// This module contains code for emitting bytecode instructions for SQL query execution. // It handles translating high-level SQL operations into low-level bytecode that can be executed by the virtual machine. use std::rc::Rc; use limbo_sqlite3_parser::ast::{self}; use tracing::{instrument, Level}; use super::aggregation::emit_ungrouped_aggregation; use super::expr::{translate_condition_expr, translate_expr, ConditionMetadata}; use super::group_by::{ group_by_agg_phase, group_by_emit_row_phase, init_group_by, GroupByMetadata, GroupByRowSource, }; use super::main_loop::{ close_loop, emit_loop, init_distinct, init_loop, open_loop, LeftJoinMetadata, LoopLabels, }; use super::order_by::{emit_order_by, init_order_by, SortMetadata}; use super::plan::{JoinOrderMember, Operation, SelectPlan, TableReferences, UpdatePlan}; use super::select::emit_simple_count; use super::subquery::emit_subqueries; use crate::error::SQLITE_CONSTRAINT_PRIMARYKEY; use crate::function::Func; use crate::schema::Schema; use crate::translate::compound_select::emit_program_for_compound_select; use crate::translate::plan::{DeletePlan, Plan, Search}; use crate::translate::values::emit_values; use crate::util::exprs_are_equivalent; use crate::vdbe::builder::{CursorKey, CursorType, ProgramBuilder}; use crate::vdbe::insn::{CmpInsFlags, IdxInsertFlags, RegisterOrLiteral}; use crate::vdbe::{insn::Insn, BranchOffset}; use crate::{Result, SymbolTable}; pub struct Resolver<'a> { pub schema: &'a Schema, pub symbol_table: &'a SymbolTable, pub expr_to_reg_cache: Vec<(&'a ast::Expr, usize)>, } impl<'a> Resolver<'a> { pub fn new(schema: &'a Schema, symbol_table: &'a SymbolTable) -> Self { Self { schema, symbol_table, expr_to_reg_cache: Vec::new(), } } pub fn resolve_function(&self, func_name: &str, arg_count: usize) -> Option { match Func::resolve_function(func_name, arg_count).ok() { Some(func) => Some(func), None => self .symbol_table .resolve_function(func_name, arg_count) .map(|arg| Func::External(arg.clone())), } } pub fn resolve_cached_expr_reg(&self, expr: &ast::Expr) -> Option { self.expr_to_reg_cache .iter() .find(|(e, _)| exprs_are_equivalent(expr, e)) .map(|(_, reg)| *reg) } } #[derive(Debug, Clone, Copy)] pub struct LimitCtx { /// Register holding the LIMIT value (e.g. LIMIT 5) pub reg_limit: usize, /// Whether to initialize the LIMIT counter to the LIMIT value; /// There are cases like compound SELECTs where all the sub-selects /// utilize the same limit register, but it is initialized only once. pub initialize_counter: bool, } impl LimitCtx { pub fn new(program: &mut ProgramBuilder) -> Self { Self { reg_limit: program.alloc_register(), initialize_counter: true, } } pub fn new_shared(reg_limit: usize) -> Self { Self { reg_limit, initialize_counter: false, } } } /// The TranslateCtx struct holds various information and labels used during bytecode generation. /// It is used for maintaining state and control flow during the bytecode /// generation process. pub struct TranslateCtx<'a> { // A typical query plan is a nested loop. Each loop has its own LoopLabels (see the definition of LoopLabels for more details) pub labels_main_loop: Vec, // label for the instruction that jumps to the next phase of the query after the main loop // we don't know ahead of time what that is (GROUP BY, ORDER BY, etc.) pub label_main_loop_end: Option, // First register of the aggregation results pub reg_agg_start: Option, // In non-group-by statements with aggregations (e.g. SELECT foo, bar, sum(baz) FROM t), // we want to emit the non-aggregate columns (foo and bar) only once. // This register is a flag that tracks whether we have already