With this change, the following two queries are considered equivalent:
```sql
SELECT value FROM generate_series(5, 50);
SELECT value FROM generate_series WHERE start = 5 AND stop = 50;
```
Arguments passed in parentheses to the virtual table name are now
matched to hidden columns.
Column references are still not supported as table-valued function
arguments. The only difference is that previously, a query like:
```sql
SELECT one.value, series.value
FROM (SELECT 1 AS value) one, generate_series(one.value, 3) series;
```
would cause a panic. Now, it returns a proper error message instead.
Adding support for column references is more nuanced for two main
reasons:
- We need to ensure that in joins where a TVF depends on other tables,
those other tables are processed first. For example, in:
```sql
SELECT one.value, series.value
FROM generate_series(one.value, 3) series, (SELECT 1 AS value) one;
```
the one table must be processed by the top-level loop, and series must
be nested.
- For outer joins involving TVFs, the arguments must be treated as ON
predicates, not WHERE predicates.
We need to enumerate first and filter afterward — not the other way
around — because we later use the indexes produced by `enumerate` to
access the original `predicates` slice.
Fixes DELETE not emitting conditional jumps at all if the associated
WhereTerm is a constant, e.g.
```sql
limbo> create table t(x);
limbo> explain DELETE FROM t WHERE 5-5;
addr opcode p1 p2 p3 p4 p5 comment
---- ----------------- ---- ---- ---- ------------- -- -------
0 Init 0 7 0 0 Start at 7
1 OpenWrite 0 2 0 0 root=2; t
2 Rewind 0 6 0 0 Rewind table t
3 RowId 0 1 0 0 r[1]=t.rowid
4 Delete 0 0 0 0
5 Next 0 3 0 0
6 Halt 0 0 0 0
7 Transaction 0 1 0 0 write=true
8 Goto 0 1 0 0
```
I was adding more stuff to the simulator in a Branch of mine, and I
caught this error with delete. Upstreaming the fix here. As we do with
Update, I added the translation step for the `WhereTerms` of the query.
Edit: Closes#1732. Closes#1733. Closes#1734. Closes#1735. Closes
#1736. Closes#1738. Closes#1739. Closes#1740.
Edit: Also pushes constant where term translation to `init_loop` for
Update and Select as well.
Reviewed-by: Jussi Saurio <jussi.saurio@gmail.com>
Closes#1746
Previously, the logic for collecting non-aggregate columns was duplicated
across multiple locations and implemented inconsistently. This caused a
bug that was revealed by the refactoring in this commit (see the added
test).
Again found when fuzzing nested where clause subqueries:
Aggregate registers need to be NULLed at the start because the same
registers might be reused on another invocation of a subquery, and if
they are not NULLed, the 2nd invocation of the same subquery will have
values left over from the first invocation.
Reviewed-by: Preston Thorpe (@PThorpe92)
Closes#1614
Currently we have this:
program.alloc_cursor_id(Option<String>, CursorType)`
where the String is the table's name or alias ('users' or 'u' in
the query).
This is problematic because this can happen:
`SELECT * FROM t WHERE EXISTS (SELECT * FROM t)`
There are two cursors, both with identifier 't'. This causes a bug
where the program will use the same cursor for both the main query
and the subquery, since they are keyed by 't'.
Instead introduce `CursorKey`, which is a combination of:
1. `TableInternalId`, and
2. index name (Option<String> -- in case of index cursors.
This should provide key uniqueness for cursors:
`SELECT * FROM t WHERE EXISTS (SELECT * FROM t)`
here the first 't' will have a different `TableInternalId` than the
second `t`, so there is no clash.
Currently in the main translation logic after planning and optimization,
we don't _really_ need to pass a &mut Vec<WhereTerm> around anymore, except
for the fact that virtual table constraint resolution is done ad-hoc in
`init_loop()`. Even there, the only thing we mutate is `WhereTerm::consumed`
which is a boolean indicating that the term has been "used up" by the optimizer
and shouldn't be evaluated as a normal where clause condition anymore.
In the upcoming branch for WHERE clause subqueries, I want to store immutable
references to WHERE clause expressions in `Resolver`, but this is unfortunately
not possible if we still use the aforementioned mutable references.
Hence, we can temporarily make `WhereTerm::consumed` a `Cell<bool>` which allows
us to pass an immutable reference to `init_loop()`, and the `Cell` can be removed
once the virtual table constraint resolution is moved to an earlier part of the
query processing pipeline.
Currently we have some usages of LIMIT where the actual limit counter
is initialized next to the DecrJumpZero instruction, and then
`program.mark_last_insn_constant()` is used to hoist the counter
initialization to the beginning of the program.
