The Merge operator is a stateless operator that merges two deltas.
There are two modes: Distinct, where we merge together values that
are the same, and All, where we preserve all values. We use the rowid of
the hashable row to guarantee that: In Distinct mode, the rowid is set
to 0 in both sides. If they values are the same, they will hash to the
same thing. For All, the rowids are different.
The merge operator is used for the UNION statement, which is a
cornerstone of Recursive CTEs.
We have code written for BTree (ZSet) persistence in both compiler.rs
and operator.rs, because there are minor differences between them. With
joins coming, it is time to unify this code.
This fairly long commit implements persistence for materialized view.
It is hard to split because of all the interdependencies between components,
so it is a one big thing. This commit message will at least try to go into
details about the basic architecture.
Materialized Views as tables
============================
Materialized views are now a normal table - whereas before they were a virtual
table. By making a materialized view a table, we can reuse all the
infrastructure for dealing with tables (cursors, etc).
One of the advantages of doing this is that we can create indexes on view
columns. Later, we should also be able to write those views to separate files
with ATTACH write.
Materialized Views as Zsets
===========================
The contents of the table are a ZSet: rowid, values, weight. Readers will
notice that because of this, the usage of the ZSet data structure dwindles
throughout the codebase. The main difference between our materialized ZSet and
the standard DBSP ZSet, is that obviously ours is backed by a BTree, not a Hash
(since SQLite tables are BTrees)
Aggregator State
================
In DBSP, the aggregator nodes also have state. To store that state, there is a
second table. The table holds all aggregators in the view, and there is one
table per view. That is __turso_internal_dbsp_state_{view_name}. The format of
that table is similar to a ZSet: rowid, serialized_values, weight. We serialize
the values because there will be many aggregators in the table. We can't rely
on a particular format for the values.
The Materialized View Cursor
============================
Reading from a Materialized View essentially means reading from the persisted
ZSet, and enhancing that with data that exists within the transaction.
Transaction data is ephemeral, so we do not materialize this anywhere: we have
a carefully crafted implementation of seek that takes care of merging weights
and stitching the two sets together.
To be used in DBSP-based projections. This will compile an expression
to VDBE bytecode and execute it.
To do that we need to add a new type of Expression, which we call a
Register.
This is a way for us to pass parameters to a DBSP program which will be
not columns or literals, but inputs from the DBSP deltas.
This is just the bare minimum that I needed to convince myself that this
approach will work. The only views that we support are slices of the
main table: no aggregations, no joins, no projections.
drop view is implemented.
view population is implemented.
deletes, inserts and updates are implemented.
much like indexes before, a flag must be passed to enable views.