crypter ffi bindings for kotlin

This commit is contained in:
Evan Feenstra
2022-07-06 10:15:24 -07:00
parent d9b7ddb9ad
commit aa912840bc
10 changed files with 645 additions and 5 deletions

View File

@@ -10,7 +10,8 @@ members = [
exclude = [ exclude = [
"sphinx-key", "sphinx-key",
"crypter" "crypter",
"crypter-ffi"
] ]
[patch.crates-io] [patch.crates-io]

25
crypter-ffi/Cargo.toml Normal file
View File

@@ -0,0 +1,25 @@
[package]
name = "crypter-ffi"
version = "0.1.0"
authors = ["Evan Feenstra <evanfeenstra@gmail.com>"]
edition = "2018"
[lib]
crate-type = ["cdylib"]
name = "crypter"
[dependencies]
sphinx-key-crypter = { path = "../crypter" }
uniffi = "0.19.2"
hex = "0.4.3"
thiserror = "1.0.31"
uniffi_macros = "0.11.0"
[build-dependencies]
uniffi_build = "0.19.2"
[patch.crates-io]
getrandom = { version = "0.2", git = "https://github.com/esp-rs-compat/getrandom.git" }
secp256k1 = { git = "https://github.com/Evanfeenstra/rust-secp256k1", branch = "v0.22.0-new-rand" }
lightning = { git = "https://github.com/Evanfeenstra/rust-lightning", branch = "v0.0.108-branch" }

3
crypter-ffi/build.rs Normal file
View File

@@ -0,0 +1,3 @@
fn main() {
uniffi_build::generate_scaffolding("./src/crypter.udl").unwrap();
}

10
crypter-ffi/readme.md Normal file
View File

@@ -0,0 +1,10 @@
uniffi-bindgen --version
should match the uniffi version in Cargo.toml
uniffi-bindgen generate src/crypter.udl --language kotlin
uniffi-bindgen generate src/crypter.udl --language swift
### manually build the C ffi
uniffi-bindgen scaffolding src/crypter.udl

View File

@@ -0,0 +1,19 @@
[Error]
enum CrypterError {
"DeriveSharedSecret",
"Encrypt",
"Decrypt",
"BadPubkey",
"BadSecret",
"BadNonce",
"BadCiper",
};
namespace crypter {
[Throws=CrypterError]
string derive_shared_secret(string their_pubkey, string my_secret_key);
[Throws=CrypterError]
string encrypt(string plaintext, string secret, string nonce);
[Throws=CrypterError]
string decrypt(string ciphertext, string secret);
};