done that. pub reg_nonagg_emit_once_flag: Option, // First register of the result columns of the query pub reg_result_cols_start: Option, pub limit_ctx: Option, // The register holding the offset value, if any. pub reg_offset: Option, // The register holding the limit+offset value, if any. pub reg_limit_offset_sum: Option, // metadata for the group by operator pub meta_group_by: Option, // metadata for the order by operator pub meta_sort: Option, /// mapping between table loop index and associated metadata (for left joins only) /// this metadata exists for the right table in a given left join pub meta_left_joins: Vec>, // We need to emit result columns in the order they are present in the SELECT, but they may not be in the same order in the ORDER BY sorter. // This vector holds the indexes of the result columns in the ORDER BY sorter. pub result_column_indexes_in_orderby_sorter: Vec, // We might skip adding a SELECT result column into the ORDER BY sorter if it is an exact match in the ORDER BY keys. // This vector holds the indexes of the result columns that we need to skip. pub result_columns_to_skip_in_orderby_sorter: Option>, pub resolver: Resolver<'a>, } impl<'a> TranslateCtx<'a> { pub fn new( program: &mut ProgramBuilder, schema: &'a Schema, syms: &'a SymbolTable, table_count: usize, result_column_count: usize, ) -> Self { TranslateCtx { labels_main_loop: (0..table_count).map(|_| LoopLabels::new(program)).collect(), label_main_loop_end: None, reg_agg_start: None, reg_nonagg_emit_once_flag: None, limit_ctx: None, reg_offset: None, reg_limit_offset_sum: None, reg_result_cols_start: None, meta_group_by: None, meta_left_joins: (0..table_count).map(|_| None).collect(), meta_sort: None, result_column_indexes_in_orderby_sorter: (0..result_column_count).collect(), result_columns_to_skip_in_orderby_sorter: None, resolver: Resolver::new(schema, syms), } } } /// Used to distinguish database operations #[allow(clippy::upper_case_acronyms, dead_code)] #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum OperationMode { SELECT, INSERT, UPDATE, DELETE, } #[derive(Clone, Copy, Debug)] pub enum TransactionMode { None, Read, Write, } /// Main entry point for emitting bytecode for a SQL query /// Takes a query plan and generates the corresponding bytecode program #[instrument(skip_all, level = Level::TRACE)] pub fn emit_program( program: &mut ProgramBuilder, plan: Plan, schema: &Schema, syms: &SymbolTable, after: impl FnOnce(&mut ProgramBuilder), ) -> Result<()> { match plan { Plan::Select(plan) => emit_program_for_select(program, plan, schema, syms), Plan::Delete(plan) => emit_program_for_delete(program, plan, schema, syms), Plan::Update(plan) => emit_program_for_update(program, plan, schema, syms, after), Plan::CompoundSelect { .. } => { emit_program_for_compound_select(program, plan, schema, syms) } } } #[instrument(skip_all, level = Level::TRACE)] fn emit_program_for_select( program: &mut ProgramBuilder, mut plan: SelectPlan, schema: &Schema, syms: &SymbolTable, ) -> Result<()> { let mut t_ctx = TranslateCtx::new( program, schema, syms, plan.table_references.joined_tables().len(), plan.result_columns.len(), ); // Trivial exit on LIMIT 0 if let Some(limit) = plan.limit { if limit == 0 { program.epilogue(TransactionMode::Read); program.result_columns = plan.result_columns; program.table_references.extend(plan.table_references); return Ok(()); } } // Emit main parts of query emit_query(program, &mut plan, &mut t_ctx)?; // Finalize program if plan.table_references.joined_tables().is_empty() { program.epilogue(TransactionMode::None); } else { program.epilogue(TransactionMode::Read); } program.result_columns = plan.result_columns; program.table_references.extend(plan.table_references); Ok(()) } #[instrument(skip_all, level = Level::TRACE)] pub fn emit_query<'a>( program: &'a mut ProgramBuilder, plan: &'a mut SelectPlan, t_ctx: &'a mut TranslateCtx<'a>, ) -> Result { if !plan.values.is_empty() { let reg_result_cols_start = emit_values(program, &plan, &t_ctx.resolver)?; return Ok(reg_result_cols_start); } // Emit subqueries first so the results can be read in the main query loop. emit_subqueries(program, t_ctx, &mut plan.table_references)?; init_limit(program, t_ctx, plan.limit, plan.offset); // No rows will be read from source table loops if there is a constant false condition eg. WHERE 0 // however an aggregation might still happen, // e.g. SELECT COUNT(*) WHERE 0 returns a row with 0, not an empty result set let after_main_loop_label = program.allocate_label(); t_ctx.label_main_loop_end = Some(after_main_loop_label); if plan.contains_constant_false_condition { program.emit_insn(Insn::Goto { target_pc: after_main_loop_label, }); } // For non-grouped aggregation queries that also have non-aggregate columns, // we need to ensure non-aggregate columns are only emitted once. // This flag helps track whether we've already emitted these columns. if !plan.aggregates.is_empty() && plan.group_by.is_none() && plan.result_columns.iter().any(|c| !c.contains_aggregates) { let flag = program.alloc_register(); program.emit_int(0, flag); // Initialize flag to 0 (not yet emitted) t_ctx.reg_nonagg_emit_once_flag = Some(flag); } // Allocate registers for result columns if t_ctx.reg_result_cols_start.is_none() { t_ctx.reg_result_cols_start = Some(program.alloc_registers(plan.result_columns.len())); } // Initialize cursors and other resources needed for query execution if let Some(ref mut order_by) = plan.order_by { init_order_by(program, t_ctx, order_by, &plan.table_references)?; } if let Some(ref group_by) = plan.group_by { init_group_by(program, t_ctx, group_by, &plan)?; } else if !plan.aggregates.is_empty() { // Aggregate registers need to be NULLed at the start because the same registers might be reused on another invocation of a subquery, // and if they are not NULLed, the 2nd invocation of the same subquery will have values left over from the first invocation. t_ctx.reg_agg_start = Some(program.alloc_registers_and_init_w_null(plan.aggregates.len())); } init_distinct(program, plan); init_loop( program, t_ctx, &plan.table_references, &mut plan.aggregates, plan.group_by.as_ref(), OperationMode::SELECT, )?; if plan.is_simple_count() { emit_simple_count(program, t_ctx, plan)?; return Ok(t_ctx.reg_result_cols_start.unwrap()); } for where_term in plan .where_clause .iter() .filter(|wt| wt.should_eval_before_loop(&plan.join_order)) { let jump_target_when_true = program.allocate_label(); let condition_metadata = ConditionMetadata { jump_if_condition_is_true: false, jump_target_when_false: after_main_loop_label, jump_target_when_true, }; translate_condition_expr( program, &plan.table_references, &where_term.expr, condition_metadata, &t_ctx.resolver, )?; program.preassign_label_to_next_insn(jump_target_when_true); } // Set up main query execution loop open_loop( program, t_ctx, &plan.table_references, &plan.join_order, &mut plan.where_clause, )?; // Process result columns and expressions in the inner loop emit_loop(program, t_ctx, plan)?; // Clean up and close the main execution loop close_loop(program, t_ctx, &plan.table_references, &plan.join_order)?; program.preassign_label_to_next_insn(after_main_loop_label); let mut order_by_necessary = plan.order_by.is_some() && !plan.contains_constant_false_condition; let order_by = plan.order_by.as_ref(); // Handle GROUP BY and aggregation processing if plan.group_by.is_some() { let row_source = &t_ctx .meta_group_by .as_ref() .expect("group by metadata not found") .row_source; if matches!