Files
turso/core/io/io_uring.rs
2025-10-14 12:33:36 -03:00

937 lines
32 KiB
Rust

#![allow(clippy::arc_with_non_send_sync)]
use super::{common, Completion, CompletionInner, File, OpenFlags, IO};
use crate::io::clock::{Clock, DefaultClock, Instant};
use crate::storage::wal::CKPT_BATCH_PAGES;
use crate::{turso_assert, CompletionError, LimboError, Result};
use parking_lot::Mutex;
use rustix::fs::{self, FlockOperation, OFlags};
use std::ptr::NonNull;
use std::sync::atomic::{AtomicBool, Ordering};
use std::{
collections::{HashMap, VecDeque},
io::ErrorKind,
ops::Deref,
os::{fd::AsFd, unix::io::AsRawFd},
sync::Arc,
};
use tracing::{debug, trace};
/// Size of the io_uring submission and completion queues
const ENTRIES: u32 = 512;
/// Idle timeout for the sqpoll kernel thread before it needs
/// to be woken back up by a call IORING_ENTER_SQ_WAKEUP flag.
/// (handled by the io_uring crate in `submit_and_wait`)
const SQPOLL_IDLE: u32 = 1000;
/// Number of file descriptors we preallocate for io_uring.
/// NOTE: we may need to increase this when `attach` is fully implemented.
const FILES: u32 = 8;
/// Number of Vec<Box<[iovec]>> we preallocate on initialization
const IOVEC_POOL_SIZE: usize = 64;
/// Maximum number of iovec entries per writev operation.
/// IOV_MAX is typically 1024
const MAX_IOVEC_ENTRIES: usize = CKPT_BATCH_PAGES;
/// Maximum number of I/O operations to wait for in a single run,
/// waiting for > 1 can reduce the amount of `io_uring_enter` syscalls we
/// make, but can increase single operation latency.
const MAX_WAIT: usize = 4;
/// One memory arena for DB pages and another for WAL frames
const ARENA_COUNT: usize = 2;
/// Arbitrary non-zero user_data for barrier operation when handling a partial writev
/// writing a commit frame.
const BARRIER_USER_DATA: u64 = 1;
/// user_data tag for cancellation operations
const CANCEL_TAG: u64 = 1;
pub struct UringIO {
inner: Arc<Mutex<InnerUringIO>>,
}
unsafe impl Send for UringIO {}
unsafe impl Sync for UringIO {}
struct WrappedIOUring {
ring: io_uring::IoUring,
pending_ops: usize,
writev_states: HashMap<u64, WritevState>,
overflow: VecDeque<io_uring::squeue::Entry>,
iov_pool: IovecPool,
pending_link: AtomicBool,
}
struct InnerUringIO {
ring: WrappedIOUring,
free_files: VecDeque<u32>,
free_arenas: [Option<(NonNull<u8>, usize)>; ARENA_COUNT],
}
/// preallocated vec of iovec arrays to avoid allocations during writev operations
struct IovecPool {
pool: Vec<Box<[libc::iovec; MAX_IOVEC_ENTRIES]>>,
}
impl IovecPool {
fn new() -> Self {
let pool = (0..IOVEC_POOL_SIZE)
.map(|_| {
Box::new(
[libc::iovec {
iov_base: std::ptr::null_mut(),
iov_len: 0,
}; MAX_IOVEC_ENTRIES],
)
})
.collect();
Self { pool }
}
#[inline(always)]
fn acquire(&mut self) -> Option<Box<[libc::iovec; MAX_IOVEC_ENTRIES]>> {
self.pool.pop()
}
#[inline(always)]
fn release(&mut self, iovec: Box<[libc::iovec; MAX_IOVEC_ENTRIES]>) {
if self.pool.len() < IOVEC_POOL_SIZE {
self.pool.push(iovec);
}
}
}
impl UringIO {
pub fn new() -> Result<Self> {
let ring = match io_uring::IoUring::builder()
.setup_single_issuer()
.setup_coop_taskrun()
.setup_sqpoll(SQPOLL_IDLE)
.build(ENTRIES)
{
Ok(ring) => ring,
Err(_) => io_uring::IoUring::new(ENTRIES)?,
};
// we only ever have 2 files open at a time for the moment
ring.submitter().register_files_sparse(FILES)?;
// RL_MEMLOCK cap is typically 8MB, the current design is to have one large arena
// registered at startup and therefore we can simply use the zero index, falling back
// to similar logic as the existing buffer pool for cases where it is over capacity.
