Files
mcp-python-sdk/src/mcp/server/fastmcp/tools/base.py
Marcelo Trylesinski 94d326dbf1 Close unclosed resources in the whole project (#267)
* Close resources

* Close all resources

* Update pyproject.toml

* Close all resources

* Close all resources

* try now...

* try to ignore this

* try again

* try adding one more..

* try now

* try now

* revert ci changes
2025-03-13 10:59:45 +00:00

92 lines
3.0 KiB
Python

from __future__ import annotations as _annotations
import inspect
from typing import TYPE_CHECKING, Any, Callable
from pydantic import BaseModel, Field
import mcp.server.fastmcp
from mcp.server.fastmcp.exceptions import ToolError
from mcp.server.fastmcp.utilities.func_metadata import FuncMetadata, func_metadata
if TYPE_CHECKING:
from mcp.server.fastmcp.server import Context
from mcp.server.session import ServerSessionT
from mcp.shared.context import LifespanContextT
class Tool(BaseModel):
"""Internal tool registration info."""
fn: Callable[..., Any] = Field(exclude=True)
name: str = Field(description="Name of the tool")
description: str = Field(description="Description of what the tool does")
parameters: dict[str, Any] = Field(description="JSON schema for tool parameters")
fn_metadata: FuncMetadata = Field(
description="Metadata about the function including a pydantic model for tool"
" arguments"
)
is_async: bool = Field(description="Whether the tool is async")
context_kwarg: str | None = Field(
None, description="Name of the kwarg that should receive context"
)
@classmethod
def from_function(
cls,
fn: Callable[..., Any],
name: str | None = None,
description: str | None = None,
context_kwarg: str | None = None,
) -> "Tool":
"""Create a Tool from a function."""
func_name = name or fn.__name__
if func_name == "<lambda>":
raise ValueError("You must provide a name for lambda functions")
func_doc = description or fn.__doc__ or ""
is_async = inspect.iscoroutinefunction(fn)
# Find context parameter if it exists
if context_kwarg is None:
sig = inspect.signature(fn)
for param_name, param in sig.parameters.items():
if param.annotation is mcp.server.fastmcp.Context:
context_kwarg = param_name
break
func_arg_metadata = func_metadata(
fn,
skip_names=[context_kwarg] if context_kwarg is not None else [],
)
parameters = func_arg_metadata.arg_model.model_json_schema()
return cls(
fn=fn,
name=func_name,
description=func_doc,
parameters=parameters,
fn_metadata=func_arg_metadata,
is_async=is_async,
context_kwarg=context_kwarg,
)
async def run(
self,
arguments: dict[str, Any],
context: Context[ServerSessionT, LifespanContextT] | None = None,
) -> Any:
"""Run the tool with arguments."""
try:
return await self.fn_metadata.call_fn_with_arg_validation(
self.fn,
self.is_async,
arguments,
{self.context_kwarg: context}
if self.context_kwarg is not None
else None,
)
except Exception as e:
raise ToolError(f"Error executing tool {self.name}: {e}") from e