import pandas as pd import json # Read the JSON data from a local file with open("historical") as f: json_data = json.load(f) # Convert the list of dictionaries to a dictionary data_dict = {d["date"]: d for d in json_data} # Load the dictionary into a Pandas DataFrame df = pd.DataFrame(data_dict.values()) df["date"] = pd.to_datetime(df["date"], format="%Y-%m-%d") df.set_index("date", inplace=True) # Create a new DataFrame with all dates between the earliest and latest dates in the original DataFrame min_date = df.index.min() max_date = df.index.max() all_dates = pd.date_range(start=min_date, end=max_date, freq="D") all_dates_df = pd.DataFrame(index=all_dates) # Merge the original DataFrame with the new DataFrame containing all dates to find any missing dates merged_df = pd.merge(all_dates_df, df, how="left", left_index=True, right_index=True) # Print any missing dates in the dataset missing_dates = merged_df[merged_df.isnull().any(axis=1)].index.strftime("%Y-%m-%d").tolist() print(f"Missing dates: {missing_dates}")