use std::rc::Rc; use sqlite3_parser::ast; use crate::{schema::Index, Result}; use super::plan::{ DeletePlan, Direction, IterationDirection, Operation, Plan, Search, SelectPlan, TableReference, WhereTerm, }; pub fn optimize_plan(plan: &mut Plan) -> Result<()> { match plan { Plan::Select(plan) => optimize_select_plan(plan), Plan::Delete(plan) => optimize_delete_plan(plan), } } /** * Make a few passes over the plan to optimize it. * TODO: these could probably be done in less passes, * but having them separate makes them easier to understand */ fn optimize_select_plan(plan: &mut SelectPlan) -> Result<()> { optimize_subqueries(plan)?; rewrite_exprs_select(plan)?; if let ConstantConditionEliminationResult::ImpossibleCondition = eliminate_constant_conditions(&mut plan.where_clause)? { plan.contains_constant_false_condition = true; return Ok(()); } use_indexes( &mut plan.table_references, &plan.available_indexes, &mut plan.where_clause, )?; eliminate_unnecessary_orderby(plan)?; Ok(()) } fn optimize_delete_plan(plan: &mut DeletePlan) -> Result<()> { rewrite_exprs_delete(plan)?; if let ConstantConditionEliminationResult::ImpossibleCondition = eliminate_constant_conditions(&mut plan.where_clause)? { plan.contains_constant_false_condition = true; return Ok(()); } use_indexes( &mut plan.table_references, &plan.available_indexes, &mut plan.where_clause, )?; Ok(()) } fn optimize_subqueries(plan: &mut SelectPlan) -> Result<()> { for table in plan.table_references.iter_mut() { if let Operation::Subquery { plan, .. } = &mut table.op { optimize_select_plan(&mut *plan)?; } } Ok(()) } fn query_is_already_ordered_by( table_references: &[TableReference], key: &mut ast::Expr, available_indexes: &Vec>, ) -> Result { let first_table = table_references.first(); if first_table.is_none() { return Ok(false); } let table_reference = first_table.unwrap(); match &table_reference.op { Operation::Scan { .. } => Ok(key.is_rowid_alias_of(0)), Operation::Search(search) => match search { Search::RowidEq { .. } => Ok(key.is_rowid_alias_of(0)), Search::RowidSearch { .. } => Ok(key.is_rowid_alias_of(0)), Search::IndexSearch { index, .. } => { let index_idx = key.check_index_scan(0, &table_reference, available_indexes)?; let index_is_the_same = index_idx .map(|i| Rc::ptr_eq(&available_indexes[i], index)) .unwrap_or(false); Ok(index_is_the_same) } }, _ => Ok(false), } } fn eliminate_unnecessary_orderby(plan: &mut SelectPlan) -> Result<()> { if plan.order_by.is_none() { return Ok(()); } if plan.table_references.len() == 0 { return Ok(()); } let o = plan.order_by.as_mut().unwrap(); if o.len() != 1 { // TODO: handle multiple order by keys return Ok(()); } let (key, direction) = o.first_mut().unwrap(); let already_ordered = query_is_already_ordered_by(&plan.table_references, key, &plan.available_indexes)?; if already_ordered { push_scan_direction(&mut plan.table_references[0], direction); plan.order_by = None; } Ok(()) } /** * Use indexes where possible. * Right now we make decisions about using indexes ONLY based on condition expressions, not e.g. ORDER BY or others. * This is just because we are WIP. * * When this function is called, condition expressions from both the actual WHERE clause and the JOIN clauses are in the where_clause vector. * If we find a condition that can be used to index scan, we pop it off from the where_clause vector and put it into a Search operation. * We put it there simply because it makes it a bit easier to track during translation. */ fn use_indexes( table_references: &mut [TableReference], available_indexes: &Vec>, where_clause: &mut Vec, ) -> Result<()> { if where_clause.is_empty() { return Ok(()); } 'outer: for (table_index, table_reference) in table_references.iter_mut().enumerate() { if let Operation::Scan { .. } = &mut table_reference.op { let mut i = 0; while i < where_clause.len() { let cond = where_clause.get_mut(i).unwrap(); if let Some(index_search) = try_extract_index_search_expression( cond, table_index, &table_reference, available_indexes, )? { where_clause.remove(i); table_reference.op = Operation::Search(index_search); continue 'outer; } i += 1; } } } Ok(()) } #[derive(Debug, PartialEq, Clone)] enum ConstantConditionEliminationResult { Continue, ImpossibleCondition, } /// Removes predicates that are always true. /// Returns a ConstantEliminationResult indicating whether any predicates are always false. /// This is used to determine whether the query can be aborted early. fn eliminate_constant_conditions( where_clause: &mut Vec, ) -> Result { let mut i = 0; while i < where_clause.len() { let predicate = &where_clause[i]; if predicate.expr.is_always_true()? { // true predicates can be removed since they don't affect the result where_clause.remove(i); } else if predicate.expr.is_always_false()? { // any false predicate in a list of conjuncts (AND-ed predicates) will make the whole list false, // except an outer join condition, because that just results in NULLs, not skipping the whole loop if predicate.from_outer_join { i += 1; continue; } where_clause.truncate(0); return Ok(ConstantConditionEliminationResult::ImpossibleCondition); } else { i += 1; } } Ok(ConstantConditionEliminationResult::Continue) } fn push_scan_direction(table: &mut TableReference, direction: &Direction) { match &mut table.op { Operation::Scan { iter_dir, .. } => { if iter_dir.is_none() { match direction { Direction::Ascending => *iter_dir = Some(IterationDirection::Forwards), Direction::Descending => *iter_dir = Some(IterationDirection::Backwards), } } } _ => {} } } fn rewrite_exprs_select(plan: &mut SelectPlan) -> Result<()> { for rc in plan.result_columns.iter_mut() { rewrite_expr(&mut rc.expr)?; } for agg in plan.aggregates.iter_mut() { rewrite_expr(&mut agg.original_expr)?; } for cond in plan.where_clause.iter_mut() { rewrite_expr(&mut cond.expr)?; } if let Some(group_by) = &mut plan.group_by { for expr in group_by.exprs.iter_mut() { rewrite_expr(expr)?; } } if let Some(order_by) = &mut plan.order_by { for (expr, _) in order_by.iter_mut() { rewrite_expr(expr)?; } } Ok(()) } fn rewrite_exprs_delete(plan: &mut DeletePlan) -> Result<()> { for cond in plan.where_clause.iter_mut() { rewrite_expr(&mut cond.expr)?; } Ok(()) } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum ConstantPredicate { AlwaysTrue, AlwaysFalse, } /** Helper trait for expressions that can be optimized Implemented for ast::Expr */ pub trait Optimizable { // if the expression is a constant expression e.g. '1', returns the constant condition fn check_constant(&self) -> Result>; fn is_always_true(&self) -> Result { Ok(self .check_constant()? .map_or(false, |c| c == ConstantPredicate::AlwaysTrue)) } fn is_always_false(&self) -> Result { Ok(self .check_constant()? .map_or(false, |c| c == ConstantPredicate::AlwaysFalse)) } fn is_rowid_alias_of(&self, table_index: usize) -> bool; fn check_index_scan( &mut self, table_index: usize, table_reference: &TableReference, available_indexes: &[Rc], ) -> Result>; } impl Optimizable for ast::Expr { fn is_rowid_alias_of(&self, table_index: usize) -> bool { match self { Self::Column { table, is_rowid_alias, .. } => *is_rowid_alias && *table == table_index, _ => false, } } fn check_index_scan( &mut self, table_index: usize, table_reference: &TableReference, available_indexes: &[Rc], ) -> Result> { match self { Self::Column { table, column, .. } => { if *table != table_index { return Ok(None); } for (idx, index) in available_indexes.iter().enumerate() { if index.table_name == table_reference.table.get_name() { let column = table_reference.table.get_column_at(*column); if index.columns.first().unwrap().name == column.name { return Ok(Some(idx)); } } } Ok(None) } Self::Binary(lhs, op, rhs) => { // Only consider index scans for binary ops that are comparisons. // e.g. "t1.id = t2.id" is a valid index scan, but "t1.id + 1" is not. // // TODO/optimization: consider detecting index scan on e.g. table t1 in // "WHERE t1.id + 1 = t2.id" // here the Expr could be rewritten to "t1.id = t2.id - 1" // and then t1.id could be used as an index key. if !matches!