(row_source, GroupByRowSource::Sorter { .. }) { group_by_agg_phase(program, t_ctx, plan)?; } group_by_emit_row_phase(program, t_ctx, plan)?; } else if !plan.aggregates.is_empty() { // Handle aggregation without GROUP BY emit_ungrouped_aggregation(program, t_ctx, plan)?; // Single row result for aggregates without GROUP BY, so ORDER BY not needed order_by_necessary = false; } // Process ORDER BY results if needed if order_by.is_some() && order_by_necessary { emit_order_by(program, t_ctx, plan)?; } Ok(t_ctx.reg_result_cols_start.unwrap()) } #[instrument(skip_all, level = Level::TRACE)] fn emit_program_for_delete( program: &mut ProgramBuilder, mut plan: DeletePlan, schema: &Schema, syms: &SymbolTable, ) -> Result<()> { let mut t_ctx = TranslateCtx::new( program, schema, syms, plan.table_references.joined_tables().len(), plan.result_columns.len(), ); // exit early if LIMIT 0 if let Some(0) = plan.limit { program.epilogue(TransactionMode::Write); program.result_columns = plan.result_columns; program.table_references.extend(plan.table_references); return Ok(()); } init_limit(program, &mut t_ctx, plan.limit, None); // No rows will be read from source table loops if there is a constant false condition eg. WHERE 0 let after_main_loop_label = program.allocate_label(); t_ctx.label_main_loop_end = Some(after_main_loop_label); if plan.contains_constant_false_condition { program.emit_insn(Insn::Goto { target_pc: after_main_loop_label, }); } // Initialize cursors and other resources needed for query execution init_loop( program, &mut t_ctx, &plan.table_references, &mut [], None, OperationMode::DELETE, )?; // Set up main query execution loop open_loop( program, &mut t_ctx, &plan.table_references, &[JoinOrderMember::default()], &mut plan.where_clause, )?; emit_delete_insns(program, &mut t_ctx, &plan.table_references)?; // Clean up and close the main execution loop close_loop( program, &mut t_ctx, &plan.table_references, &[JoinOrderMember::default()], )?; program.preassign_label_to_next_insn(after_main_loop_label); // Finalize program program.epilogue(TransactionMode::Write); program.result_columns = plan.result_columns; program.table_references.extend(plan.table_references); Ok(()) } fn emit_delete_insns( program: &mut ProgramBuilder, t_ctx: &mut TranslateCtx, table_references: &TableReferences, ) -> Result<()> { let table_reference = table_references.joined_tables().first().unwrap(); let cursor_id = match &table_reference.op { Operation::Scan { .. } => { program.resolve_cursor_id(&CursorKey::table(table_reference.internal_id)) } Operation::Search(search) => match search { Search::RowidEq { .. } | Search::Seek { index: None, .. } => { program.resolve_cursor_id(&CursorKey::table(table_reference.internal_id)) } Search::Seek { index: Some(index), .. } => program.resolve_cursor_id(&CursorKey::index( table_reference.internal_id, index.clone(), )), }, }; let main_table_cursor_id = program.resolve_cursor_id(&CursorKey::table(table_reference.internal_id)); // Emit the instructions to delete the row let key_reg = program.alloc_register(); program.emit_insn(Insn::RowId { cursor_id: main_table_cursor_id, dest: key_reg, }); if let Some(_) = table_reference.virtual_table() { let conflict_action = 0u16; let start_reg = key_reg; let new_rowid_reg = program.alloc_register(); program.emit_insn(Insn::Null { dest: new_rowid_reg, dest_end: None, }); program.emit_insn(Insn::VUpdate { cursor_id, arg_count: 2, start_reg, conflict_action, }); } else { // Delete from all indexes before deleting from the main table. let indexes = t_ctx .resolver .schema .indexes .get(table_reference.table.get_name()); let index_refs_opt = indexes.map(|indexes| { indexes .iter() .map(|index| { ( index.clone(), program.resolve_cursor_id(&CursorKey::index( table_reference.internal_id, index.clone(), )), ) }) .collect::>() }); if let Some(index_refs) = index_refs_opt { for (index, index_cursor_id) in index_refs { let num_regs = index.columns.len() + 1; let start_reg = program.alloc_registers(num_regs); // Emit columns that are part of the index index .columns .iter() .enumerate() .for_each(|(reg_offset, column_index)| { program.emit_column( main_table_cursor_id, column_index.pos_in_table, start_reg + reg_offset, ); }); program.emit_insn(Insn::RowId { cursor_id: main_table_cursor_id, dest: start_reg + num_regs - 1, }); program.emit_insn(Insn::IdxDelete { start_reg, num_regs, cursor_id: index_cursor_id, }); } } program.emit_insn(Insn::Delete { cursor_id: main_table_cursor_id, }); } if let Some(limit_ctx) = t_ctx.limit_ctx { program.emit_insn(Insn::DecrJumpZero { reg: limit_ctx.reg_limit, target_pc: t_ctx.label_main_loop_end.unwrap(), }) } Ok(()) } #[instrument(skip_all, level = Level::TRACE)] fn emit_program_for_update( program: &mut ProgramBuilder, mut plan: UpdatePlan, schema: &Schema, syms: &SymbolTable, after: impl FnOnce(&mut ProgramBuilder), ) -> Result<()> { let mut t_ctx = TranslateCtx::new( program, schema, syms, plan.table_references.joined_tables().len(), plan.returning.as_ref().map_or(0, |r| r.len()), ); // Exit on LIMIT 0 if let Some(0) = plan.limit { program.epilogue(TransactionMode::None); program.result_columns = plan.returning.unwrap_or_default(); program.table_references.extend(plan.table_references); return Ok(()); } init_limit(program, &mut t_ctx, plan.limit, plan.offset); let after_main_loop_label = program.allocate_label(); t_ctx.label_main_loop_end = Some(after_main_loop_label); if plan.contains_constant_false_condition { program.emit_insn(Insn::Goto { target_pc: after_main_loop_label, }); } init_loop( program, &mut t_ctx, &plan.table_references, &mut [], None, OperationMode::UPDATE, )?; // Open indexes for update. let mut index_cursors = Vec::with_capacity(plan.indexes_to_update.len()); for index in &plan.indexes_to_update { if let Some(index_cursor) = program.resolve_cursor_id_safe(&CursorKey::index( plan.table_references .joined_tables() .first() .unwrap() .internal_id, index.clone(), )) { // Don't reopen index if it was already opened as the iteration cursor for this update plan. let record_reg = program.alloc_register(); index_cursors.push((index_cursor, record_reg)); continue; } let index_cursor = program.alloc_cursor_id(CursorType::BTreeIndex(index.clone())); program.emit_insn(Insn::OpenWrite { cursor_id: index_cursor, root_page: RegisterOrLiteral::Literal(index.root_page), name: index.name.clone(), }); let record_reg = program.alloc_register(); index_cursors.push((index_cursor, record_reg)); } open_loop( program, &mut t_ctx, &plan.table_references, &[JoinOrderMember::default()], &mut plan.where_clause, )?; emit_update_insns(&plan, &t_ctx, program, index_cursors)?; close_loop( program, &mut t_ctx, &plan.table_references, &[JoinOrderMember::default()], )?; program.preassign_label_to_next_insn(after_main_loop_label); after(program); // Finalize program program.epilogue(TransactionMode::Write); program.result_columns = plan.returning.unwrap_or_default(); program.table_references.extend(plan.table_references); Ok(()) } #[instrument(skip_all, level = Level::TRACE)] fn emit_update_insns( plan: &UpdatePlan, t_ctx: &TranslateCtx, program: &mut ProgramBuilder, index_cursors: Vec<(usize, usize)>, ) -> crate::Result<()> { let table_ref = plan.table_references.joined_tables().first().unwrap(); let loop_labels = t_ctx.labels_main_loop.first().unwrap(); let (cursor_id, index, is_virtual) = match &table_ref.op { Operation::Scan { index, .. } => ( program.resolve_cursor_id(&CursorKey::table(table_ref.internal_id)), index.as_ref().map(|index| { ( index.clone(), program .resolve_cursor_id(&CursorKey::index(table_ref.internal_id, index.clone())), ) }), table_ref.virtual_table().is_some(), ), Operation::Search(search) => match search { &Search::RowidEq { .. } | Search::Seek { index: None, .. } => ( program.resolve_cursor_id(&CursorKey::table(table_ref.internal_id)), None, false, ), Search::Seek { index: Some(index), .. } => ( program.resolve_cursor_id(&CursorKey::table(table_ref.internal_id)), Some(( index.clone(), program .resolve_cursor_id(&CursorKey::index(table_ref.internal_id, index.clone())), )), false, ), }, }; for cond in plan .where_clause .iter() .filter(|c| c.should_eval_before_loop(&[JoinOrderMember::default()])) { let jump_target = program.allocate_label(); let meta = ConditionMetadata { jump_if_condition_is_true: false, jump_target_when_true: jump_target, jump_target_when_false: t_ctx.label_main_loop_end.unwrap(), }; translate_condition_expr( program, &plan.table_references, &cond.expr, meta, &t_ctx.resolver, )?; program.preassign_label_to_next_insn(jump_target); } let beg = program.alloc_registers( table_ref.table.columns().len() + if is_virtual { 2 // two args before the relevant columns for VUpdate } else { 1 // rowid reg }, ); program.emit_insn(Insn::RowId { cursor_id, dest: beg, }); // Check if rowid was provided (through INTEGER PRIMARY KEY as a rowid alias) let rowid_alias_index = { let rowid_alias_index = table_ref.columns().iter().position(|c| c.is_rowid_alias); if let Some(index) = rowid_alias_index { plan.set_clauses.iter().position(|(idx, _)| *idx == index) } else { None } }; let rowid_set_clause_reg = if rowid_alias_index.is_some() { Some(program.alloc_register()) } else { None }; let has_user_provided_rowid = rowid_alias_index.is_some(); let check_rowid_not_exists_label = if has_user_provided_rowid { Some(program.allocate_label()) } else { None }; if has_user_provided_rowid { program.emit_insn(Insn::NotExists { cursor: cursor_id, rowid_reg: beg, target_pc: check_rowid_not_exists_label.unwrap(), }); } else { // if no rowid, we're done program.emit_insn(Insn::IsNull { reg: beg, target_pc: t_ctx.label_main_loop_end.unwrap(), }); } if is_virtual { program.emit_insn(Insn::Copy { src_reg: beg, dst_reg: beg + 1, amount: 0, }) } if let Some(offset) = t_ctx.reg_offset { program.emit_insn(Insn::IfPos { reg: offset, target_pc: loop_labels.next, decrement_by: 1, }); } for cond in plan .where_clause .iter() .filter(|c| c.should_eval_before_loop(&[JoinOrderMember::default()])) { let jump_target = program.allocate_label(); let meta = ConditionMetadata { jump_if_condition_is_true: false, jump_target_when_true: jump_target, jump_target_when_false: loop_labels.next, }; translate_condition_expr( program, &plan.table_references, &cond.expr, meta, &t_ctx.resolver, )?; program.preassign_label_to_next_insn(jump_target); } // we scan a column at a time, loading either the column's values, or the new value // from the Set expression, into registers so we can emit a MakeRecord and update the row. let start = if is_virtual { beg + 2 } else { beg + 1 }; for (idx, table_column) in table_ref.columns().iter().enumerate() { let target_reg = start + idx; if let Some((_, expr)) = plan.set_clauses.iter().find(|(i, _)| *i == idx) { if has_user_provided_rowid && (table_column.primary_key || table_column.is_rowid_alias) && !is_virtual { let rowid_set_clause_reg = rowid_set_clause_reg.unwrap(); translate_expr( program, Some(&plan.table_references), expr, rowid_set_clause_reg, &t_ctx.resolver, )?; program.emit_insn(Insn::MustBeInt { reg: rowid_set_clause_reg, }); program.emit_null(target_reg, None); } else { translate_expr( program, Some(&plan.table_references), expr, target_reg, &t_ctx.resolver, )?; } } else { let column_idx_in_index = index.as_ref().and_then(|(idx, _)| { idx.columns .iter() .position(|c| Some(&c.name) == table_column.name.as_ref()) }); // don't emit null for pkey of virtual tables. they require first two args // before the 'record' to be explicitly non-null if table_column.is_rowid_alias && !is_virtual { program.emit_null(target_reg, None); } else if is_virtual { program.emit_insn(Insn::VColumn { cursor_id, column: idx, dest: target_reg, }); } else { let cursor_id = *index .as_ref() .and_then(|(_, id)| { if column_idx_in_index.is_some() { Some(id) } else { None } }) .unwrap_or(&cursor_id); program.emit_column(cursor_id, column_idx_in_index.unwrap_or(idx), target_reg); } } } for (index, (idx_cursor_id, record_reg)) in plan.indexes_to_update.iter().zip(&index_cursors) { let num_cols = index.columns.len(); // allocate scratch registers for the index columns plus rowid let idx_start_reg = program.alloc_registers(num_cols + 1); let rowid_reg = beg; let idx_cols_start_reg = beg + 1; // copy each index column from the table's column registers into these scratch regs for (i, col) in index.columns.iter().enumerate() { // copy from the table's column register over to the index's scratch register program.emit_insn(Insn::Copy { src_reg: idx_cols_start_reg + col.pos_in_table, dst_reg: idx_start_reg + i, amount: 0, }); } // last register is the rowid program.emit_insn(Insn::Copy { src_reg: rowid_reg, dst_reg: idx_start_reg + num_cols, amount: 0, }); // this record will be inserted into the index later program.emit_insn(Insn::MakeRecord { start_reg: idx_start_reg, count: num_cols + 1, dest_reg: *record_reg, index_name: Some(index.name.clone()), }); if !index.unique { continue; } // check if the record already exists in the index for unique indexes and abort if so let constraint_check = program.allocate_label(); program.emit_insn(Insn::NoConflict { cursor_id: *idx_cursor_id, target_pc: constraint_check, record_reg: idx_start_reg, num_regs: num_cols, }); let column_names = index.columns.iter().enumerate().fold( String::with_capacity(50), |mut accum, (idx, col)| { if idx > 0 { accum.push_str(", "); } accum.push_str(&table_ref.table.get_name()); accum.push('.'); accum.push_str(&col.name); accum }, ); let idx_rowid_reg = program.alloc_register(); program.emit_insn(Insn::IdxRowId { cursor_id: *idx_cursor_id, dest: idx_rowid_reg, }); program.emit_insn(Insn::Eq { lhs: rowid_reg, rhs: idx_rowid_reg, target_pc: constraint_check, flags: CmpInsFlags::default(), // TODO: not sure what type of comparison flag is needed collation: program.curr_collation(), }); program.emit_insn(Insn::Halt { err_code: SQLITE_CONSTRAINT_PRIMARYKEY, // TODO: distinct between primary key and unique index for error code description: column_names, }); program.preassign_label_to_next_insn(constraint_check); } if let Some(btree_table) = table_ref.btree() { if btree_table.is_strict { program.emit_insn(Insn::TypeCheck { start_reg: start, count: table_ref.columns().len(), check_generated: true, table_reference: Rc::clone(&btree_table), }); } if has_user_provided_rowid { let record_label = program.allocate_label(); let idx = rowid_alias_index.unwrap(); let target_reg = rowid_set_clause_reg.unwrap(); program.emit_insn(Insn::Eq { lhs: target_reg, rhs: beg, target_pc: record_label, flags: CmpInsFlags::default(), collation: program.curr_collation(), }); program.emit_insn(Insn::NotExists { cursor: cursor_id, rowid_reg: target_reg, target_pc: record_label, }); program.emit_insn(Insn::Halt { err_code: SQLITE_CONSTRAINT_PRIMARYKEY, description: format!