use anyhow::Result; use errors::*; use pyo3::prelude::*; use pyo3::types::{PyBytes, PyList, PyTuple}; use std::cell::RefCell; use std::num::NonZeroUsize; use std::rc::Rc; use std::sync::Arc; use turso_core::Value; mod errors; #[pyclass] #[derive(Clone, Debug)] struct Description { #[pyo3(get)] name: String, #[pyo3(get)] type_code: String, #[pyo3(get)] display_size: Option, #[pyo3(get)] internal_size: Option, #[pyo3(get)] precision: Option, #[pyo3(get)] scale: Option, #[pyo3(get)] null_ok: Option, } #[pyclass(unsendable)] pub struct Cursor { /// This read/write attribute specifies the number of rows to fetch at a time with `.fetchmany()`. /// It defaults to `1`, meaning it fetches a single row at a time. #[pyo3(get)] arraysize: i64, conn: Connection, /// The `.description` attribute is a read-only sequence of 7-item, each describing a column in the result set: /// /// - `name`: The column's name (always present). /// - `type_code`: The data type code (always present). /// - `display_size`: Column's display size (optional). /// - `internal_size`: Column's internal size (optional). /// - `precision`: Numeric precision (optional). /// - `scale`: Numeric scale (optional). /// - `null_ok`: Indicates if null values are allowed (optional). /// /// The `name` and `type_code` fields are mandatory; others default to `None` if not applicable. /// /// This attribute is `None` for operations that do not return rows or if no `.execute*()` method has been invoked. #[pyo3(get)] description: Option, /// Read-only attribute that provides the number of modified rows for `INSERT`, `UPDATE`, `DELETE`, /// and `REPLACE` statements; it is `-1` for other statements, including CTE queries. /// It is only updated by the `execute()` and `executemany()` methods after the statement has run to completion. /// This means any resulting rows must be fetched for `rowcount` to be updated. #[pyo3(get)] rowcount: i64, smt: Option>>, } #[allow(unused_variables, clippy::arc_with_non_send_sync)] #[pymethods] impl Cursor { #[pyo3(signature = (sql, parameters=None))] pub fn execute(&mut self, sql: &str, parameters: Option>) -> Result { let stmt_is_dml = stmt_is_dml(sql); let stmt_is_ddl = stmt_is_ddl(sql); let stmt_is_tx = stmt_is_tx(sql); let statement = self.conn.conn.prepare(sql).map_err(|e| { PyErr::new::(format!("Failed to prepare statement: {e:?}")) })?; let stmt = Rc::new(RefCell::new(statement)); Python::with_gil(|py| { if let Some(params) = parameters { let obj = params.into_bound(py); for (i, elem) in obj.iter().enumerate() { let value = py_to_db_value(&elem)?; stmt.borrow_mut() .bind_at(NonZeroUsize::new(i + 1).unwrap(), value); } } Ok::<(), anyhow::Error>(()) })?; if stmt_is_dml && self.conn.conn.get_auto_commit() { self.conn.conn.execute("BEGIN").map_err(|e| { PyErr::new::(format!( "Failed to start transaction after DDL: {e:?}" )) })?; } // For DDL and DML statements, // we need to execute the statement immediately if stmt_is_ddl || stmt_is_dml || stmt_is_tx { let mut stmt = stmt.borrow_mut(); while let turso_core::StepResult::IO = stmt .step() .map_err(|e| PyErr::new::(format!("Step error: {e:?}")))? { stmt.run_once() .map_err(|e| PyErr::new::(format!("IO error: {e:?}")))?; } } self.smt = Some(stmt); Ok(Cursor { smt: self.smt.clone(), conn: self.conn.clone(), description: self.description.clone(), rowcount: self.rowcount, arraysize: self.arraysize, }) } pub fn fetchone(&mut self, py: Python) -> Result> { if let Some(smt) = &self.smt { loop { let mut stmt = smt.borrow_mut(); match stmt .step() .map_err(|e| PyErr::new::(format!("Step error: {e:?}")))? { turso_core::StepResult::Row => { let row = stmt.row().unwrap(); let py_row = row_to_py(py, row)?; return Ok(Some(py_row)); } turso_core::StepResult::IO => { stmt.run_once().map_err(|e| { PyErr::new::(format!("IO error: {e:?}")) })?; } turso_core::StepResult::Interrupt => { return Ok(None); } turso_core::StepResult::Done => { return Ok(None); } turso_core::StepResult::Busy => { return Err( PyErr::new::("Busy error".to_string()).into() ); } } } } else { Err(PyErr::new::("No statement prepared for execution").into()) } } pub fn fetchall(&mut self, py: Python) -> Result> { let mut results = Vec::new(); if let Some(smt) = &self.smt { loop { let mut stmt = smt.borrow_mut(); match stmt .step() .map_err(|e| PyErr::new::(format!("Step error: {e:?}")))? { turso_core::StepResult::Row => { let row = stmt.row().unwrap(); let py_row = row_to_py(py, row)?; results.push(py_row); } turso_core::StepResult::IO => { stmt.run_once().map_err(|e| { PyErr::new::(format!("IO error: {e:?