98
crypter-ffi/src/lib.rs Normal file
View File

@@ -0,0 +1,98 @@
mod parse;
use sphinx_key_crypter::chacha::{decrypt as chacha_decrypt, encrypt as chacha_encrypt};
use sphinx_key_crypter::ecdh::derive_shared_secret_from_slice;
uniffi_macros::include_scaffolding!("crypter");
pub type Result<T> = std::result::Result<T, CrypterError>;
#[derive(Debug, thiserror::Error)]
pub enum CrypterError {
#[error("Failed to derive shared secret")]
DeriveSharedSecret,
#[error("Failed to encrypt")]
Encrypt,
#[error("Failed to decrypt")]
Decrypt,
#[error("Bad pubkey")]
BadPubkey,
#[error("Bad secret")]
BadSecret,
#[error("Bad nonce")]
BadNonce,
#[error("Bad cipher")]
BadCiper,
}
// their_pubkey: 33 bytes
// my_secret_key: 32 bytes
// return shared secret: 32 bytes
pub fn derive_shared_secret(their_pubkey: String, my_secret_key: String) -> Result<String> {
let pubkey = parse::parse_public_key_string(their_pubkey)?;
let secret_key = parse::parse_secret_string(my_secret_key)?;
let secret = match derive_shared_secret_from_slice(pubkey, secret_key) {
Ok(s) => s,
Err(_) => return Err(CrypterError::DeriveSharedSecret),
};
Ok(hex::encode(secret))
}
// plaintext: 32 bytes
// secret: 32 bytes
// nonce: 8 bytes
// return ciphertext: 56 bytes
pub fn encrypt(plaintext: String, secret: String, nonce: String) -> Result<String> {
let plain = parse::parse_secret_string(plaintext)?;
let sec = parse::parse_secret_string(secret)?;
let non = parse::parse_nonce_string(nonce)?;
let cipher = match chacha_encrypt(plain, sec, non) {
Ok(c) => c,
Err(_) => return Err(CrypterError::Encrypt),
};
Ok(hex::encode(cipher))
}
// ciphertext: 56 bytes
// secret: 32 bytes
// return plaintext: 32 bytes
pub fn decrypt(ciphertext: String, secret: String) -> Result<String> {
let cipher = parse::parse_cipher_string(ciphertext)?;
let sec = parse::parse_secret_string(secret)?;
let plain = match chacha_decrypt(cipher, sec) {
Ok(c) => c,
Err(_) => return Err(CrypterError::Decrypt),
};
Ok(hex::encode(plain))
}
#[cfg(test)]
mod tests {
use crate::{decrypt, derive_shared_secret, encrypt, Result};
#[test]
fn test_crypter() -> Result<()> {
let sk1 = "86c8977989592a97beb409bc27fde76e981ce3543499fd61743755b832e92a3e";
let pk1 = "0362a684901b8d065fb034bc44ea972619a409aeafc2a698016a74f6eee1008aca";
let sk2 = "21c2d41c7394b0a87dae89576bee2552aedb54a204cdcdbf5cdceb0b4c1c2a17";
let pk2 = "027dd6297aff570a409fe05032b6e1dab39f309daa8c438a65c32e3d7b4722b7c3";
// derive shared secrets
let sec1 = derive_shared_secret(pk2.to_string(), sk1.to_string())?;
let sec2 = derive_shared_secret(pk1.to_string(), sk2.to_string())?;
assert_eq!(sec1, sec2);
// encrypt plaintext with sec1
let plaintext = "59ff446bec1d96dc7d1a69232cd69ca409e069294e983df7f1e3e5fb3c95c41c";
let nonce = "0da01cc0c0a73ad3";
let cipher = encrypt(plaintext.to_string(), sec1, nonce.to_string())?;
// decrypt with sec2
let plain = decrypt(cipher, sec2)?;
assert_eq!(plaintext, plain);
println!("PLAINTEXT MATCHES!");
Ok(())
}
}

65
crypter-ffi/src/parse.rs Normal file
View File

@@ -0,0 +1,65 @@
use crate::{Result, CrypterError};
use sphinx_key_crypter::ecdh::PUBLIC_KEY_LEN;
use sphinx_key_crypter::chacha::{NONCE_END_LEN, KEY_LEN, CIPHER_LEN};
use std::convert::TryInto;
pub(crate) fn parse_secret_string(sk: String) -> Result<[u8; KEY_LEN]> {
if sk.len() != KEY_LEN * 2 {
return Err(CrypterError::BadSecret)
}
let secret_key_bytes: Vec<u8> = match hex::decode(sk) {
Ok(sk) => sk,
Err(_) => return Err(CrypterError::BadSecret),
};
let secret_key: [u8; KEY_LEN] = match secret_key_bytes.try_into() {
Ok(sk) => sk,
Err(_) => return Err(CrypterError::BadSecret),
};
Ok(secret_key)
}
pub(crate) fn parse_public_key_string(pk: String) -> Result<[u8; PUBLIC_KEY_LEN]> {
if pk.len() != PUBLIC_KEY_LEN * 2 {
return Err(CrypterError::BadPubkey)
}
let pubkey_bytes: Vec<u8> = match hex::decode(pk) {
Ok(pk) => pk,
Err(_) => return Err(CrypterError::BadPubkey),
};
let pubkey: [u8; PUBLIC_KEY_LEN] = match pubkey_bytes.try_into() {
Ok(pk) => pk,
Err(_) => return Err(CrypterError::BadPubkey),
};
Ok(pubkey)
}
pub(crate) fn parse_nonce_string(n: String) -> Result<[u8; NONCE_END_LEN]> {
if n.len() != NONCE_END_LEN * 2 {
return Err(CrypterError::BadNonce)
}
let nonce_bytes: Vec<u8> = match hex::decode(n) {
Ok(n) => n,
Err(_) => return Err(CrypterError::BadNonce),
};
let nonce: [u8; NONCE_END_LEN] = match nonce_bytes.try_into() {
Ok(n) => n,
Err(_) => return Err(CrypterError::BadNonce),
};
Ok(nonce)
}
pub(crate) fn parse_cipher_string(c: String) -> Result<[u8; CIPHER_LEN]> {
if c.len() != CIPHER_LEN * 2 {
return Err(CrypterError::BadCiper)
}
let cipher_bytes: Vec<u8> = match hex::decode(c) {
Ok(n) => n,
Err(_) => return Err(CrypterError::BadCiper),
};
let cipher: [u8; CIPHER_LEN] = match cipher_bytes.try_into() {
Ok(n) => n,
Err(_) => return Err(CrypterError::BadCiper),
};
Ok(cipher)
}