( "{}.{}", table_ref.table.get_name(), &table_ref .columns() .get(idx) .unwrap() .name .as_ref() .map_or("", |v| v) ), }); program.preassign_label_to_next_insn(record_label); } let record_reg = program.alloc_register(); program.emit_insn(Insn::MakeRecord { start_reg: start, count: table_ref.columns().len(), dest_reg: record_reg, index_name: None, }); if has_user_provided_rowid { program.emit_insn(Insn::NotExists { cursor: cursor_id, rowid_reg: beg, target_pc: check_rowid_not_exists_label.unwrap(), }); } // For each index -> insert for (index, (idx_cursor_id, record_reg)) in plan.indexes_to_update.iter().zip(index_cursors) { let num_regs = index.columns.len() + 1; let start_reg = program.alloc_registers(num_regs); // Delete existing index key index .columns .iter() .enumerate() .for_each(|(reg_offset, column_index)| { program.emit_column( cursor_id, column_index.pos_in_table, start_reg + reg_offset, ); }); program.emit_insn(Insn::RowId { cursor_id, dest: start_reg + num_regs - 1, }); program.emit_insn(Insn::IdxDelete { start_reg, num_regs, cursor_id: idx_cursor_id, }); // Insert new index key (filled further above with values from set_clauses) program.emit_insn(Insn::IdxInsert { cursor_id: idx_cursor_id, record_reg: record_reg, unpacked_start: Some(start), unpacked_count: Some((index.columns.len() + 1) as u16), flags: IdxInsertFlags::new(), }); } program.emit_insn(Insn::Delete { cursor_id }); program.emit_insn(Insn::Insert { cursor: cursor_id, key_reg: rowid_set_clause_reg.unwrap_or(beg), record_reg, flag: 0, table_name: table_ref.identifier.clone(), }); } else if let Some(_) = table_ref.virtual_table() { let arg_count = table_ref.columns().len() + 2; program.emit_insn(Insn::VUpdate { cursor_id, arg_count, start_reg: beg, conflict_action: 0u16, }); } if let Some(limit_ctx) = t_ctx.limit_ctx { program.emit_insn(Insn::DecrJumpZero { reg: limit_ctx.reg_limit, target_pc: t_ctx.label_main_loop_end.unwrap(), }) } // TODO(pthorpe): handle RETURNING clause if let Some(label) = check_rowid_not_exists_label { program.preassign_label_to_next_insn(label); } Ok(()) } /// Initialize the limit/offset counters and registers. /// In case of compound SELECTs, the limit counter is initialized only once, /// hence [LimitCtx::initialize_counter] being false in those cases. fn init_limit( program: &mut ProgramBuilder, t_ctx: &mut TranslateCtx, limit: Option, offset: Option, ) { if t_ctx.limit_ctx.is_none() { t_ctx.limit_ctx = limit.map(|_| LimitCtx::new(program)); } let Some(limit_ctx) = t_ctx.limit_ctx else { return; }; if limit_ctx.initialize_counter { program.emit_insn(Insn::Integer { value: limit.expect("limit must be Some if limit_ctx is Some") as i64, dest: limit_ctx.reg_limit, }); } if t_ctx.reg_offset.is_none() && offset.is_some_and(|n| n.ne(&0)) { let reg = program.alloc_register(); t_ctx.reg_offset = Some(reg); program.emit_insn(Insn::Integer { value: offset.unwrap() as i64, dest: reg, }); let combined_reg = program.alloc_register(); t_ctx.reg_limit_offset_sum = Some(combined_reg); program.emit_insn(Insn::OffsetLimit { limit_reg: t_ctx.limit_ctx.unwrap().reg_limit, offset_reg: reg, combined_reg, }); } }