}")) })?; } turso_core::StepResult::Interrupt => { return Ok(results); } turso_core::StepResult::Done => { return Ok(results); } turso_core::StepResult::Busy => { return Err( PyErr::new::("Busy error".to_string()).into() ); } } } } else { Err(PyErr::new::("No statement prepared for execution").into()) } } pub fn close(&self) -> PyResult<()> { self.conn.close()?; Ok(()) } #[pyo3(signature = (sql, parameters=None))] pub fn executemany(&self, sql: &str, parameters: Option>) -> PyResult<()> { Err(PyErr::new::( "executemany() is not supported in this version", )) } #[pyo3(signature = (size=None))] pub fn fetchmany(&self, size: Option) -> PyResult>> { Err(PyErr::new::( "fetchmany() is not supported in this version", )) } } fn stmt_is_dml(sql: &str) -> bool { let sql = sql.trim(); let sql = sql.to_uppercase(); sql.starts_with("INSERT") || sql.starts_with("UPDATE") || sql.starts_with("DELETE") } fn stmt_is_ddl(sql: &str) -> bool { let sql = sql.trim(); let sql = sql.to_uppercase(); sql.starts_with("CREATE") || sql.starts_with("ALTER") || sql.starts_with("DROP") } fn stmt_is_tx(sql: &str) -> bool { let sql = sql.trim(); let sql = sql.to_uppercase(); sql.starts_with("BEGIN") || sql.starts_with("COMMIT") || sql.starts_with("ROLLBACK") } #[pyclass(unsendable)] #[derive(Clone)] pub struct Connection { conn: Arc, _io: Arc, } #[pymethods] impl Connection { pub fn cursor(&self) -> Result { Ok(Cursor { arraysize: 1, conn: self.clone(), description: None, rowcount: -1, smt: None, }) } pub fn close(&self) -> PyResult<()> { self.conn.close().map_err(|e| { PyErr::new::(format!("Failed to close connection: {e:?}")) })?; Ok(()) } pub fn commit(&self) -> PyResult<()> { if !self.conn.get_auto_commit() { self.conn.execute("COMMIT").map_err(|e| { PyErr::new::(format!("Failed to commit: {e:?}")) })?; self.conn.execute("BEGIN").map_err(|e| { PyErr::new::(format!("Failed to commit: {e:?}")) })?; } Ok(()) } pub fn rollback(&self) -> PyResult<()> { if !self.conn.get_auto_commit() { self.conn.execute("ROLLBACK").map_err(|e| { PyErr::new::(format!("Failed to commit: {e:?}")) })?; self.conn.execute("BEGIN").map_err(|e| { PyErr::new::(format!("Failed to commit: {e:?}")) })?; } Ok(()) } fn __enter__(&self) -> PyResult { Ok(self.clone()) } fn __exit__( &self, _exc_type: Option<&Bound<'_, PyAny>>, _exc_val: Option<&Bound<'_, PyAny>>, _exc_tb: Option<&Bound<'_, PyAny>>, ) -> PyResult<()> { self.close() } } impl Drop for Connection { fn drop(&mut self) { if Arc::strong_count(&self.conn) == 1 { self.conn .close() .expect("Failed to drop (close) connection"); } } } #[allow(clippy::arc_with_non_send_sync)] #[pyfunction(signature = (path))] pub fn connect(path: &str) -> Result { match turso_core::Connection::from_uri(path, true, false, false, false, false, false) { Ok((io, conn)) => Ok(Connection { conn, _io: io }), Err(e) => Err(PyErr::new::(format!( "Failed to create connection: {e:?}" )) .into()), } } fn row_to_py(py: Python, row: &turso_core::Row) -> Result { let mut py_values = Vec::new(); for value in row.get_values() { match value { turso_core::Value::Null => py_values.push(py.None()), turso_core::Value::Integer(i) => py_values.push(i.into_pyobject(py)?.into()), turso_core::Value::Float(f) => py_values.push(f.into_pyobject(py)?.into()), turso_core::Value::Text(s) => py_values.push(s.as_str().into_pyobject(py)?.into()), turso_core::Value::Blob(b) => py_values.push(PyBytes::new(py, b.as_slice()).into()), } } Ok(PyTuple::new(py, &py_values) .unwrap() .into_pyobject(py)? .into()) } /// Converts a Python object to a Turso Value fn py_to_db_value(obj: &Bound) -> Result { if obj.is_none() { Ok(Value::Null) } else if let Ok(integer) = obj.extract::() { Ok(Value::Integer(integer)) } else if let Ok(float) = obj.extract::() { Ok(Value::Float(float)) } else if let Ok(string) = obj.extract::() { Ok(Value::Text(string.into())) } else if let Ok(bytes) = obj.downcast::() { Ok(Value::Blob(bytes.as_bytes().to_vec())) } else { return Err(PyErr::new::(format!( "Unsupported Python type: {}", obj.get_type().name()? )) .into()); } } #[pymodule] fn _turso(m: &Bound) -> PyResult<()> { m.add("__version__", env!("CARGO_PKG_VERSION"))?; m.add_class::()?; m.add_class::()?; m.add_function(wrap_pyfunction!(connect, m)?)?; m.add("Warning", m.py().get_type::())?; m.add("Error", m.py().get_type::())?; m.add("InterfaceError", m.py().get_type::())?; m.add("DatabaseError", m.py().get_type::())?; m.add("DataError", m.py().get_type::())?; m.add("OperationalError", m.py().get_type::())?; m.add("IntegrityError", m.py().get_type::())?; m.add("InternalError", m.py().get_type::())?; m.add("ProgrammingError", m.py().get_type::())?; m.add("NotSupportedError", m.py().get_type::())?; Ok(()) }