``` import pandas as pd import json with open("historical") as f: json_data = json.load(f) data_dict = {d["date"]: d for d in json_data} df = pd.DataFrame(data_dict.values()) df["date"] = pd.to_datetime(df["date"], format="%Y-%m-%d") df.set_index("date", inplace=True) min_date = df.index.min() max_date = df.index.max() all_dates = pd.date_range(start=min_date, end=max_date, freq="D") all_dates_df = pd.DataFrame(index=all_dates) merged_df = pd.merge(all_dates_df, df, how="left", left_index=True, right_index=True) missing_dates = merged_df[merged_df.isnull().any(axis=1)].index.strftime("%Y-%m-%d").tolist() print(f"Missing dates: {missing_dates}") ``` # Importing necessary libraries import pandas as pd # Pandas for data manipulation import json # JSON for reading JSON file # Read the JSON data from a local file with open("historical") as f: json_data = json.load(f) # Reading data from file # Convert the list of dictionaries to a dictionary data_dict = {d["date"]: d for d in json_data} # Creating a dictionary with date as key and dictionary as value # Load the dictionary into a Pandas DataFrame df = pd.DataFrame(data_dict.values()) # Converting dictionary values to DataFrame df["date"] = pd.to_datetime(df["date"], format="%Y-%m-%d") # Converting date column to datetime format df.set_index("date", inplace=True) # Setting index to date column # Create a new DataFrame with all dates between the earliest and latest dates in the original DataFrame min_date = df.index.min() # Getting minimum date from index max_date = df.index.max() # Getting maximum date from index all_dates = pd.date_range(start=min_date, end=max_date, freq="D") # Creating range of all dates all_dates_df = pd.DataFrame(index=all_dates) # Creating DataFrame with all dates as index # Merge the original DataFrame with the new DataFrame containing all dates to find any missing dates merged_df = pd.merge(all_dates_df, df, how="left", left_index=True, right_index=True) # Merging DataFrames to get missing dates # Print any missing dates in the dataset missing_dates = merged_df[merged_df.isnull().any(axis=1)].index.strftime("%Y-%m-%d").tolist() # Filtering missing dates from merged DataFrame print(f"Missing dates: {missing_dates}") # Printing list of missing dates The code imports necessary libraries - Pandas and JSON, reads JSON data from a local file, creates a dictionary with date as key and dictionary as value, converts the dictionary to a Pandas DataFrame, sets the index of the DataFrame to the date column, creates a new DataFrame with all dates between the earliest and latest dates in the original DataFrame, merges the original DataFrame with the new DataFrame containing all dates to find any missing dates, filters missing dates from the merged DataFrame, and finally prints a list of the missing dates.