indexes with the naming scheme "sqlite_autoindex_<tblname>_<number>"
are automatically created when a table is created with UNIQUE or
PRIMARY KEY definitions.
these indexes must map to the table definition SQL in definition order,
i.e. sqlite_autoindex_foo_1 must be the first instance of UNIQUE or
PRIMARY KEY and so on.
this commit fixes our autoindex creation / parsing so that this invariant
is upheld.
hell yeah
concurrency tests passing now woosh
finally write tests passed
Most of the cdc tests are passing yay
autoincremeent draft
remove shared schema code that broke transactions
sequnce table should reset if table is drop
fmt
fmt
fmt
This change extends table-valued function support by allowing arguments
to be column references, not only literals.
Virtual tables can now reject a plan by returning an error from
best_index (e.g., when a TVF argument references a table that appears
later in the join order). The planner using this information excludes
invalid plans during join order search.
Replace panics with proper errors when a valid plan does not exist.
Currently, this never happens because a naive plan is always available.
However, once virtual tables are integrated into the planner, it may
occur—for example, when table-valued function arguments are column
references, and the function cannot be placed in the join order so that
its arguments can be evaluated.
Although this change is effectively a no-op for now, it is extracted
into a separate commit to avoid polluting the one that introduces
virtual table integration with the planner.
Different scan parameters are required for different table types.
Currently, index and iteration direction are only used by B-tree tables,
while the remaining table types don’t require any parameters. Planning
access to virtual tables, however, will require passing additional
information from the planner, such as the virtual table index (distinct
from a B-tree index) and the constraints that must be forwarded to the
`filter` method.
Previously, AccessMethod stored fields like `iter_dir`, `index`, and
`constraint_refs` directly, but these only applied to BTree tables.
Other table types (virtual tables, subqueries) either ignored these
fields or required different parameters entirely.
This change prepares the planner to handle virtual table access methods
with their own specialized parameters.
Support for attaching databases. The main difference from SQLite is that
we support an arbitrary number of attached databases, and we are not
bound to just 100ish.
We for now only support read-only databases. We open them as read-only,
but also, to keep things simple, we don't patch any of the insert
machinery to resolve foreign tables. So if an insert is tried on an
attached database, it will just fail with a "no such table" error - this
is perfect for now.
The code in core/translate/attach.rs is written by Claude, who also
played a key part in the boilerplate for stuff like the .databases
command and extending the pragma database_list, and also aided me in
the test cases.
Due to the left-prefix rule of indexes, for an index key to be usable,
it needs to:
- Use the columns in contiguous order (0, 1, 2...)
* eg if WHERE refers to cols 0 and 2, only 0 can be used
- Stop at the first range operator
* eg if WHERE: col1 = 5 AND col2 > 5 AND col3 = 5, only col1 and col2
can be used.
This wasn't properly tested, and resulted in simulator failures. Added
some regression tests for this behavior.
Currently in the main translation logic after planning and optimization,
we don't _really_ need to pass a &mut Vec<WhereTerm> around anymore, except
for the fact that virtual table constraint resolution is done ad-hoc in
`init_loop()`. Even there, the only thing we mutate is `WhereTerm::consumed`
which is a boolean indicating that the term has been "used up" by the optimizer
and shouldn't be evaluated as a normal where clause condition anymore.
In the upcoming branch for WHERE clause subqueries, I want to store immutable
references to WHERE clause expressions in `Resolver`, but this is unfortunately
not possible if we still use the aforementioned mutable references.
Hence, we can temporarily make `WhereTerm::consumed` a `Cell<bool>` which allows
us to pass an immutable reference to `init_loop()`, and the `Cell` can be removed
once the virtual table constraint resolution is moved to an earlier part of the
query processing pipeline.
Currently our "table id"/"table no"/"table idx" references always
use the direct index of the `TableReference` in the plan, e.g. in
`SelectPlan::table_references`. For example:
```rust
Expr::Column { table: 0, column: 3, .. }
```
refers to the 0'th table in the `table_references` list.
This is a fragile approach because it assumes the table_references
list is stable for the lifetime of the query processing. This has so
far been the case, but there exist certain query transformations,
e.g. subquery unnesting, that may fold new table references from
a subquery (which has its own table ref list) into the table reference
list of the parent.
If such a transformation is made, then potentially all of the Expr::Column
references to tables will become invalid. Consider this example:
```sql
-- Assume tables: users(id, age), orders(user_id, amount)
-- Get total amount spent per user on orders over $100
SELECT u.id, sub.total
FROM users u JOIN
(SELECT user_id, SUM(amount) as total
FROM orders o
WHERE o.amount > 100
GROUP BY o.user_id) sub
WHERE u.id = sub.user_id
-- Before subquery unnesting:
-- Main query table_references: [users, sub]
-- u.id refers to table 0, column 0
-- sub.total refers to table 1, column 1
--
-- Subquery table_references: [orders]
-- o.user_id refers to table 0, column 0
-- o.amount refers to table 0, column 1
--
-- After unnesting and folding subquery tables into main query,
-- the query might look like this:
SELECT u.id, SUM(o.amount) as total
FROM users u JOIN orders o ON u.id = o.user_id
WHERE o.amount > 100
GROUP BY u.id;
-- Main query table_references: [users, orders]
-- u.id refers to table index 0 (correct)
-- o.amount refers to table index 0 (incorrect, should be 1)
-- o.user_id refers to table index 0 (incorrect, should be 1)
```
We could ofc traverse every expression in the subquery and rewrite
the table indexes to be correct, but if we instead use stable identifiers
for each table reference, then all the column references will continue
to be correct.
Hence, this PR introduces a `TableInternalId` used in `TableReference`
as well as `Expr::Column` and `Expr::Rowid` so that this kind of query
transformations can happen with less pain.
We've run into trouble in multiple places due to the fact that
we delete terms from the where clause (e.g. when a constant condition
is removed, or the term becomes part of an index seek key).
A simpler solution is to add a flag indicating that the term is
consumed (used), so that it is not translated in the main loop
anymore when WHERE clause terms are evaluated.