Adds initial support for window functions. For now, only existing
aggregate functions can be used as window functions—no specialized
window-specific functions are supported yet.
Currently, only the default frame definition is implemented:
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW EXCLUDE NO OTHERS.
hell yeah
concurrency tests passing now woosh
finally write tests passed
Most of the cdc tests are passing yay
autoincremeent draft
remove shared schema code that broke transactions
sequnce table should reset if table is drop
fmt
fmt
fmt
Instead of using static elements, use a dynamically generated DBSP-
circuit to keep views.
The DBSP circuit is generated from the logical plan, which only supports
enough for us to generate the DBSP circuit at the moment.
The state of the view is still kept inside the IncrementalView, instead
of materialized at the operator level. As a consequence, this still
depends on us always populating the view at startup. Fixing this is the
next step.
Closes#2815
This is a first pass on logical plans. The idea is that the DBSP
compiler will have an easier time operating on a logical plan, that
exposes linear algebra operators, than on SQL expr.
To keep this simple, we only support filters, aggregates and projections
for now, and will add more later as we agree on the core of the
implementation.
To make sure that the implementations is reasonable, I tried my best to
generate a couple of logical plans using Datafusion and seeing if we
were generating something similar.
Our plans are not the same as Datafusion's, though. There are two
important differences:
* SQLite is weird, and it allows columns that are not part of the group
by statement to appear in aggregated statements. For example:
select a, count(b) from table group by c; <== that "a" is usually not
permitted and datafusion will reject it. SQLite will be happy to
accept it
* Datafusion will not generate a projection on queries like this:
select sum(hex(a)) from table, and just keep the complex expression
hex(a) inside the aggregation. For DBSP to work well, we'll need an
explicit aggregation there.
Because there are no users yet, I am marking this as [cfg(test)], but
I wanted to put this out there ASAP.
This PR adds new `updates` column to the CDC table. This column holds
updated fields of the row in the following format:
```
[C boolean values where true set for changed columns]
[C values with updates where NULL is set for not-changed columns]
```
For example:
```
turso> UPDATE t SET y = 'turso', q = 'db' WHERE rowid = 1;
turso> SELECT bin_record_json_object('["x","y","z","q","x","y","z","q"]', updates) as updates FROM turso_cdc;
┌──────────────────────────────────────────────────────────────────┐
│ updates │
├──────────────────────────────────────────────────────────────────┤
│ {"x":0,"y":1,"z":0,"q":1,"x":null,"y":"turso","z":null,"q":"db"} │
└──────────────────────────────────────────────────────────────────┘
```
Also, this column works differently for `ALTER TABLE` statements where
update value for `sql` will be equal to the original `ALTER TABLE`:
```
turso> ALTER TABLE t ADD COLUMN t;
turso> SELECT bin_record_json_object('["type","name","tbl_name","rootpage","sql","type","name","tbl_name","rootpage","sql"]', updates) as updates FROM turso_cdc WHERE rowid = 2;
┌───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ updates │
├───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ {"type":0,"name":0,"tbl_name":0,"rootpage":0,"sql":1,"type":null,"name":null,"tbl_name":null,"rootpage":null,"sql":"ALTER TABLE t ADD COLUMN t;"} │
└───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
```
This will help turso-db to implement logical replication which supports
both column-level updates and schema changes
Closes#2538
This is just the bare minimum that I needed to convince myself that this
approach will work. The only views that we support are slices of the
main table: no aggregations, no joins, no projections.
drop view is implemented.
view population is implemented.
deletes, inserts and updates are implemented.
much like indexes before, a flag must be passed to enable views.
Closes: #1947
This PR replaces the `Name(pub String)` struct with a `Name` enum that
explicitly models how the name appeared in the source either as an
unquoted identifier (`Ident`) or a quoted string (`Quoted`).
In the process, the separate `Id` wrapper type has been coalesced into
the `Name` enum, simplifying the AST and reducing duplication in
identifier handling logic.
While this increases the size of some AST nodes (notably
`yyStackEntry`).
cc: @levydsa
Reviewed-by: Levy A. (@levydsa)
Reviewed-by: Preston Thorpe (@PThorpe92)
Closes#2251
Support for attaching databases. The main difference from SQLite is that
we support an arbitrary number of attached databases, and we are not
bound to just 100ish.
We for now only support read-only databases. We open them as read-only,
but also, to keep things simple, we don't patch any of the insert
machinery to resolve foreign tables. So if an insert is tried on an
attached database, it will just fail with a "no such table" error - this
is perfect for now.
The code in core/translate/attach.rs is written by Claude, who also
played a key part in the boilerplate for stuff like the .databases
command and extending the pragma database_list, and also aided me in
the test cases.
This commit replaces the `Name(pub String)` struct with a `Name` enum that
explicitly models how the name appeared in the source either as an
unquoted identifier (`Ident`) or a quoted string (`Quoted`).
In the process, the separate `Id` wrapper type has been coalesced into the
`Name` enum, simplifying the AST and reducing duplication in identifier
handling logic.
While this increases the size of some AST nodes (notably `yyStackEntry`),
it improves correctness and makes source structure more explicit for
later phases.
Was running the sim with I/O faults enabled and fixed some nasty bugs.
Now, there are some more nasty bugs to fix as well. This is the command
that I use to run the simulator `cargo run -p limbo_sim -- --minimum-
tests 10 --maximum-tests 1000`
This PR mainly fixes the following bugs:
- Not decrementing in flight write counter when `pwrite` fails
- not rolling back the transaction on `step` error
- not rolling back the transaction on `run_once` error
- some functions were just being unwrapped when they could suffer io
errors
- Only change max_frame after wal sync's
Reviewed-by: Pere Diaz Bou <pere-altea@homail.com>
Reviewed-by: Pere Diaz Bou <pere-altea@homail.com>
Closes#1946