View File

@@ -0,0 +1,419 @@
// This file was autogenerated by some hot garbage in the `uniffi` crate.
// Trust me, you don't want to mess with it!
@file:Suppress("NAME_SHADOWING")
package uniffi.crypter;
// Common helper code.
//
// Ideally this would live in a separate .kt file where it can be unittested etc
// in isolation, and perhaps even published as a re-useable package.
//
// However, it's important that the detils of how this helper code works (e.g. the
// way that different builtin types are passed across the FFI) exactly match what's
// expected by the Rust code on the other side of the interface. In practice right
// now that means coming from the exact some version of `uniffi` that was used to
// compile the Rust component. The easiest way to ensure this is to bundle the Kotlin
// helpers directly inline like we're doing here.
import com.sun.jna.Library
import com.sun.jna.Native
import com.sun.jna.Pointer
import com.sun.jna.Structure
import com.sun.jna.ptr.ByReference
import java.nio.ByteBuffer
import java.nio.ByteOrder
// This is a helper for safely working with byte buffers returned from the Rust code.
// A rust-owned buffer is represented by its capacity, its current length, and a
// pointer to the underlying data.
@Structure.FieldOrder("capacity", "len", "data")
open class RustBuffer : Structure() {
@JvmField var capacity: Int = 0
@JvmField var len: Int = 0
@JvmField var data: Pointer? = null
class ByValue : RustBuffer(), Structure.ByValue
class ByReference : RustBuffer(), Structure.ByReference
companion object {
internal fun alloc(size: Int = 0) = rustCall() { status ->
_UniFFILib.INSTANCE.ffi_crypter_b428_rustbuffer_alloc(size, status).also {
if(it.data == null) {
throw RuntimeException("RustBuffer.alloc() returned null data pointer (size=${size})")
}
}
}
internal fun free(buf: RustBuffer.ByValue) = rustCall() { status ->
_UniFFILib.INSTANCE.ffi_crypter_b428_rustbuffer_free(buf, status)
}
}
@Suppress("TooGenericExceptionThrown")
fun asByteBuffer() =
this.data?.getByteBuffer(0, this.len.toLong())?.also {
it.order(ByteOrder.BIG_ENDIAN)
}
}
/**
* The equivalent of the `*mut RustBuffer` type.
* Required for callbacks taking in an out pointer.
*
* Size is the sum of all values in the struct.
*/
class RustBufferByReference : ByReference(16) {
/**
* Set the pointed-to `RustBuffer` to the given value.
*/
fun setValue(value: RustBuffer.ByValue) {
// NOTE: The offsets are as they are in the C-like struct.
val pointer = getPointer()
pointer.setInt(0, value.capacity)
pointer.setInt(4, value.len)
pointer.setPointer(8, value.data)
}
}
// This is a helper for safely passing byte references into the rust code.
// It's not actually used at the moment, because there aren't many things that you
// can take a direct pointer to in the JVM, and if we're going to copy something
// then we might as well copy it into a `RustBuffer`. But it's here for API
// completeness.
@Structure.FieldOrder("len", "data")
open class ForeignBytes : Structure() {
@JvmField var len: Int = 0
@JvmField var data: Pointer? = null
class ByValue : ForeignBytes(), Structure.ByValue
}
// The FfiConverter interface handles converter types to and from the FFI
//
// All implementing objects should be public to support external types. When a
// type is external we need to import it's FfiConverter.
public interface FfiConverter<KotlinType, FfiType> {
// Convert an FFI type to a Kotlin type
fun lift(value: FfiType): KotlinType
// Convert an Kotlin type to an FFI type
fun lower(value: KotlinType): FfiType
// Read a Kotlin type from a `ByteBuffer`
fun read(buf: ByteBuffer): KotlinType
// Calculate bytes to allocate when creating a `RustBuffer`
//
// This must return at least as many bytes as the write() function will
// write. It can return more bytes than needed, for example when writing
// Strings we can't know the exact bytes needed until we the UTF-8
// encoding, so we pessimistically allocate the largest size possible (3
// bytes per codepoint). Allocating extra bytes is not really a big deal
// because the `RustBuffer` is short-lived.
fun allocationSize(value: KotlinType): Int
// Write a Kotlin type to a `ByteBuffer`
fun write(value: KotlinType, buf: ByteBuffer)
// Lower a value into a `RustBuffer`
//
// This method lowers a value into a `RustBuffer` rather than the normal
// FfiType. It's used by the callback interface code. Callback interface
// returns are always serialized into a `RustBuffer` regardless of their
// normal FFI type.
fun lowerIntoRustBuffer(value: KotlinType): RustBuffer.ByValue {
val rbuf = RustBuffer.alloc(allocationSize(value))
try {
val bbuf = rbuf.data!!.getByteBuffer(0, rbuf.capacity.toLong()).also {
