perf/throughput: Improve reproducibility

Improve reproducibility by documenting the steps needed to run the
benchmarks and generate the plots. Also simplify plot generation a bit.
This commit is contained in:
Pekka Enberg
2025-10-27 10:51:02 +02:00
parent 1fb1fbf210
commit f10431d24f
3 changed files with 41 additions and 18 deletions

View File

@@ -0,0 +1,83 @@
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scienceplots # noqa: F401
plt.style.use(["science"])
# Get CSV filenames from command line arguments
if len(sys.argv) < 2:
print("Usage: python script.py <csv_filename> [<csv_filename> ...]")
sys.exit(1)
csv_filenames = sys.argv[1:]
# Output filename
output_filename = "thread-scaling.pdf"
# Read data from all CSV files and concatenate
dfs = [pd.read_csv(filename) for filename in csv_filenames]
df = pd.concat(dfs, ignore_index=True)
# Filter for compute time = 0
df_filtered = df[df["compute"] == 0].sort_values("threads")
# Get unique systems and threads
systems = df_filtered["system"].unique()
threads = sorted(df_filtered["threads"].unique())
# Create figure and axis
fig, ax = plt.subplots(figsize=(10, 6))
# Set up bar positions
x_pos = np.arange(len(threads))
bar_width = 0.35
# Get colors from the current color cycle
prop_cycle = plt.rcParams["axes.prop_cycle"]
colors_list = prop_cycle.by_key()["color"]
# Plot bars for each system
for i, system in enumerate(systems):
system_data = df_filtered[df_filtered["system"] == system].sort_values("threads")
throughput = system_data["throughput"].tolist()
offset = (i - len(systems)/2 + 0.5) * bar_width
bars = ax.bar(x_pos + offset, throughput, bar_width,
label=system,
color=colors_list[i % len(colors_list)],
edgecolor="black", linewidth=1.2)
# Customize the plot
ax.set_xlabel("Number of Threads", fontsize=14, fontweight="bold")
ax.set_ylabel("Throughput (rows/sec)", fontsize=14, fontweight="bold")
# Set y-axis to start from 0 with dynamic upper limit
max_throughput = df_filtered["throughput"].max()
ax.set_ylim(0, max_throughput * 1.15) # Add 15% tolerance for legend space
# Format y-axis labels
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, p: f"{int(x/1000)}k"))
# Set x-axis ticks to show thread values
ax.set_xticks(x_pos)
ax.set_xticklabels(threads)
# Add legend
ax.legend(loc="upper left", frameon=True, fontsize=12)
# Add grid for better readability
ax.grid(axis="y", alpha=0.3, linestyle="--")
ax.set_axisbelow(True)
# Adjust layout
plt.tight_layout()
# Save the figure
plt.savefig(output_filename, dpi=300, bbox_inches="tight")
print(f"Saved plot to {output_filename}")
# Display the plot
plt.show()