ring.submitter()
.register_buffers_sparse(ARENA_COUNT as u32)?;
let inner = InnerUringIO {
ring: WrappedIOUring {
ring,
overflow: VecDeque::new(),
pending_ops: 0,
writev_states: HashMap::new(),
iov_pool: IovecPool::new(),
pending_link: AtomicBool::new(false),
},
free_files: (0..FILES).collect(),
free_arenas: [const { None }; ARENA_COUNT],
};
debug!("Using IO backend 'io-uring'");
Ok(Self {
inner: Arc::new(Mutex::new(inner)),
})
}
}
/// io_uring crate decides not to export their `UseFixed` trait, so we
/// are forced to use a macro here to handle either fixed or raw file descriptors.
macro_rules! with_fd {
($file:expr, |$fd:ident| $body:expr) => {
match $file.id() {
Some(id) => {
let $fd = io_uring::types::Fixed(id);
$body
}
None => {
let $fd = io_uring::types::Fd($file.as_raw_fd());
$body
}
}
};
}
/// wrapper type to represent a possibly registered file descriptor,
/// only used in WritevState, and piggy-backs on the available methods from
/// `UringFile`, so we don't have to store the file on `WritevState`.
#[derive(Clone)]
enum Fd {
Fixed(u32),
RawFd(i32),
}
impl Fd {
/// to match the behavior of the File, we need to implement the same methods
fn id(&self) -> Option<u32> {
match self {
Fd::Fixed(id) => Some(*id),
Fd::RawFd(_) => None,
}
}
/// ONLY to be called by the macro, in the case where id() is None
fn as_raw_fd(&self) -> i32 {
match self {
Fd::RawFd(fd) => *fd,
_ => panic!("Cannot call as_raw_fd on a Fixed Fd"),
}
}
}
/// State to track an ongoing writev operation in
/// the case of a partial write.
struct WritevState {
/// File descriptor/id of the file we are writing to
file_id: Fd,
/// absolute file offset for next submit
file_pos: u64,
/// current buffer index in `bufs`
current_buffer_idx: usize,
/// intra-buffer offset
current_buffer_offset: usize,
/// total bytes written so far
total_written: usize,
/// cache the sum of all buffer lengths for the total expected write
total_len: usize,
/// buffers to write
bufs: Vec<Arc<crate::Buffer>>,
/// we keep the last iovec allocation alive until final CQE
last_iov_allocation: Option<Box<[libc::iovec; MAX_IOVEC_ENTRIES]>>,
had_partial: bool,
linked_op: bool,
}
impl WritevState {
fn new(file: &UringFile, pos: u64, linked: bool, bufs: Vec<Arc<crate::Buffer>>) -> Self {
let file_id = file
.id()
.map(Fd::Fixed)
.unwrap_or_else(|| Fd::RawFd(file.as_raw_fd()));
let total_len = bufs.iter().map(|b| b.len()).sum();
Self {
file_id,
file_pos: pos,
current_buffer_idx: 0,
current_buffer_offset: 0,
total_written: 0,
bufs,
last_iov_allocation: None,
total_len,
had_partial: false,
linked_op: linked,
}
}
#[inline(always)]
fn remaining(&self) -> usize {
self.total_len - self.total_written
}
/// Advance (idx, off, pos) after written bytes
#[inline(always)]
fn advance(&mut self, written: u64) {
let mut remaining = written;
while remaining > 0 {
let current_buf_len = self.bufs[self.current_buffer_idx].len();
let left = current_buf_len - self.current_buffer_offset;
if remaining < left as u64 {
self.current_buffer_offset += remaining as usize;
self.file_pos += remaining;
remaining = 0;
} else {
remaining -= left as u64;
self.file_pos += left as u64;
self.current_buffer_idx += 1;
self.current_buffer_offset = 0;
}
}
self.total_written += written as usize;
}
#[inline(always)]
/// Free the allocation that keeps the iovec array alive while writev is ongoing
fn free_last_iov(&mut self, pool: &mut IovecPool) {
if let Some(allocation) = self.last_iov_allocation.take() {
pool.release(allocation);
}
}
}
impl InnerUringIO {
fn register_file(&mut self, fd: i32) -> Result<u32> {
if let Some(slot) = self.free_files.pop_front() {
self.ring
.ring
.submitter()
.register_files_update(slot, &[fd.as_raw_fd()])?;
return Ok(slot);