it.order(ByteOrder.BIG_ENDIAN)
}
write(value, bbuf)
rbuf.writeField("len", bbuf.position())
return rbuf
} catch (e: Throwable) {
RustBuffer.free(rbuf)
throw e
}
}
// Lift a value from a `RustBuffer`.
//
// This here mostly because of the symmetry with `lowerIntoRustBuffer()`.
// It's currently only used by the `FfiConverterRustBuffer` class below.
fun liftFromRustBuffer(rbuf: RustBuffer.ByValue): KotlinType {
val byteBuf = rbuf.asByteBuffer()!!
try {
val item = read(byteBuf)
if (byteBuf.hasRemaining()) {
throw RuntimeException("junk remaining in buffer after lifting, something is very wrong!!")
}
return item
} finally {
RustBuffer.free(rbuf)
}
}
}
// FfiConverter that uses `RustBuffer` as the FfiType
public interface FfiConverterRustBuffer<KotlinType>: FfiConverter<KotlinType, RustBuffer.ByValue> {
override fun lift(value: RustBuffer.ByValue) = liftFromRustBuffer(value)
override fun lower(value: KotlinType) = lowerIntoRustBuffer(value)
}
// A handful of classes and functions to support the generated data structures.
// This would be a good candidate for isolating in its own ffi-support lib.
// Error runtime.
@Structure.FieldOrder("code", "error_buf")
internal open class RustCallStatus : Structure() {
@JvmField var code: Int = 0
@JvmField var error_buf: RustBuffer.ByValue = RustBuffer.ByValue()
fun isSuccess(): Boolean {
return code == 0
}
fun isError(): Boolean {
return code == 1
}
fun isPanic(): Boolean {
return code == 2
}
}
class InternalException(message: String) : Exception(message)
// Each top-level error class has a companion object that can lift the error from the call status's rust buffer
interface CallStatusErrorHandler<E> {
fun lift(error_buf: RustBuffer.ByValue): E;
}
// Helpers for calling Rust
// In practice we usually need to be synchronized to call this safely, so it doesn't
// synchronize itself
// Call a rust function that returns a Result<>. Pass in the Error class companion that corresponds to the Err
private inline fun <U, E: Exception> rustCallWithError(errorHandler: CallStatusErrorHandler<E>, callback: (RustCallStatus) -> U): U {
var status = RustCallStatus();
val return_value = callback(status)
if (status.isSuccess()) {
return return_value
} else if (status.isError()) {
throw errorHandler.lift(status.error_buf)
} else if (status.isPanic()) {
// when the rust code sees a panic, it tries to construct a rustbuffer
// with the message. but if that code panics, then it just sends back
// an empty buffer.
if (status.error_buf.len > 0) {
throw InternalException(FfiConverterString.lift(status.error_buf))
} else {
throw InternalException("Rust panic")
}
} else {
throw InternalException("Unknown rust call status: $status.code")
}
}
// CallStatusErrorHandler implementation for times when we don't expect a CALL_ERROR
object NullCallStatusErrorHandler: CallStatusErrorHandler<InternalException> {
override fun lift(error_buf: RustBuffer.ByValue): InternalException {
RustBuffer.free(error_buf)
return InternalException("Unexpected CALL_ERROR")
}
}
// Call a rust function that returns a plain value
private inline fun <U> rustCall(callback: (RustCallStatus) -> U): U {
return rustCallWithError(NullCallStatusErrorHandler, callback);
}
// Contains loading, initialization code,
// and the FFI Function declarations in a com.sun.jna.Library.
@Synchronized
private fun findLibraryName(componentName: String): String {
val libOverride = System.getProperty("uniffi.component.$componentName.libraryOverride")
if (libOverride != null) {
return libOverride
}
return "uniffi_crypter"
}
private inline fun <reified Lib : Library> loadIndirect(
componentName: String
): Lib {
return Native.load<Lib>(findLibraryName(componentName), Lib::class.java)
}
// A JNA Library to expose the extern-C FFI definitions.
// This is an implementation detail which will be called internally by the public API.
internal interface _UniFFILib : Library {
companion object {
internal val INSTANCE: _UniFFILib by lazy {
loadIndirect<_UniFFILib>(componentName = "crypter")
}
}
fun crypter_b428_derive_shared_secret(`theirPubkey`: RustBuffer.ByValue,`mySecretKey`: RustBuffer.ByValue,
_uniffi_out_err: RustCallStatus
): RustBuffer.ByValue
fun crypter_b428_encrypt(`plaintext`: RustBuffer.ByValue,`secret`: RustBuffer.ByValue,`nonce`: RustBuffer.ByValue,
_uniffi_out_err: RustCallStatus
): RustBuffer.ByValue
fun crypter_b428_decrypt(`ciphertext`: RustBuffer.ByValue,`secret`: RustBuffer.ByValue,
_uniffi_out_err: RustCallStatus
): RustBuffer.ByValue
fun ffi_crypter_b428_rustbuffer_alloc(`size`: Int,
_uniffi_out_err: RustCallStatus
): RustBuffer.ByValue
fun ffi_crypter_b428_rustbuffer_from_bytes(`bytes`: ForeignBytes.ByValue,
