Turso incorrectly creates the first table in an autovacuumed table in
page 2.
(Note: this is on collaboration with @LeMikaelF)
SQLite does not allow enabling or disabling auto-vacuum after the first
table has been created
(https://sqlite.org/pragma.html#pragma_auto_vacuum). This is because the
sequence of the pages in the databases is different when auto-vacuum is
enabled, because the first b-tree page must be page 3 instead of 2, to
make room for the first [Pointer Map
page](https://sqlite.org/fileformat.html#pointer_map_or_ptrmap_pages).
But Turso doesn't currently consider this, which can lead to data loss.
The simplest way to reproduce this is to create an autovacuumed
databases with either `pragma auto_vacuum=full` so that autovacuum runs
on each commit, and then create a table with some data. Turso will
incorrectly create the new table on page 2. After this, every time a new
page is created, either through a page split or because a new table is
created, Turso will write a 5-byte pointer in page 2, starting from the
top of the page, thereby overwriting existing data.
For example, let's start with a clean database and the first bytes of
page 2. It starts with `0d`, the discriminator for a leaf page
([source](https://www.sqlite.org/fileformat.html#b_tree_pages)). The
next interesting number is the number of cells contained in this page
(`01`) at offset 5.
```
$ cargo run -- /tmp/a.db
turso> create table t(a);
turso> insert into t values ('myvalue');
$ dbtotxt /tmp/a.db
| size 8192 pagesize 4096 filename a.db
| page 1 offset 0
# ...snip...
| page 2 offset 4096
| 0: 0d 00 00 00 01 0f f5 00 0f f5 00 00 00 00 00 00 ................
| 4080: 00 00 00 00 00 09 01 02 1b 6d 79 76 61 6c 75 65 .........myvalue
| end a.db
```
Pointer map pages are located every N pages, starting from page 2, and
contain a list of 5-byte pointers that represent the parent page of a
certain page. So whenever Turso or SQLite needs to add a page, it will
overwrite 5 bytes of page 2. This means that for data loss to occur, it
is sufficient to add a single page to the database, for example by
creating a table. Offset 5 will then be zeroed out:
```
$ cargo run -- /tmp/a.db
turso> create table t(a);
turso> insert into t values ('myvalue');
turso> pragma auto_vacuum=full;
turso> create table tt(a);
$ dbtotxt /tmp/a.db
| size 12288 pagesize 4096 filename a.db
| page 1 offset 0
# ...snip...
| page 2 offset 4096
| 0: 01 00 00 00 00 0f f5 00 0f f5 00 00 00 00 00 00 ................
| 4080: 00 00 00 00 00 09 01 02 1b 6d 79 76 61 6c 75 65 .........myvalue
```
Creating more tables, or adding more B-tree pages, will keep overwriting
the rest of the page, until the cells themselves are also overwritten.
## Reproducing the issue in the simulator
We have been unable to reproduce this exact corruption mode in the
simulator, but patching it shows many failure modes, all of which don't
occur with the unpatched simulator. The following seeds are failing. The
following seeds are showing the issue when the patched simulator is ran
against `main`:
- `11522841279124073062`, with "Assertion 'table inquisitive_graham_159
should contain all of its expected values' failed: table
inquisitive_graham_159 does not contain the expected values, the
simulator model has more rows than the database"
- `7057400018220918989`, `16028085350691325843`, `7721542713659053944`,
and `203017821863546118`, with "Failed to read ptrmap key=XXX"
- `12533694709304969540`, `18357088553315413457`, `3108945730906932377`,
with "Integrity Check Failed: Cell N in page 2 is out of range."
- `4757352625344646473`, with "dirty pages should be empty for read
txn"
- `7083498604824302257`, with "header_size: 6272, header_len_bytes: 2,
payload.len(): 13"
- `17881876827470741581`, with "ParseError("no such table:
focused_historians_416")"
- `2092231500503735693`, with "range end index 4789 out of range for
slice of length 4096"
- `7555257419378470845`, with malformed database schema
(imaginative_ontivero\u{1})"
- `12905270229511147245`, with "index out of bounds: the len is 4096 but
the index is 4096"
## Fixing the issue
- When DB is opened, we read the `auto_vacuum` state, instead of
assuming `auto_vacuum=none`.
