use std::rc::Rc; use sqlite3_parser::ast; use crate::{schema::Index, Result}; use super::plan::{ get_table_ref_bitmask_for_ast_expr, get_table_ref_bitmask_for_operator, BTreeTableReference, Direction, IterationDirection, Plan, Search, SourceOperator, }; /** * Make a few passes over the plan to optimize it. * TODO: these could probably be done in less passes, * but having them separate makes them easier to understand */ pub fn optimize_plan(mut select_plan: Plan) -> Result { push_predicates( &mut select_plan.source, &mut select_plan.where_clause, &select_plan.referenced_tables, )?; eliminate_constants(&mut select_plan.source)?; use_indexes( &mut select_plan.source, &select_plan.referenced_tables, &select_plan.available_indexes, )?; eliminate_unnecessary_orderby( &mut select_plan.source, &mut select_plan.order_by, &select_plan.referenced_tables, &select_plan.available_indexes, )?; Ok(select_plan) } fn _operator_is_already_ordered_by( operator: &mut SourceOperator, key: &mut ast::Expr, referenced_tables: &[BTreeTableReference], available_indexes: &Vec>, ) -> Result { match operator { SourceOperator::Scan { table_reference, .. } => Ok(key.is_rowid_alias_of(table_reference.table_index)), SourceOperator::Search { table_reference, search, .. } => match search { Search::PrimaryKeyEq { .. } => Ok(key.is_rowid_alias_of(table_reference.table_index)), Search::PrimaryKeySearch { .. } => { Ok(key.is_rowid_alias_of(table_reference.table_index)) } Search::IndexSearch { index, .. } => { let index_idx = key.check_index_scan( table_reference.table_index, referenced_tables, available_indexes, )?; let index_is_the_same = index_idx .map(|i| Rc::ptr_eq(&available_indexes[i], index)) .unwrap_or(false); Ok(index_is_the_same) } }, SourceOperator::Join { left, .. } => { _operator_is_already_ordered_by(left, key, referenced_tables, available_indexes) } _ => Ok(false), } } fn eliminate_unnecessary_orderby( operator: &mut SourceOperator, order_by: &mut Option>, referenced_tables: &[BTreeTableReference], available_indexes: &Vec>, ) -> Result<()> { if order_by.is_none() { return Ok(()); } let o = order_by.as_mut().unwrap(); if o.len() != 1 { // TODO: handle multiple order by keys return Ok(()); } let (key, direction) = o.first_mut().unwrap(); let already_ordered = _operator_is_already_ordered_by(operator, key, referenced_tables, available_indexes)?; if already_ordered { push_scan_direction(operator, direction); *order_by = None; } Ok(()) } /** * Use indexes where possible */ fn use_indexes( operator: &mut SourceOperator, referenced_tables: &[BTreeTableReference], available_indexes: &[Rc], ) -> Result<()> { match operator { SourceOperator::Search { .. } => Ok(()), SourceOperator::Scan { table_reference, predicates: filter, id, .. } => { if filter.is_none() { return Ok(()); } let fs = filter.as_mut().unwrap(); for i in 0..fs.len() { let f = fs[i].take_ownership(); let table_index = referenced_tables .iter() .position(|t| { Rc::ptr_eq(&t.table, &table_reference.table) && t.table_identifier == table_reference.table_identifier }) .unwrap(); match try_extract_index_search_expression( f, table_index, referenced_tables, available_indexes, )? { Either::Left(non_index_using_expr) => { fs[i] = non_index_using_expr; } Either::Right(index_search) => { fs.remove(i); *operator = SourceOperator::Search { id: *id, table_reference: table_reference.clone(), predicates: Some(fs.clone()), search: index_search, }; return Ok(()); } } } Ok(()) } SourceOperator::Join { left, right, .. } => { use_indexes(left, referenced_tables, available_indexes)?; use_indexes(right, referenced_tables, available_indexes)?; Ok(()) } SourceOperator::Nothing => Ok(()), } } #[derive(Debug, PartialEq, Clone)] enum ConstantConditionEliminationResult { Continue, ImpossibleCondition, } // removes predicates that are always true // returns a ConstantEliminationResult indicating whether any predicates are always false fn eliminate_constants( operator: &mut SourceOperator, ) -> Result { match operator { SourceOperator::Join { left, right, predicates, outer, .. } => { if eliminate_constants(left)? == ConstantConditionEliminationResult::ImpossibleCondition { return Ok(ConstantConditionEliminationResult::ImpossibleCondition); } if eliminate_constants(right)? == ConstantConditionEliminationResult::ImpossibleCondition && !