}
Err(crate::error::CompletionError::UringIOError(
"unable to register file, no free slots available",
)
.into())
}
fn unregister_file(&mut self, id: u32) -> Result<()> {
self.ring
.ring
.submitter()
.register_files_update(id, &[-1])?;
self.free_files.push_back(id);
Ok(())
}
#[cfg(debug_assertions)]
fn debug_check_fixed(&self, idx: u32, ptr: *const u8, len: usize) {
let (base, blen) = self.free_arenas[idx as usize].expect("slot not registered");
let start = base.as_ptr() as usize;
let end = start + blen;
let p = ptr as usize;
turso_assert!(
p >= start && p + len <= end,
"Fixed operation, pointer out of registered range"
);
}
}
impl WrappedIOUring {
fn submit_entry(&mut self, entry: &io_uring::squeue::Entry) {
trace!("submit_entry({:?})", entry);
// we cannot push current entries before any overflow
if self.flush_overflow().is_ok() {
let pushed = unsafe {
let mut sub = self.ring.submission();
sub.push(entry).is_ok()
};
if pushed {
self.pending_ops += 1;
return;
}
}
// if we were unable to push, add to overflow
self.overflow.push_back(entry.clone());
self.ring.submit().expect("submiting when full");
}
fn submit_cancel_urgent(&mut self, entry: &io_uring::squeue::Entry) -> Result<()> {
let pushed = unsafe { self.ring.submission().push(entry).is_ok() };
if pushed {
self.pending_ops += 1;
return Ok(());
}
// place cancel op at the front, if overflowed
self.overflow.push_front(entry.clone());
self.ring.submit()?;
Ok(())
}
/// Flush overflow entries to submission queue when possible
fn flush_overflow(&mut self) -> Result<()> {
while !self.overflow.is_empty() {
let sub_len = self.ring.submission().len();
// safe subtraction as submission len will always be < ENTRIES
let available_space = ENTRIES as usize - sub_len;
if available_space == 0 {
// No space available, always return error if we dont flush all overflow entries
// to prevent out of order I/O operations
return Err(crate::error::CompletionError::UringIOError("squeue full").into());
}
// Push as many as we can
let to_push = std::cmp::min(available_space, self.overflow.len());
unsafe {
let mut sq = self.ring.submission();
for _ in 0..to_push {
let entry = self.overflow.pop_front().unwrap();
if sq.push(&entry).is_err() {
// Unexpected failure, put it back
self.overflow.push_front(entry);
// No space available, always return error if we dont flush all overflow entries
// to prevent out of order I/O operations
return Err(
crate::error::CompletionError::UringIOError("squeue full").into()
);
}
self.pending_ops += 1;
}
}
}
Ok(())
}
fn submit_and_wait(&mut self) -> Result<()> {
if self.empty() {
return Ok(());
}
let wants = std::cmp::min(self.pending_ops, MAX_WAIT);
tracing::trace!("submit_and_wait for {wants} pending operations to complete");
self.ring.submit_and_wait(wants)?;
Ok(())
}
fn empty(&self) -> bool {
self.pending_ops == 0
}
/// Submit or resubmit a writev operation
fn submit_writev(&mut self, key: u64, mut st: WritevState, continue_chain: bool) {
st.free_last_iov(&mut self.iov_pool);
let mut iov_allocation = self.iov_pool.acquire().unwrap_or_else(|| {
// Fallback: allocate a new one if pool is exhausted
Box::new(
[libc::iovec {
iov_base: std::ptr::null_mut(),
iov_len: 0,
}; MAX_IOVEC_ENTRIES],
)
});
let mut iov_count = 0;
let mut last_end: Option<(*const u8, usize)> = None;
for buffer in st.bufs.iter().skip(st.current_buffer_idx) {
let ptr = buffer.as_ptr();
let len = buffer.len();
if let Some((last_ptr, last_len)) = last_end {
// Check if this buffer is adjacent to the last
if unsafe { last_ptr.add(last_len) } == ptr {
// Extend the last iovec instead of adding new
iov_allocation[iov_count - 1].iov_len += len;
last_end = Some((last_ptr, last_len + len));
continue;
}
}
// Add new iovec
