updated for pandas method

This commit is contained in:
Davis Thames
2018-06-11 11:59:13 -05:00
parent a2b4d34ab1
commit 5de3306eea

View File

@@ -37,6 +37,12 @@ First, install the library from PyPi:
pip install tiingo pip install tiingo
If you prefer to receive your results in ``pandas DataFrame`` or ``Series`` format, and you do not already have pandas installed, install it as an optional dependency:
.. code-block:: shell
pip install tiingo[pandas]
Next, initialize your client. It is recommended to use an environment Next, initialize your client. It is recommended to use an environment
variable to initialize your client for convenience. variable to initialize your client for convenience.
@@ -86,13 +92,35 @@ Now you can use ``TiingoClient`` to make your API calls. (Other parameters are a
tickers = client.list_stock_tickers() tickers = client.list_stock_tickers()
# Get news articles about given tickers or search terms from given domains # Get news articles about given tickers or search terms from given domains
articles = client.get_news(tickers=['GOOGL', 'APPL'], articles = client.get_news(tickers=['GOOGL', 'AAPL'],
tags=['Laptops'], tags=['Laptops'],
sources=['washingtonpost.com'], sources=['washingtonpost.com'],
startDate='2017-01-01', startDate='2017-01-01',
endDate='2017-08-31') endDate='2017-08-31')
To receive results in ``pandas`` format, use the ``get_dataframe()`` method:
.. code-block:: python
#Get a pd.DataFrame of the price history of a single symbol (default is daily):
ticker_history = client.get_dataframe("GOOGL")
#The method returns all of the available information on a symbol, such as open, high, low, close, adjusted close, etc. This page in the tiingo api documentation lists the available information on each symbol: https://api.tiingo.com/docs/tiingo/daily#priceData.
#Frequencies and start and end dates can be specified similarly to the json method above.
#Get a pd.Series of only one column of the available response data by specifying one of the valid the 'metric_name' parameters:
ticker_history = client.get_dataframe("GOOGL", metric_name='adjClose')
#Get a pd.DataFrame for a list of symbols for a specified metric_name (default is adjClose if no metric_name is specified):
ticker_history = client.get_dataframe(['GOOGL', 'AAPL'],
frequency='weekly',
metric_name='volume',
startDate='2017-01-01',
endDate='2018-05-31')
Further Docs Further Docs
-------- --------