Files
nutshell/core/b_dhke.py
2022-09-11 04:31:37 +03:00

92 lines
2.0 KiB
Python

"""
Implementation of https://gist.github.com/RubenSomsen/be7a4760dd4596d06963d67baf140406
Alice:
A = a*G
return A
Bob:
Y = hash_to_curve(secret_message)
r = random blinding factor
B'= Y + r*G
return B'
Alice:
C' = a*B'
(= a*Y + a*r*G)
return C'
Bob:
C = C' - r*A
(= C' - a*r*G)
(= a*Y)
return C, secret_message
Alice:
Y = hash_to_curve(secret_message)
C == a*Y
If true, C must have originated from Alice
"""
import hashlib
from ecc.curve import secp256k1, Point
from ecc.key import gen_keypair
G = secp256k1.G
def hash_to_curve(secret_msg):
"""Generates x coordinate from the message hash and checks if the point lies on the curve.
If it does not, it tries computing again a new x coordinate from the hash of the coordinate."""
point = None
msg = secret_msg
while point is None:
x_coord = int(hashlib.sha256(msg).hexdigest().encode("utf-8"), 16)
y_coord = secp256k1.compute_y(x_coord)
try:
# Fails if the point is not on the curve
point = Point(x_coord, y_coord, secp256k1)
except:
msg = str(x_coord).encode("utf-8")
return point
def step1_bob(secret_msg):
secret_msg = secret_msg.encode("utf-8")
Y = hash_to_curve(secret_msg)
r, _ = gen_keypair(secp256k1)
B_ = Y + r * G
return B_, r
def step2_alice(B_, a):
C_ = a * B_
return C_
def step3_bob(C_, r, A):
C = C_ - r * A
return C
def verify(a, C, secret_msg):
Y = hash_to_curve(secret_msg.encode("utf-8"))
return C == a * Y
### Below is a test of a simple positive and negative case
# # Alice private key
# a, A = gen_keypair(secp256k1)
# secret_msg = "test"
# B_, r = step1_bob(secret_msg)
# C_ = step2_alice(B_, a)
# C = step3_bob(C_, r, A)
# print("C:{}, secret_msg:{}".format(C, secret_msg))
# assert verify(a, C, secret_msg)
# assert verify(a, C + 1*G, secret_msg) == False # adding 1*G shouldn't pass