iov_allocation[iov_count] = libc::iovec {
iov_base: ptr as *mut _,
iov_len: len,
};
last_end = Some((ptr, len));
iov_count += 1;
if iov_count >= MAX_IOVEC_ENTRIES {
break;
}
}
// If we have coalesced everything into a single iovec, submit as a single`pwrite`
if iov_count == 1 {
let mut entry = with_fd!(st.file_id, |fd| {
if let Some(id) = st.bufs[st.current_buffer_idx].fixed_id() {
io_uring::opcode::WriteFixed::new(
fd,
iov_allocation[0].iov_base as *const u8,
iov_allocation[0].iov_len as u32,
id as u16,
)
.offset(st.file_pos)
.build()
.user_data(key)
} else {
io_uring::opcode::Write::new(
fd,
iov_allocation[0].iov_base as *const u8,
iov_allocation[0].iov_len as u32,
)
.offset(st.file_pos)
.build()
.user_data(key)
}
});
if st.linked_op && !st.had_partial {
// Starting a new link chain
entry = entry.flags(io_uring::squeue::Flags::IO_LINK);
self.pending_link.store(true, Ordering::Release);
} else if continue_chain && !st.had_partial {
// Continue existing chain
entry = entry.flags(io_uring::squeue::Flags::IO_LINK);
}
self.submit_entry(&entry);
return;
}
// Store the pointers and get the pointer to the iovec array that we pass
// to the writev operation, and keep the array itself alive
let ptr = iov_allocation.as_ptr() as *mut libc::iovec;
st.last_iov_allocation = Some(iov_allocation);
let mut entry = with_fd!(st.file_id, |fd| {
io_uring::opcode::Writev::new(fd, ptr, iov_count as u32)
.offset(st.file_pos)
.build()
.user_data(key)
});
if st.linked_op {
entry = entry.flags(io_uring::squeue::Flags::IO_LINK);
}
// track the current state in case we get a partial write
self.writev_states.insert(key, st);
self.submit_entry(&entry);
}
fn handle_writev_completion(&mut self, mut state: WritevState, user_data: u64, result: i32) {
if result < 0 {
let err = std::io::Error::from_raw_os_error(result);
tracing::error!("writev failed (user_data: {}): {}", user_data, err);
state.free_last_iov(&mut self.iov_pool);
completion_from_key(user_data).complete(result);
return;
}
let written = result;
// guard against no-progress loop
if written == 0 && state.remaining() > 0 {
state.free_last_iov(&mut self.iov_pool);
completion_from_key(user_data).error(CompletionError::ShortWrite);
return;
}
state.advance(written as u64);
match state.remaining() {
0 => {
tracing::debug!(
"writev operation completed: wrote {} bytes",
state.total_written
);
// write complete, return iovec to pool
state.free_last_iov(&mut self.iov_pool);
if state.linked_op && state.had_partial {
// if it was a linked operation, we need to submit a fsync after this writev
// to ensure data is on disk
self.ring.submit().expect("submit after writev");
let file_id = state.file_id;
let sync = with_fd!(file_id, |fd| {
io_uring::opcode::Fsync::new(fd)
.build()
.user_data(BARRIER_USER_DATA)
})
.flags(io_uring::squeue::Flags::IO_DRAIN);
self.submit_entry(&sync);
}
completion_from_key(user_data).complete(state.total_written as i32);
}
remaining => {
tracing::trace!(
"resubmitting writev operation for user_data {}: wrote {} bytes, remaining {}",
user_data,
written,
remaining
);
// make sure partial write is recorded, because fsync could happen after this
// and we are not finished writing to disk
state.had_partial = true;
self.submit_writev(user_data, state, false);
}
}
}
}
impl IO for UringIO {
fn open_file(&self, path: &str, flags: OpenFlags, direct: bool) -> Result<Arc<dyn File>> {
trace!("open_file(path = {})", path);
let mut file = std::fs::File::options();
file.read(true);
if !flags.contains(OpenFlags::ReadOnly) {
file.write(true);
file.create(flags.contains(OpenFlags::Create));
}
let file = file.open(path)?;
// Let's attempt to enable direct I/O. Not all filesystems support it
// so ignore any errors.