- Don't allow auto_vacuum to be flipped on non-empty databases as if we
allow this it could cause overlap with existing bits.(ptrmap could
overwrite existing data)
- Modify integrity check to avoid reporting that page 2 is orphaned in
auto-vacuumed databases.
Fixes#3752Closes#3830
Depends on #3584 to use the most up-to-date implementation of
`ThreadRng`
- Add `fill_bytes` method to `IO`
- use `thread_rng` instead of `getrandom`, as `getrandom` is much slower
and `thread_rng` offers enough security
- modify `exec_randomblob`, `exec_random` and random_rowid generation to
use methods from IO for determinism
- modified simulator IO to implement `fill_bytes`
This the PRNG for sqlite if someone is curious. It is similar to
`thread_rng`:
```c
/* Initialize the state of the random number generator once,
** the first time this routine is called.
*/
if( wsdPrng.s[0]==0 ){
sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
static const u32 chacha20_init[] = {
0x61707865, 0x3320646e, 0x79622d32, 0x6b206574
};
memcpy(&wsdPrng.s[0], chacha20_init, 16);
if( NEVER(pVfs==0) ){
memset(&wsdPrng.s[4], 0, 44);
}else{
sqlite3OsRandomness(pVfs, 44, (char*)&wsdPrng.s[4]);
}
wsdPrng.s[15] = wsdPrng.s[12];
wsdPrng.s[12] = 0;
wsdPrng.n = 0;
}
assert( N>0 );
while( 1 /* exit by break */ ){
if( N<=wsdPrng.n ){
memcpy(zBuf, &wsdPrng.out[wsdPrng.n-N], N);
wsdPrng.n -= N;
break;
}
if( wsdPrng.n>0 ){
memcpy(zBuf, wsdPrng.out, wsdPrng.n);
N -= wsdPrng.n;
zBuf += wsdPrng.n;
}
wsdPrng.s[12]++;
chacha_block((u32*)wsdPrng.out, wsdPrng.s);
wsdPrng.n = 64;
}
sqlite3_mutex_leave(mutex);
```
Reviewed-by: Pere Diaz Bou <pere-altea@homail.com>
Closes#3799
- add index root pages to list of root pages to check
- check for dangling (unused) pages
```sql
$ cargo run wut.db
turso> .mode list
turso> pragma integrity_check;
Page 3: never used
Page 4: never used
Page 7: never used
Page 8: never used
```
```sql
$ sqlite3 wut.db 'pragma integrity_check;'
*** in database main ***
Page 3: never used
Page 4: never used
Page 7: never used
Page 8: never used
```
Closes#3613
Yield is a completion that does not allocate any inner state. By design
it is completed from the start and has no errors. This allows lightly
yield without allocating any locks nor heap allocate inner state.
Table ID is an opaque identifier that is only meaningful to the MV store.
Each checkpointed MVCC table corresponds to a single B-tree on the pager,
which naturally has a root page.
We cannot use root page as the MVCC table ID directly because:
- We assign table IDs during MVCC commit, but
- we commit pages to the pager only during checkpoint
which means the root page is not easily knowable ahead of time.
Hence, we:
- store the mapping between table id and btree rootpage
- sqlite_schema rows will have a negative rootpage column if the
table has not been checkpointed yet.
MVCC is like the annoying younger cousin (I know because I was him) that
needs to be treated differently. MVCC requires us to use root_pages that
might not be allocated yet, and the plan is to use negative root_pages
for that case. Therefore, we need i64 in order to fit this change.
This adds basic support for window functions. For now:
* Only existing aggregate functions can be used as window functions.
* Specialized window-specific functions (`rank`, `row_number`, etc.) are
not yet supported.
* Only the default frame definition is implemented:
`RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW EXCLUDE NO OTHERS`.
Reviewed-by: Jussi Saurio <jussi.saurio@gmail.com>
Reviewed-by: Preston Thorpe <preston@turso.tech>
Closes#3079