order_start_stop_only() {
|
|
let constraints = vec![
|
|
usable_constraint(1), // start
|
|
usable_constraint(2), // stop
|
|
];
|
|
|
|
let index_info = GenerateSeriesTable::best_index(&constraints, &[]).unwrap();
|
|
|
|
// Verify start gets argv_index 1, stop gets 2
|
|
assert_eq!(index_info.constraint_usages[0].argv_index, Some(1)); // start
|
|
assert_eq!(index_info.constraint_usages[1].argv_index, Some(2)); // stop
|
|
assert_eq!(index_info.idx_num, 3); // Bits 0 and 1 set (1 | 2)
|
|
}
|
|
|
|
#[test]
|
|
fn test_best_index_argv_order_only_start() {
|
|
let constraints = vec![
|
|
usable_constraint(1), // start
|
|
];
|
|
|
|
let index_info = GenerateSeriesTable::best_index(&constraints, &[]).unwrap();
|
|
|
|
// Verify start gets argv_index 1
|
|
assert_eq!(index_info.constraint_usages[0].argv_index, Some(1)); // start
|
|
assert_eq!(index_info.idx_num, 1); // Only bit 0 set
|
|
}
|
|
|
|
#[test]
|
|
fn test_best_index_argv_order_reverse_constraint_order() {
|
|
// Test when constraints are provided in reverse order (step, stop, start)
|
|
let constraints = vec![
|
|
usable_constraint(3), // step
|
|
usable_constraint(2), // stop
|
|
usable_constraint(1), // start
|
|
];
|
|
|
|
let index_info = GenerateSeriesTable::best_index(&constraints, &[]).unwrap();
|
|
|
|
// Verify start still gets argv_index 1, stop gets 2, step gets 3 regardless of constraint order
|
|
assert_eq!(index_info.constraint_usages[0].argv_index, Some(3)); // step
|
|
assert_eq!(index_info.constraint_usages[1].argv_index, Some(2)); // stop
|
|
assert_eq!(index_info.constraint_usages[2].argv_index, Some(1)); // start
|
|
assert_eq!(index_info.idx_num, 7); // All bits set (1 | 2 | 4)
|
|
}
|
|
|
|
#[test]
|
|
fn test_best_index_argv_order_missing_start() {
|
|
// Test when start constraint is missing but stop and step are present
|
|
let constraints = vec![
|
|
usable_constraint(2), // stop
|
|
usable_constraint(3), // step
|
|
];
|
|
|
|
let result = GenerateSeriesTable::best_index(&constraints, &[]);
|
|
|
|
assert!(matches!(result, Err(ResultCode::InvalidArgs)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_best_index_no_usable_constraints() {
|
|
let constraints = vec![ConstraintInfo {
|
|
column_index: 1,
|
|
op: ConstraintOp::Eq,
|
|
usable: false,
|
|
index: 0,
|
|
}];
|
|
|
|
let result = GenerateSeriesTable::best_index(&constraints, &[]);
|
|
|
|
assert!(matches!(result, Err(ResultCode::ConstraintViolation)));
|
|
}
|
|
|
|
fn usable_constraint(column_index: u32) -> ConstraintInfo {
|
|
ConstraintInfo {
|
|
column_index,
|
|
op: ConstraintOp::Eq,
|
|
usable: true,
|
|
index: 0,
|
|
}
|
|
}
|
|
}
|