let fd = file.as_fd();
if direct {
match fs::fcntl_setfl(fd, OFlags::DIRECT) {
Ok(_) => {}
Err(error) => debug!("Error {error:?} returned when setting O_DIRECT flag to read file. The performance of the system may be affected"),
}
}
let id = self.inner.lock().register_file(file.as_raw_fd()).ok();
let uring_file = Arc::new(UringFile {
io: self.inner.clone(),
file,
id,
});
if std::env::var(common::ENV_DISABLE_FILE_LOCK).is_err() {
uring_file.lock_file(!flags.contains(OpenFlags::ReadOnly))?;
}
Ok(uring_file)
}
fn remove_file(&self, path: &str) -> Result<()> {
std::fs::remove_file(path)?;
Ok(())
}
/// Drain calls `run_once` in a loop until the ring is empty.
/// To prevent mutex churn of checking if ring.empty() on each iteration, we violate DRY
fn drain(&self) -> Result<()> {
trace!("drain()");
let mut inner = self.inner.lock();
let ring = &mut inner.ring;
loop {
ring.flush_overflow()?;
if ring.empty() {
return Ok(());
}
ring.submit_and_wait()?;
'inner: loop {
let Some(cqe) = ring.ring.completion().next() else {
break 'inner;
};
ring.pending_ops -= 1;
let user_data = cqe.user_data();
if user_data == CANCEL_TAG {
// ignore if this is a cancellation CQE
continue 'inner;
}
let result = cqe.result();
turso_assert!(
user_data != 0,
"user_data must not be zero, we dont submit linked timeouts that would cause this"
);
if let Some(state) = ring.writev_states.remove(&user_data) {
// if we have ongoing writev state, handle it separately and don't call completion
ring.handle_writev_completion(state, user_data, result);
continue 'inner;
}
if result < 0 {
let errno = -result;
let err = std::io::Error::from_raw_os_error(errno);
completion_from_key(user_data).error(err.into());
} else {
completion_from_key(user_data).complete(result)
}
}
}
}
fn cancel(&self, completions: &[Completion]) -> Result<()> {
let mut inner = self.inner.lock();
for c in completions {
c.abort();
let e = io_uring::opcode::AsyncCancel::new(get_key(c.clone()))
.build()
.user_data(CANCEL_TAG);
inner.ring.submit_cancel_urgent(&e)?;
}
Ok(())
}
fn step(&self) -> Result<()> {
trace!("step()");
let mut inner = self.inner.lock();
let ring = &mut inner.ring;
ring.flush_overflow()?;
if ring.empty() {
return Ok(());
}
ring.submit_and_wait()?;
loop {
let Some(cqe) = ring.ring.completion().next() else {
return Ok(());
};
ring.pending_ops -= 1;
let user_data = cqe.user_data();
if user_data == CANCEL_TAG {
// ignore if this is a cancellation CQE
continue;
}
let result = cqe.result();
turso_assert!(
user_data != 0,
"user_data must not be zero, we dont submit linked timeouts that would cause this"
);
if let Some(state) = ring.writev_states.remove(&user_data) {
// if we have ongoing writev state, handle it separately and don't call completion
ring.handle_writev_completion(state, user_data, result);
continue;
} else if user_data == BARRIER_USER_DATA {
// barrier operation, no completion to call
if result < 0 {
let err = std::io::Error::from_raw_os_error(result);
tracing::error!("barrier operation failed: {}", err);
return Err(err.into());
}
continue;
}
if result < 0 {
let errno = -result;