*outer { return Ok(ConstantConditionEliminationResult::ImpossibleCondition); } if predicates.is_none() { return Ok(ConstantConditionEliminationResult::Continue); } let predicates = predicates.as_mut().unwrap(); let mut i = 0; while i < predicates.len() { let predicate = &predicates[i]; if predicate.is_always_true()? { predicates.remove(i); } else if predicate.is_always_false()? && !*outer { return Ok(ConstantConditionEliminationResult::ImpossibleCondition); } else { i += 1; } } Ok(ConstantConditionEliminationResult::Continue) } SourceOperator::Scan { predicates, .. } => { if let Some(ps) = predicates { let mut i = 0; while i < ps.len() { let predicate = &ps[i]; if predicate.is_always_true()? { ps.remove(i); } else if predicate.is_always_false()? { return Ok(ConstantConditionEliminationResult::ImpossibleCondition); } else { i += 1; } } if ps.is_empty() { *predicates = None; } } Ok(ConstantConditionEliminationResult::Continue) } SourceOperator::Search { predicates, .. } => { if let Some(predicates) = predicates { let mut i = 0; while i < predicates.len() { let predicate = &predicates[i]; if predicate.is_always_true()? { predicates.remove(i); } else if predicate.is_always_false()? { return Ok(ConstantConditionEliminationResult::ImpossibleCondition); } else { i += 1; } } } Ok(ConstantConditionEliminationResult::Continue) } SourceOperator::Nothing => Ok(ConstantConditionEliminationResult::Continue), } } /** Recursively pushes predicates down the tree, as far as possible. */ fn push_predicates( operator: &mut SourceOperator, where_clause: &mut Option>, referenced_tables: &Vec, ) -> Result<()> { if let Some(predicates) = where_clause { let mut i = 0; while i < predicates.len() { let predicate = predicates[i].take_ownership(); let Some(predicate) = push_predicate(operator, predicate, referenced_tables)? else { predicates.remove(i); continue; }; predicates[i] = predicate; i += 1; } if predicates.is_empty() { *where_clause = None; } } match operator { SourceOperator::Join { left, right, predicates, outer, .. } => { push_predicates(left, where_clause, referenced_tables)?; push_predicates(right, where_clause, referenced_tables)?; if predicates.is_none() { return Ok(()); } let predicates = predicates.as_mut().unwrap(); let mut i = 0; while i < predicates.len() { // try to push the predicate to the left side first, then to the right side // temporarily take ownership of the predicate let predicate_owned = predicates[i].take_ownership(); // left join predicates cant be pushed to the left side let push_result = if *outer { Some(predicate_owned) } else { push_predicate(left, predicate_owned, referenced_tables)? }; // if the predicate was pushed to a child, remove it from the list let Some(predicate) = push_result else { predicates.remove(i); continue; }; // otherwise try to push it to the right side // if it was pushed to the right side, remove it from the list let Some(predicate) = push_predicate(right, predicate, referenced_tables)? else { predicates.remove(i); continue; }; // otherwise keep the predicate in the list predicates[i] = predicate; i += 1; } Ok(()) } SourceOperator::Scan { .. } => Ok(()), SourceOperator::Search { .. } => Ok(()), SourceOperator::Nothing => Ok(()), } } /** Push a single predicate down the tree, as far as possible. Returns Ok(None) if the predicate was pushed, otherwise returns itself as Ok(Some(predicate)) */ fn push_predicate( operator: &mut SourceOperator, predicate: ast::Expr, referenced_tables: &Vec, ) -> Result> { match operator { SourceOperator::Scan { predicates, table_reference, .. } => { let table_index = referenced_tables .iter() .position(|t| t.table_identifier == table_reference.table_identifier) .unwrap(); let predicate_bitmask = get_table_ref_bitmask_for_ast_expr(referenced_tables, &predicate)?; // the expression is allowed to refer to tables on its left, i.e. the righter bits in the mask // e.g. if this table is 0010, and the table on its right in the join is 0100: // if predicate_bitmask is 0011, the predicate can be pushed (refers to this table and the table on its left) // if predicate_bitmask is 0001, the predicate can be pushed (refers to the table on its left) // if predicate_bitmask is 0101, the predicate