mirror of
https://github.com/aljazceru/mcp-python-sdk.git
synced 2025-12-23 16:54:24 +01:00
Add example client to examples/clients folder
This commit is contained in:
110
examples/clients/simple-chatbot/README.MD
Normal file
110
examples/clients/simple-chatbot/README.MD
Normal file
@@ -0,0 +1,110 @@
|
||||
# MCP Simple Chatbot
|
||||
|
||||
This example demonstrates how to integrate the Model Context Protocol (MCP) into a simple CLI chatbot. The implementation showcases MCP's flexibility by supporting multiple tools through MCP servers and is compatible with any LLM provider that follows OpenAI API standards.
|
||||
|
||||
## Requirements
|
||||
|
||||
- Python 3.10
|
||||
- `python-dotenv`
|
||||
- `requests`
|
||||
- `mcp`
|
||||
- `uvicorn`
|
||||
|
||||
## Installation
|
||||
|
||||
1. **Install the dependencies:**
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
2. **Set up environment variables:**
|
||||
|
||||
Create a `.env` file in the root directory and add your API key:
|
||||
|
||||
```plaintext
|
||||
LLM_API_KEY=your_api_key_here
|
||||
```
|
||||
|
||||
3. **Configure servers:**
|
||||
|
||||
The `servers_config.json` follows the same structure as Claude Desktop, allowing for easy integration of multiple servers.
|
||||
Here's an example:
|
||||
|
||||
```json
|
||||
{
|
||||
"mcpServers": {
|
||||
"sqlite": {
|
||||
"command": "uvx",
|
||||
"args": ["mcp-server-sqlite", "--db-path", "./test.db"]
|
||||
},
|
||||
"puppeteer": {
|
||||
"command": "npx",
|
||||
"args": ["-y", "@modelcontextprotocol/server-puppeteer"]
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
Environment variables are supported as well. Pass them as you would with the Claude Desktop App.
|
||||
|
||||
Example:
|
||||
```json
|
||||
{
|
||||
"mcpServers": {
|
||||
"server_name": {
|
||||
"command": "uvx",
|
||||
"args": ["mcp-server-name", "--additional-args"],
|
||||
"env": {
|
||||
"API_KEY": "your_api_key_here"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
1. **Run the client:**
|
||||
|
||||
```bash
|
||||
python main.py
|
||||
```
|
||||
|
||||
2. **Interact with the assistant:**
|
||||
|
||||
The assistant will automatically detect available tools and can respond to queries based on the tools provided by the configured servers.
|
||||
|
||||
3. **Exit the session:**
|
||||
|
||||
Type `quit` or `exit` to end the session.
|
||||
|
||||
## Architecture
|
||||
|
||||
- **Tool Discovery**: Tools are automatically discovered from configured servers.
|
||||
- **System Prompt**: Tools are dynamically included in the system prompt, allowing the LLM to understand available capabilities.
|
||||
- **Server Integration**: Supports any MCP-compatible server, tested with various server implementations including Uvicorn and Node.js.
|
||||
|
||||
### Class Structure
|
||||
- **Configuration**: Manages environment variables and server configurations
|
||||
- **Server**: Handles MCP server initialization, tool discovery, and execution
|
||||
- **Tool**: Represents individual tools with their properties and formatting
|
||||
- **LLMClient**: Manages communication with the LLM provider
|
||||
- **ChatSession**: Orchestrates the interaction between user, LLM, and tools
|
||||
|
||||
### Logic Flow
|
||||
|
||||
1. **Tool Integration**:
|
||||
- Tools are dynamically discovered from MCP servers
|
||||
- Tool descriptions are automatically included in system prompt
|
||||
- Tool execution is handled through standardized MCP protocol
|
||||
|
||||
2. **Runtime Flow**:
|
||||
- User input is received
|
||||
- Input is sent to LLM with context of available tools
|
||||
- LLM response is parsed:
|
||||
- If it's a tool call → execute tool and return result
|
||||
- If it's a direct response → return to user
|
||||
- Tool results are sent back to LLM for interpretation
|
||||
- Final response is presented to user
|
||||
|
||||
|
||||
Reference in New Issue
Block a user