let err = std::io::Error::from_raw_os_error(errno);
completion_from_key(user_data).error(err.into());
} else {
completion_from_key(user_data).complete(result)
}
}
}
fn register_fixed_buffer(&self, ptr: std::ptr::NonNull<u8>, len: usize) -> Result<u32> {
turso_assert!(
len % 512 == 0,
"fixed buffer length must be logical block aligned"
);
let mut inner = self.inner.lock();
let slot = inner.free_arenas.iter().position(|e| e.is_none()).ok_or(
crate::error::CompletionError::UringIOError("no free fixed buffer slots"),
)?;
unsafe {
inner.ring.ring.submitter().register_buffers_update(
slot as u32,
&[libc::iovec {
iov_base: ptr.as_ptr() as *mut libc::c_void,
iov_len: len,
}],
None,
)?
};
inner.free_arenas[slot] = Some((ptr, len));
Ok(slot as u32)
}
}
impl Clock for UringIO {
fn now(&self) -> Instant {
DefaultClock.now()
}
}
#[inline(always)]
/// use the callback pointer as the user_data for the operation as is
/// common practice for io_uring to prevent more indirection
fn get_key(c: Completion) -> u64 {
Arc::into_raw(c.get_inner().clone()) as u64
}
#[inline(always)]
/// convert the user_data back to an Completion pointer
fn completion_from_key(key: u64) -> Completion {
let c_inner = unsafe { Arc::from_raw(key as *const CompletionInner) };
Completion {
inner: Some(c_inner),
}
}
pub struct UringFile {
io: Arc<Mutex<InnerUringIO>>,
file: std::fs::File,
id: Option<u32>,
}
impl Deref for UringFile {
type Target = std::fs::File;
fn deref(&self) -> &Self::Target {
&self.file
}
}
impl UringFile {
fn id(&self) -> Option<u32> {
self.id
}
}
unsafe impl Send for UringFile {}
unsafe impl Sync for UringFile {}
impl File for UringFile {
fn lock_file(&self, exclusive: bool) -> Result<()> {
let fd = self.file.as_fd();
// F_SETLK is a non-blocking lock. The lock will be released when the file is closed
// or the process exits or after an explicit unlock.
fs::fcntl_lock(
fd,
if exclusive {
FlockOperation::NonBlockingLockExclusive
} else {
FlockOperation::NonBlockingLockShared
},
)
.map_err(|e| {
let io_error = std::io::Error::from(e);
let message = match io_error.kind() {
ErrorKind::WouldBlock => {
"Failed locking file. File is locked by another process".to_string()
}
_ => format!("Failed locking file, {io_error}"),
};
LimboError::LockingError(message)
})?;
Ok(())
}
fn unlock_file(&self) -> Result<()> {
let fd = self.file.as_fd();
fs::fcntl_lock(fd, FlockOperation::NonBlockingUnlock).map_err(|e| {
LimboError::LockingError(format!(
"Failed to release file lock: {}",
std::io::Error::from(e)
))
})?;
Ok(())
}
fn pread(&self, pos: u64, c: Completion) -> Result<Completion> {
let r = c.as_read();
let read_e = {
let buf = r.buf();
let ptr = buf.as_mut_ptr();
let len = buf.len();
with_fd!(self, |fd| {
if let Some(idx) = buf.fixed_id() {
trace!(
"pread_fixed(pos = {}, length = {}, idx = {})",
pos,
len,
idx
);
#[cfg(debug_assertions)]
{
self.io.lock().debug_check_fixed(idx, ptr, len);
}
io_uring::opcode::ReadFixed::new(fd, ptr, len as u32, idx as u16)
.offset(pos)
.build()
.user_data(get_key(c.clone()))
} else {
trace!("pread(pos = {}, length = {})", pos, len);