can't be pushed (refers to this table and a table on its right) let next_table_on_the_right_in_join_bitmask = 1 << (table_index + 1); if predicate_bitmask >= next_table_on_the_right_in_join_bitmask { return Ok(Some(predicate)); } if predicates.is_none() { predicates.replace(vec![predicate]); } else { predicates.as_mut().unwrap().push(predicate); } Ok(None) } SourceOperator::Search { .. } => Ok(Some(predicate)), SourceOperator::Join { left, right, predicates: join_on_preds, outer, .. } => { let push_result_left = push_predicate(left, predicate, referenced_tables)?; if push_result_left.is_none() { return Ok(None); } let push_result_right = push_predicate(right, push_result_left.unwrap(), referenced_tables)?; if push_result_right.is_none() { return Ok(None); } if *outer { return Ok(Some(push_result_right.unwrap())); } let pred = push_result_right.unwrap(); let table_refs_bitmask = get_table_ref_bitmask_for_ast_expr(referenced_tables, &pred)?; let left_bitmask = get_table_ref_bitmask_for_operator(referenced_tables, left)?; let right_bitmask = get_table_ref_bitmask_for_operator(referenced_tables, right)?; if table_refs_bitmask & left_bitmask == 0 || table_refs_bitmask & right_bitmask == 0 { return Ok(Some(pred)); } if join_on_preds.is_none() { join_on_preds.replace(vec![pred]); } else { join_on_preds.as_mut().unwrap().push(pred); } Ok(None) } SourceOperator::Nothing => Ok(Some(predicate)), } } fn push_scan_direction(operator: &mut SourceOperator, direction: &Direction) { match operator { SourceOperator::Scan { iter_dir, .. } => { if iter_dir.is_none() { match direction { Direction::Ascending => *iter_dir = Some(IterationDirection::Forwards), Direction::Descending => *iter_dir = Some(IterationDirection::Backwards), } } } _ => todo!(), } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum ConstantPredicate { AlwaysTrue, AlwaysFalse, } /** Helper trait for expressions that can be optimized Implemented for ast::Expr */ pub trait Optimizable { // if the expression is a constant expression e.g. '1', returns the constant condition fn check_constant(&self) -> Result>; fn is_always_true(&self) -> Result { Ok(self .check_constant()? .map_or(false, |c| c == ConstantPredicate::AlwaysTrue)) } fn is_always_false(&self) -> Result { Ok(self .check_constant()? .map_or(false, |c| c == ConstantPredicate::AlwaysFalse)) } fn is_rowid_alias_of(&self, table_index: usize) -> bool; fn check_index_scan( &mut self, table_index: usize, referenced_tables: &[BTreeTableReference], available_indexes: &[Rc], ) -> Result>; } impl Optimizable for ast::Expr { fn is_rowid_alias_of(&self, table_index: usize) -> bool { match self { ast::Expr::Column { table, is_rowid_alias, .. } => *is_rowid_alias && *table == table_index, _ => false, } } fn check_index_scan( &mut self, table_index: usize, referenced_tables: &[BTreeTableReference], available_indexes: &[Rc], ) -> Result> { match self { ast::Expr::Column { table, column, .. } => { for (idx, index) in available_indexes.iter().enumerate() { if index.table_name == referenced_tables[*table].table.name { let column = referenced_tables[*table] .table .columns .get(*column) .unwrap(); if index.columns.first().unwrap().name == column.name { return Ok(Some(idx)); } } } Ok(None) } ast::Expr::Binary(lhs, op, rhs) => { let lhs_index = lhs.check_index_scan(table_index, referenced_tables, available_indexes)?; if lhs_index.is_some() { return Ok(lhs_index); } let rhs_index = rhs.check_index_scan(table_index, referenced_tables, available_indexes)?; if rhs_index.is_some() { // swap lhs and rhs let lhs_new = rhs.take_ownership(); let rhs_new = lhs.take_ownership(); *self = ast::Expr::Binary(Box::new(lhs_new), *op, Box::new(rhs_new)); return Ok(rhs_index); } Ok(None) } _ => Ok(None), } } fn check_constant(&self) -> Result> { match self { ast::Expr::Literal(lit) => match lit { ast::Literal::Null => Ok(Some(ConstantPredicate::AlwaysFalse)), ast::Literal::Numeric(b) => { if let Ok(int_value) = b.parse::() { return Ok(Some(if int_value == 0 { ConstantPredicate::AlwaysFalse } else { ConstantPredicate::AlwaysTrue })); } if let Ok(float_value) = b.parse::() { return Ok(Some(if float_value == 0.0 { ConstantPredicate::AlwaysFalse } else { ConstantPredicate::AlwaysTrue })); } Ok(None) } ast::Literal::String(s) => { let