The screen may not be destroyed immediately on close to avoid undefined
behavior, because it may still receive events from the decoder.
But the visual window must still be closed immediately.
The destruction order is important, but tricky, because the screen is
open/close by the decoder, but destroyed by scrcpy.c on the main thread.
Add assertions to guarantee that the screen is not destroyed before
being closed.
The video buffer is now an internal detail of the screen component.
Since the screen is plugged to the decoder via the frame sink trait, the
decoder does not access to the video buffer anymore.
The video buffer took ownership of the producer frame (so that it could
swap frames quickly).
In order to support multiple sinks plugged to the decoder, the decoded
frame must not be consumed by the display video buffer.
Therefore, move the producer and consumer frames out of the video
buffer, and use FFmpeg AVFrame refcounting to share ownership while
avoiding copies.
The size, point and position structs were defined in common.h. Move them
to coords.h so that common.h could be used for generic code to be
included in all source files.
Touch events were HiDPI-scaled twice:
- once because the position (provided as floats between 0 and 1) were
converted in pixels using the drawable size (not the window size)
- once due to screen_convert_to_frame_coords()
One possible fix could be to compute the position in pixels from the
window size instead, but this would unnecessarily round the event
position to the nearest window coordinates (instead of drawable
coordinates).
Instead, expose two separate functions to convert to frame coordinates
from either window or drawable coordinates.
Fixes#1536 <https://github.com/Genymobile/scrcpy/issues/1536>
Refs #15 <https://github.com/Genymobile/scrcpy/issues/15>
Refs e40532a376
The header scrcpy.h is intended to be the "public" API. It should not
depend on other internal headers.
Therefore, declare all required structs in this header and adapt
internal code.
Position and scale the content "manually" instead of relying on the
renderer "logical size".
This avoids possible rounding differences between the computed window
size and the content size, causing one row or column of black pixels on
the bottom or on the right.
This also avoids HiDPI scale issues, by computing the scaling manually.
This will also enable to draw items at their expected size on the screen
(unscaled).
Fixes#15 <https://github.com/Genymobile/scrcpy/issues/15>
If the content size changes (due to rotation for example) while the
window is maximized or fullscreen, the resize must be applied once
fullscreen and maximized are disabled.
The previous strategy consisted in storing the windowed size, computing
the target size on rotation, and applying it on window restoration. But
tracking the windowed size (while ignoring the non-windowed size) was
tricky, due to unspecified order of SDL events (e.g. size changes can be
notified before "maximized" events), race conditions when reading window
flags, different behaviors on different platforms...
To simplify the whole resize management, store the old content size (the
frame size, possibly rotated) when it changes while the window is
maximized or fullscreen, so that the new optimal size can be computed on
window restoration.
Move the window-to-frame coordinates conversion from the input manager
to the screen.
This will allow to apply more screen-related transformations without
impacting the input manager.
Add Ctrl+Left and Ctrl+Right shortcuts to rotate the display (the
content of the scrcpy window).
Contrary to --lock-video-orientation, the rotation has no impact on
recording, and can be changed dynamically (and immediately).
Fixes#218 <https://github.com/Genymobile/scrcpy/issues/218>
The SDL video subsystem is not necessary if we don't display the video.
Move the sdl_init_and_configure() function from screen.c to scrcpy.c,
because it is not only related to the screen display.
Limit source code to 80 chars, and declare functions return type and
modifiers on a separate line.
This allows to avoid very long lines, and all function names are
aligned.
(We do this on VLC, and I like it.)