_uniffi_out_err: RustCallStatus
): RustBuffer.ByValue
fun ffi_crypter_b428_rustbuffer_free(`buf`: RustBuffer.ByValue,
_uniffi_out_err: RustCallStatus
): Unit
fun ffi_crypter_b428_rustbuffer_reserve(`buf`: RustBuffer.ByValue,`additional`: Int,
_uniffi_out_err: RustCallStatus
): RustBuffer.ByValue
}
// Public interface members begin here.
public object FfiConverterString: FfiConverter<String, RustBuffer.ByValue> {
// Note: we don't inherit from FfiConverterRustBuffer, because we use a
// special encoding when lowering/lifting. We can use `RustBuffer.len` to
// store our length and avoid writing it out to the buffer.
override fun lift(value: RustBuffer.ByValue): String {
try {
val byteArr = ByteArray(value.len)
value.asByteBuffer()!!.get(byteArr)
return byteArr.toString(Charsets.UTF_8)
} finally {
RustBuffer.free(value)
}
}
override fun read(buf: ByteBuffer): String {
val len = buf.getInt()
val byteArr = ByteArray(len)
buf.get(byteArr)
return byteArr.toString(Charsets.UTF_8)
}
override fun lower(value: String): RustBuffer.ByValue {
val byteArr = value.toByteArray(Charsets.UTF_8)
// Ideally we'd pass these bytes to `ffi_bytebuffer_from_bytes`, but doing so would require us
// to copy them into a JNA `Memory`. So we might as well directly copy them into a `RustBuffer`.
val rbuf = RustBuffer.alloc(byteArr.size)
rbuf.asByteBuffer()!!.put(byteArr)
return rbuf
}
// We aren't sure exactly how many bytes our string will be once it's UTF-8
// encoded. Allocate 3 bytes per unicode codepoint which will always be
// enough.
override fun allocationSize(value: String): Int {
val sizeForLength = 4
val sizeForString = value.length * 3
return sizeForLength + sizeForString
}
override fun write(value: String, buf: ByteBuffer) {
val byteArr = value.toByteArray(Charsets.UTF_8)
buf.putInt(byteArr.size)
buf.put(byteArr)
}
}
sealed class CrypterException(message: String): Exception(message) {
// Each variant is a nested class
// Flat enums carries a string error message, so no special implementation is necessary.
class DeriveSharedSecret(message: String) : CrypterException(message)
class Encrypt(message: String) : CrypterException(message)
class Decrypt(message: String) : CrypterException(message)
class BadPubkey(message: String) : CrypterException(message)
class BadSecret(message: String) : CrypterException(message)
class BadNonce(message: String) : CrypterException(message)
class BadCiper(message: String) : CrypterException(message)
companion object ErrorHandler : CallStatusErrorHandler<CrypterException> {
override fun lift(error_buf: RustBuffer.ByValue): CrypterException = FfiConverterTypeCrypterError.lift(error_buf)
}
}
public object FfiConverterTypeCrypterError : FfiConverterRustBuffer<CrypterException> {
override fun read(buf: ByteBuffer): CrypterException {
return when(buf.getInt()) {
1 -> CrypterException.DeriveSharedSecret(FfiConverterString.read(buf))
2 -> CrypterException.Encrypt(FfiConverterString.read(buf))
3 -> CrypterException.Decrypt(FfiConverterString.read(buf))
4 -> CrypterException.BadPubkey(FfiConverterString.read(buf))
5 -> CrypterException.BadSecret(FfiConverterString.read(buf))
6 -> CrypterException.BadNonce(FfiConverterString.read(buf))
7 -> CrypterException.BadCiper(FfiConverterString.read(buf))
else -> throw RuntimeException("invalid error enum value, something is very wrong!!")
}
}
@Suppress("UNUSED_PARAMETER")
override fun allocationSize(value: CrypterException): Int {
throw RuntimeException("Writing Errors is not supported")
}
@Suppress("UNUSED_PARAMETER")
override fun write(value: CrypterException, buf: ByteBuffer) {
throw RuntimeException("Writing Errors is not supported")
}
}
@Throws(CrypterException::class)
fun `deriveSharedSecret`(`theirPubkey`: String, `mySecretKey`: String): String {
return FfiConverterString.lift(
rustCallWithError(CrypterException) { _status ->
_UniFFILib.INSTANCE.crypter_b428_derive_shared_secret(FfiConverterString.lower(`theirPubkey`), FfiConverterString.lower(`mySecretKey`), _status)
})
}
@Throws(CrypterException::class)
fun `encrypt`(`plaintext`: String, `secret`: String, `nonce`: String): String {
return FfiConverterString.lift(
rustCallWithError(CrypterException) { _status ->
_UniFFILib.INSTANCE.crypter_b428_encrypt(FfiConverterString.lower(`plaintext`), FfiConverterString.lower(`secret`), FfiConverterString.lower(`nonce`), _status)
})
}
@Throws(CrypterException::class)
fun `decrypt`(`ciphertext`: String, `secret`: String): String {
return FfiConverterString.lift(
rustCallWithError(CrypterException) { _status ->
_UniFFILib.INSTANCE.crypter_b428_decrypt(FfiConverterString.lower(`ciphertext`), FfiConverterString.lower(`secret`), _status)
})
}