without_quotes = s.trim_matches('\''); if let Ok(int_value) = without_quotes.parse::() { return Ok(Some(if int_value == 0 { ConstantPredicate::AlwaysFalse } else { ConstantPredicate::AlwaysTrue })); } if let Ok(float_value) = without_quotes.parse::() { return Ok(Some(if float_value == 0.0 { ConstantPredicate::AlwaysFalse } else { ConstantPredicate::AlwaysTrue })); } Ok(Some(ConstantPredicate::AlwaysFalse)) } _ => Ok(None), }, ast::Expr::Unary(op, expr) => { if *op == ast::UnaryOperator::Not { let trivial = expr.check_constant()?; return Ok(trivial.map(|t| match t { ConstantPredicate::AlwaysTrue => ConstantPredicate::AlwaysFalse, ConstantPredicate::AlwaysFalse => ConstantPredicate::AlwaysTrue, })); } if *op == ast::UnaryOperator::Negative { let trivial = expr.check_constant()?; return Ok(trivial); } Ok(None) } ast::Expr::InList { lhs: _, not, rhs } => { if rhs.is_none() { return Ok(Some(if *not { ConstantPredicate::AlwaysTrue } else { ConstantPredicate::AlwaysFalse })); } let rhs = rhs.as_ref().unwrap(); if rhs.is_empty() { return Ok(Some(if *not { ConstantPredicate::AlwaysTrue } else { ConstantPredicate::AlwaysFalse })); } Ok(None) } ast::Expr::Binary(lhs, op, rhs) => { let lhs_trivial = lhs.check_constant()?; let rhs_trivial = rhs.check_constant()?; match op { ast::Operator::And => { if lhs_trivial == Some(ConstantPredicate::AlwaysFalse) || rhs_trivial == Some(ConstantPredicate::AlwaysFalse) { return Ok(Some(ConstantPredicate::AlwaysFalse)); } if lhs_trivial == Some(ConstantPredicate::AlwaysTrue) && rhs_trivial == Some(ConstantPredicate::AlwaysTrue) { return Ok(Some(ConstantPredicate::AlwaysTrue)); } Ok(None) } ast::Operator::Or => { if lhs_trivial == Some(ConstantPredicate::AlwaysTrue) || rhs_trivial == Some(ConstantPredicate::AlwaysTrue) { return Ok(Some(ConstantPredicate::AlwaysTrue)); } if lhs_trivial == Some(ConstantPredicate::AlwaysFalse) && rhs_trivial == Some(ConstantPredicate::AlwaysFalse) { return Ok(Some(ConstantPredicate::AlwaysFalse)); } Ok(None) } _ => Ok(None), } } _ => Ok(None), } } } pub enum Either { Left(T), Right(U), } pub fn try_extract_index_search_expression( expr: ast::Expr, table_index: usize, referenced_tables: &[BTreeTableReference], available_indexes: &[Rc], ) -> Result> { match expr { ast::Expr::Binary(mut lhs, operator, mut rhs) => { if lhs.is_rowid_alias_of(table_index) { match operator { ast::Operator::Equals => { return Ok(Either::Right(Search::PrimaryKeyEq { cmp_expr: *rhs })); } ast::Operator::Greater | ast::Operator::GreaterEquals | ast::Operator::Less | ast::Operator::LessEquals => { return Ok(Either::Right(Search::PrimaryKeySearch { cmp_op: operator, cmp_expr: *rhs, })); } _ => {} } } if rhs.is_rowid_alias_of(table_index) { match operator { ast::Operator::Equals => { return Ok(Either::Right(Search::PrimaryKeyEq { cmp_expr: *lhs })); } ast::Operator::Greater | ast::Operator::GreaterEquals | ast::Operator::Less | ast::Operator::LessEquals => { return Ok(Either::Right(Search::PrimaryKeySearch { cmp_op: operator, cmp_expr: *lhs, })); } _ => {} } } if let Some(index_index) = lhs.check_index_scan(table_index, referenced_tables, available_indexes)? { match operator { ast::Operator::Equals | ast::Operator::Greater | ast::Operator::GreaterEquals | ast::Operator::Less | ast::Operator::LessEquals => { return Ok(Either::Right(Search::IndexSearch { index: available_indexes[index_index].clone(), cmp_op: operator, cmp_expr: *rhs, })); } _ => {} } } if let Some(index_index) = rhs.check_index_scan(table_index, referenced_tables, available_indexes)? { match operator { ast::Operator::Equals | ast::Operator::Greater | ast::Operator::GreaterEquals | ast::Operator::Less | ast::Operator::LessEquals => { return Ok(Either::Right(Search::IndexSearch { index: available_indexes[index_index].clone(), cmp_op: operator, cmp_expr: *lhs, })); } _ => {} } } Ok(Either::Left(ast::Expr::Binary(lhs, operator, rhs))) } _ => Ok(Either::Left(expr)), } } trait TakeOwnership { fn take_ownership(&mut self) -> Self; } impl TakeOwnership for ast::Expr { fn take_ownership(&mut self) -> Self { std::mem::replace(self, ast::Expr::Literal(ast::Literal::Null)) } } impl TakeOwnership for SourceOperator { fn take_ownership(&mut self) -> Self { std::mem::replace(self, SourceOperator::Nothing) } }