( *op, ast::Operator::Equals | ast::Operator::Greater | ast::Operator::GreaterEquals | ast::Operator::Less | ast::Operator::LessEquals ) { return Ok(None); } let lhs_index = lhs.check_index_scan(table_index, &table_reference, available_indexes)?; if lhs_index.is_some() { return Ok(lhs_index); } let rhs_index = rhs.check_index_scan(table_index, &table_reference, available_indexes)?; if rhs_index.is_some() { // swap lhs and rhs let swapped_operator = match *op { ast::Operator::Equals => ast::Operator::Equals, ast::Operator::Greater => ast::Operator::Less, ast::Operator::GreaterEquals => ast::Operator::LessEquals, ast::Operator::Less => ast::Operator::Greater, ast::Operator::LessEquals => ast::Operator::GreaterEquals, _ => unreachable!(), }; let lhs_new = rhs.take_ownership(); let rhs_new = lhs.take_ownership(); *self = Self::Binary(Box::new(lhs_new), swapped_operator, Box::new(rhs_new)); return Ok(rhs_index); } Ok(None) } _ => Ok(None), } } fn check_constant(&self) -> Result> { match self { Self::Literal(lit) => match lit { ast::Literal::Null => Ok(Some(ConstantPredicate::AlwaysFalse)), ast::Literal::Numeric(b) => { if let Ok(int_value) = b.parse::() { return Ok(Some(if int_value == 0 { ConstantPredicate::AlwaysFalse } else { ConstantPredicate::AlwaysTrue })); } if let Ok(float_value) = b.parse::() { return Ok(Some(if float_value == 0.0 { ConstantPredicate::AlwaysFalse } else { ConstantPredicate::AlwaysTrue })); } Ok(None) } ast::Literal::String(s) => { let without_quotes = s.trim_matches('\''); if let Ok(int_value) = without_quotes.parse::() { return Ok(Some(if int_value == 0 { ConstantPredicate::AlwaysFalse } else { ConstantPredicate::AlwaysTrue })); } if let Ok(float_value) = without_quotes.parse::() { return Ok(Some(if float_value == 0.0 { ConstantPredicate::AlwaysFalse } else { ConstantPredicate::AlwaysTrue })); } Ok(Some(ConstantPredicate::AlwaysFalse)) } _ => Ok(None), }, Self::Unary(op, expr) => { if *op == ast::UnaryOperator::Not { let trivial = expr.check_constant()?; return Ok(trivial.map(|t| match t { ConstantPredicate::AlwaysTrue => ConstantPredicate::AlwaysFalse, ConstantPredicate::AlwaysFalse => ConstantPredicate::AlwaysTrue, })); } if *op == ast::UnaryOperator::Negative { let trivial = expr.check_constant()?; return Ok(trivial); } Ok(None) } Self::InList { lhs: _, not, rhs } => { if rhs.is_none() { return Ok(Some(if *not { ConstantPredicate::AlwaysTrue } else { ConstantPredicate::AlwaysFalse })); } let rhs = rhs.as_ref().unwrap(); if rhs.is_empty() { return Ok(Some(if *not { ConstantPredicate::AlwaysTrue } else { ConstantPredicate::AlwaysFalse })); } Ok(None) } Self::Binary(lhs, op, rhs) => { let lhs_trivial = lhs.check_constant()?; let rhs_trivial = rhs.check_constant()?; match op { ast::Operator::And => { if lhs_trivial == Some(ConstantPredicate::AlwaysFalse) || rhs_trivial == Some(ConstantPredicate::AlwaysFalse) { return Ok(Some(ConstantPredicate::AlwaysFalse)); } if lhs_trivial == Some(ConstantPredicate::AlwaysTrue) && rhs_trivial == Some(ConstantPredicate::AlwaysTrue) { return Ok(Some(ConstantPredicate::AlwaysTrue)); } Ok(None) } ast::Operator::Or => { if lhs_trivial == Some(ConstantPredicate::AlwaysTrue) || rhs_trivial == Some(ConstantPredicate::AlwaysTrue) { return Ok(Some(ConstantPredicate::AlwaysTrue)); } if lhs_trivial == Some(ConstantPredicate::AlwaysFalse) && rhs_trivial == Some(ConstantPredicate::AlwaysFalse) { return Ok(Some(ConstantPredicate::AlwaysFalse)); } Ok(None) } _ => Ok(None), } } _ => Ok(None), } } } pub fn try_extract_index_search_expression( cond: &mut WhereTerm, table_index: usize, table_reference: &TableReference, available_indexes: &[Rc], ) -> Result> { if cond.eval_at_loop != table_index { return Ok(None); } match &mut cond.expr { ast::Expr::Binary(lhs, operator, rhs) => { if lhs.is_rowid_alias_of(table_index) { match operator { ast::Operator::Equals => { let rhs_owned = rhs.take_ownership(); return Ok(Some(Search::RowidEq { cmp_expr: WhereTerm { expr: rhs_owned, from_outer_join: cond.from_outer_join, eval_at_loop: cond.eval_at_loop, }, })); } ast::Operator::Greater | ast::Operator::GreaterEquals | ast::Operator::Less | ast::Operator::LessEquals => { let rhs_owned = rhs.take_ownership(); return Ok(Some(Search::RowidSearch { cmp_op: *operator, cmp_expr: WhereTerm { expr: rhs_owned, from_outer_join: cond.from_outer_join, eval_at_loop: cond.eval_at_loop, }, })); } _ => {} } } if rhs.is_rowid_alias_of(table_index) { match operator { ast::Operator::Equals => { let lhs_owned = lhs.take_ownership(); return Ok(Some(Search::RowidEq { cmp_expr: WhereTerm { expr: lhs_owned, from_outer_join: cond.from_outer_join, eval_at_loop: cond.eval_at_loop, }, })); } ast::Operator::Greater | ast::Operator::GreaterEquals | ast::Operator::Less | ast::Operator::LessEquals => { let lhs_owned = lhs.take_ownership(); return Ok(Some(Search::RowidSearch { cmp_op: *operator, cmp_expr: WhereTerm { expr: lhs_owned, from_outer_join: cond.from_outer_join, eval_at_loop: cond.eval_at_loop, }, })); } _ => {} } } if let Some(index_index) = lhs.check_index_scan(table_index, &table_reference, available_indexes)? { match operator { ast::Operator::Equals | ast::Operator::Greater | ast::Operator::GreaterEquals | ast::Operator::Less | ast::Operator::LessEquals => { let rhs_owned = rhs.take_ownership(); return Ok(Some(Search::IndexSearch { index: available_indexes[index_index].clone(), cmp_op: *operator, cmp_expr: WhereTerm { expr: rhs_owned, from_outer_join: cond.from_outer_join, eval_at_loop: cond.eval_at_loop, }, })); } _ => {} } } if let Some(index_index) = rhs.check_index_scan(table_index, &table_reference, available_indexes)? { match operator { ast::Operator::Equals | ast::Operator::Greater | ast::Operator::GreaterEquals | ast::Operator::Less | ast::Operator::LessEquals => { let lhs_owned = lhs.take_ownership(); return Ok(Some(Search::IndexSearch { index: available_indexes[index_index].clone(), cmp_op: *operator, cmp_expr: WhereTerm { expr: lhs_owned, from_outer_join: cond.from_outer_join, eval_at_loop: cond.eval_at_loop, }, })); } _ => {} } } Ok(None) } _ => Ok(None), } } fn rewrite_expr(expr: &mut ast::Expr) -> Result<()> { match expr { ast::Expr::Id(id) => { // Convert "true" and "false" to 1 and 0 if id.0.eq_ignore_ascii_case("true") { *expr = ast::Expr::Literal(ast::Literal::Numeric(1.to_string())); return Ok(()); } if id.0.eq_ignore_ascii_case("false") { *expr = ast::Expr::Literal(ast::Literal::Numeric(0.to_string())); return Ok(()); } Ok(()) } ast::Expr::Between { lhs, not, start, end, } => { // Convert `y NOT BETWEEN x AND z` to `x > y OR y > z` let (lower_op, upper_op) = if *not { (ast::Operator::Greater, ast::Operator::Greater) } else { // Convert `y BETWEEN x AND z` to `x <= y AND y <= z` (ast::Operator::LessEquals, ast::Operator::LessEquals) }; rewrite_expr(start)?; rewrite_expr(lhs)?; rewrite_expr(end)?; let start = start.take_ownership(); let lhs = lhs.take_ownership(); let end = end.take_ownership(); let lower_bound = ast::Expr::Binary(Box::new(start), lower_op, Box::new(lhs.clone())); let upper_bound = ast::Expr::Binary(Box::new(lhs), upper_op, Box::new(end)); if *not { *expr = ast::Expr::Binary( Box::new(lower_bound), ast::Operator::Or, Box::new(upper_bound), ); } else { *expr = ast::Expr::Binary( Box::new(lower_bound), ast::Operator::And, Box::new(upper_bound), ); } Ok(()) } ast::Expr::Parenthesized(ref mut exprs) => { for subexpr in exprs.iter_mut() { rewrite_expr(subexpr)?; } let exprs = std::mem::take(exprs); *expr = ast::Expr::Parenthesized(exprs); Ok(()) } // Process other expressions recursively ast::Expr::Binary(lhs, _, rhs) => { rewrite_expr(lhs)?; rewrite_expr(rhs)?; Ok(()) } ast::Expr::FunctionCall { args, .. } => { if let Some(args) = args { for arg in args.iter_mut() { rewrite_expr(arg)?; } } Ok(()) } ast::Expr::Unary(_, arg) => { rewrite_expr(arg)?; Ok(()) } _ => Ok(()), } } trait TakeOwnership { fn take_ownership(&mut self) -> Self; } impl TakeOwnership for ast::Expr { fn take_ownership(&mut self) -> Self { std::mem::replace(self, ast::Expr::Literal(ast::Literal::Null)) } }