This is very fragile, and already FROM clause subquery handling works
around this with a hack (removed in this PR), and (upcoming) WHERE clause
subqueries would also run into problems because of this, because the LIMIT
might need to be initialized once for every iteration of the subquery.
This PR removes those usages for LIMIT, and LIMIT processing is now more
intuitive:
- limit counter is now initialized at the start of the query processing
- a function init_limit() is extracted to do this for select/update/delete
Currently our "table id"/"table no"/"table idx" references always
use the direct index of the `TableReference` in the plan, e.g. in
`SelectPlan::table_references`. For example:
```rust
Expr::Column { table: 0, column: 3, .. }
```
refers to the 0'th table in the `table_references` list.
This is a fragile approach because it assumes the table_references
list is stable for the lifetime of the query processing. This has so
far been the case, but there exist certain query transformations,
e.g. subquery unnesting, that may fold new table references from
a subquery (which has its own table ref list) into the table reference
list of the parent.
If such a transformation is made, then potentially all of the Expr::Column
references to tables will become invalid. Consider this example:
```sql
-- Assume tables: users(id, age), orders(user_id, amount)
-- Get total amount spent per user on orders over $100
SELECT u.id, sub.total
FROM users u JOIN
(SELECT user_id, SUM(amount) as total
FROM orders o
WHERE o.amount > 100
GROUP BY o.user_id) sub
WHERE u.id = sub.user_id
-- Before subquery unnesting:
-- Main query table_references: [users, sub]
-- u.id refers to table 0, column 0
-- sub.total refers to table 1, column 1
--
-- Subquery table_references: [orders]
-- o.user_id refers to table 0, column 0
-- o.amount refers to table 0, column 1
--
-- After unnesting and folding subquery tables into main query,
-- the query might look like this:
SELECT u.id, SUM(o.amount) as total
FROM users u JOIN orders o ON u.id = o.user_id
WHERE o.amount > 100
GROUP BY u.id;
-- Main query table_references: [users, orders]
-- u.id refers to table index 0 (correct)
-- o.amount refers to table index 0 (incorrect, should be 1)
-- o.user_id refers to table index 0 (incorrect, should be 1)
```
We could ofc traverse every expression in the subquery and rewrite
the table indexes to be correct, but if we instead use stable identifiers
for each table reference, then all the column references will continue
to be correct.
Hence, this PR introduces a `TableInternalId` used in `TableReference`
as well as `Expr::Column` and `Expr::Rowid` so that this kind of query
transformations can happen with less pain.
For example, implementing `SELECT DISTINCT` (#1517) and `UNION` (#1545)
require that we are able to create indexes without a rowid column
present. Similarly, `WITHOUT ROWID` tables require this.
I implemented this by replacing the `rowid` and `empty_record`
properties in `BtreeCursor` with
```rust
/// Whether the cursor is currently pointing to a record.
#[derive(Debug, Clone, Copy, PartialEq)]
enum CursorHasRecord {
Yes {
rowid: Option<u64>, // not all indexes and btrees have rowids, so this is optional.
},
No,
}
```
Reviewed-by: Pere Diaz Bou <pere-altea@homail.com>
Closes#1518
Previously the Operation enum consisted of:
- Operation::Scan
- Operation::Search
- Operation::Subquery
Which was always a dumb hack because what we really are doing is an
Operation::Scan on a "virtual"/"pseudo" table (overloaded names...)
derived from a subquery appearing in the FROM clause.
Hence, refactor the relevant data structures so that the Table enum now
contains a new variant:
Table::FromClauseSubquery
And the Operation enum only consists of Scan and Search.
```
SELECT * FROM (SELECT ...) sub;
-- the subquery here was previously interpreted as Operation::Subquery on a Table::Pseudo,
-- with a lot of special handling for Operation::Subquery in different code paths
-- now it's an Operation::Scan on a Table::FromClauseSubquery
```
No functional changes (intended, at least!)
Reviewed-by: Pere Diaz Bou <pere-altea@homail.com>
Closes#1529
Reviewable commit by commit. CI failures are not related.
Adds support for e.g. `select first_name, sum(distinct age),
count(distinct age), avg(distinct age) from users group by 1`
Implementation details:
- Creates an ephemeral index per distinct aggregate, and jumps over the
accumulation step if a duplicate is found
Closes#1507
Previously the Operation enum consisted of:
- Operation::Scan
- Operation::Search
- Operation::Subquery
Which was always a dumb hack because what we really are doing is
an Operation::Scan on a "virtual"/"pseudo" table (overloaded names...)
derived from a subquery appearing in the FROM clause.
Hence, refactor the relevant data structures so that the Table enum
now contains a new variant:
Table::FromClauseSubquery
And the Operation enum only consists of Scan and Search.
No functional changes (intended, at least!)