// Use Read opcode if fixed buffer is not available
io_uring::opcode::Read::new(fd, buf.as_mut_ptr(), len as u32)
.offset(pos)
.build()
.user_data(get_key(c.clone()))
}
})
};
self.io.lock().ring.submit_entry(&read_e);
Ok(c)
}
fn pwrite(&self, pos: u64, buffer: Arc<crate::Buffer>, c: Completion) -> Result<Completion> {
let mut io = self.io.lock();
let mut write = {
let ptr = buffer.as_ptr();
let len = buffer.len();
with_fd!(self, |fd| {
if let Some(idx) = buffer.fixed_id() {
trace!(
"pwrite_fixed(pos = {}, length = {}, idx= {})",
pos,
len,
idx
);
#[cfg(debug_assertions)]
{
io.debug_check_fixed(idx, ptr, len);
}
io_uring::opcode::WriteFixed::new(fd, ptr, len as u32, idx as u16)
.offset(pos)
.build()
.user_data(get_key(c.clone()))
} else {
trace!("pwrite(pos = {}, length = {})", pos, buffer.len());
io_uring::opcode::Write::new(fd, ptr, len as u32)
.offset(pos)
.build()
.user_data(get_key(c.clone()))
}
})
};
if c.needs_link() {
// Start a new link chain
write = write.flags(io_uring::squeue::Flags::IO_LINK);
io.ring.pending_link.store(true, Ordering::Release);
} else if io.ring.pending_link.load(Ordering::Acquire) {
// Continue existing link chain
write = write.flags(io_uring::squeue::Flags::IO_LINK);
}
io.ring.submit_entry(&write);
Ok(c)
}
fn sync(&self, c: Completion) -> Result<Completion> {
let mut io = self.io.lock();
trace!("sync()");
let sync = with_fd!(self, |fd| {
io_uring::opcode::Fsync::new(fd)
.build()
.user_data(get_key(c.clone()))
});
// sync always ends the chain of linked operations
io.ring.pending_link.store(false, Ordering::Release);
io.ring.submit_entry(&sync);
Ok(c)
}
fn pwritev(
&self,
pos: u64,
bufs: Vec<Arc<crate::Buffer>>,
c: Completion,
) -> Result<Completion> {
// for a single buffer use pwrite directly
if bufs.len().eq(&1) {
return self.pwrite(pos, bufs[0].clone(), c.clone());
}
let linked = c.needs_link();
tracing::trace!("pwritev(pos = {}, bufs.len() = {})", pos, bufs.len());
// create state to track ongoing writev operation
let state = WritevState::new(self, pos, linked, bufs);
let mut io = self.io.lock();
let continue_chain = !linked && io.ring.pending_link.load(Ordering::Acquire);
io.ring
.submit_writev(get_key(c.clone()), state, continue_chain);
Ok(c)
}
fn size(&self) -> Result<u64> {
Ok(self.file.metadata()?.len())
}
fn truncate(&self, len: u64, c: Completion) -> Result<Completion> {
let mut truncate = with_fd!(self, |fd| {
io_uring::opcode::Ftruncate::new(fd, len)
.build()
.user_data(get_key(c.clone()))
});
let mut io = self.io.lock();
if io.ring.pending_link.load(Ordering::Acquire) {
truncate = truncate.flags(io_uring::squeue::Flags::IO_LINK);
}
io.ring.submit_entry(&truncate);
Ok(c)
}
}
impl Drop for UringFile {
fn drop(&mut self) {
self.unlock_file().expect("Failed to unlock file");
if let Some(id) = self.id {
self.io
.lock()
.unregister_file(id)
.inspect_err(|e| {
debug!("Failed to unregister file: {e}");
})
.ok();
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::io::common;
#[test]
fn test_multiple_processes_cannot_open_file() {
common::tests::test_multiple_processes_cannot_open_file(UringIO::new);
}
}