View File

@@ -5,17 +5,17 @@ authors = ["Evan Feenstra <evanfeenstra@gmail.com>"]
edition = "2018" edition = "2018"
[dependencies] [dependencies]
rand = "0.8"
anyhow = {version = "1", features = ["backtrace"]} anyhow = {version = "1", features = ["backtrace"]}
log = "0.4"
base64 = { version = "0.13.0" }
secp256k1 = { version = "0.22.0", features = ["std", "rand-std"] } secp256k1 = { version = "0.22.0", features = ["std", "rand-std"] }
rand = "0.8.5"
[dependencies.lightning] [dependencies.lightning]
version = "0.0.108" version = "0.0.108"
default-features = false default-features = false
features = ["std", "grind_signatures"] features = ["std", "grind_signatures"]
# [dev-dependencies]
[patch.crates-io] [patch.crates-io]
getrandom = { version = "0.2", git = "https://github.com/esp-rs-compat/getrandom.git" } getrandom = { version = "0.2", git = "https://github.com/esp-rs-compat/getrandom.git" }
secp256k1 = { git = "https://github.com/Evanfeenstra/rust-secp256k1", branch = "v0.22.0-new-rand" } secp256k1 = { git = "https://github.com/Evanfeenstra/rust-secp256k1", branch = "v0.22.0-new-rand" }