Files
lightning/daemon/peer.h
Rusty Russell ec3344ce6e daemon/output_to_htlc: routines to map outputs for HTLCs for a given commit_num.
And use this to resolve old transactions by comparing outputs with
HTLCs.

Rather than remembering the output ordering for every one of their
previous commitment transactions, we just remember the commitment
number for each commitment txid, and when we see it, derive all the
HTLC scriptpubkeys and the to-us and to-them scriptpubkeys, and figure
out which is which.

This avoids us having to save information on disk, except for the
txid->commitment-number mapping (and the shachain).

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2016-08-18 14:23:45 +09:30

279 lines
7.0 KiB
C

#ifndef LIGHTNING_DAEMON_PEER_H
#define LIGHTNING_DAEMON_PEER_H
#include "config.h"
#include "bitcoin/locktime.h"
#include "bitcoin/privkey.h"
#include "bitcoin/pubkey.h"
#include "bitcoin/script.h"
#include "bitcoin/shadouble.h"
#include "channel.h"
#include "htlc.h"
#include "lightning.pb-c.h"
#include "netaddr.h"
#include "protobuf_convert.h"
#include "state.h"
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/crypto/shachain/shachain.h>
#include <ccan/list/list.h>
#include <ccan/time/time.h>
enum htlc_stage_type {
HTLC_ADD,
HTLC_FULFILL,
HTLC_FAIL
};
struct htlc_add {
enum htlc_stage_type add;
struct htlc *htlc;
};
struct htlc_fulfill {
enum htlc_stage_type fulfill;
struct htlc *htlc;
struct rval r;
};
struct htlc_fail {
enum htlc_stage_type fail;
struct htlc *htlc;
};
union htlc_staging {
enum htlc_stage_type type;
struct htlc_add add;
struct htlc_fulfill fulfill;
struct htlc_fail fail;
};
struct anchor_input {
struct sha256_double txid;
unsigned int index;
/* Amount of input (satoshis) */
u64 amount;
/* Wallet entry to use to spend. */
struct wallet *w;
};
/* Information we remember for their commitment txs which we signed.
*
* Given the commit_num, we can use shachain to derive the revocation preimage
* (if we've received it yet: we might have not, for the last).
*/
struct their_commit {
struct list_node list;
struct sha256_double txid;
u64 commit_num;
};
struct commit_info {
/* Previous one, if any. */
struct commit_info *prev;
/* Commit number (0 == from open) */
u64 commit_num;
/* Revocation hash. */
struct sha256 revocation_hash;
/* Commit tx & txid */
struct bitcoin_tx *tx;
struct sha256_double txid;
/* Channel state for this tx. */
struct channel_state *cstate;
/* Other side's signature for last commit tx (if known) */
struct bitcoin_signature *sig;
/* Map for permutation: see commit_tx.c */
int *map;
/* Revocation preimage (if known). */
struct sha256 *revocation_preimage;
/* unacked changes (already applied to staging_cstate) */
union htlc_staging *unacked_changes;
/* acked changes (already applied to staging_cstate) */
union htlc_staging *acked_changes;
};
struct peer_visible_state {
/* CMD_OPEN_WITH_ANCHOR or CMD_OPEN_WITHOUT_ANCHOR */
enum state_input offer_anchor;
/* Key for commitment tx inputs, then key for commitment tx outputs */
struct pubkey commitkey, finalkey;
/* How long to they want the other's outputs locked (blocks) */
struct rel_locktime locktime;
/* Minimum depth of anchor before channel usable. */
unsigned int mindepth;
/* Commitment fee they're offering (satoshi). */
u64 commit_fee_rate;
/* Revocation hash for next commit tx. */
struct sha256 next_revocation_hash;
/* Commit txs: last one is current. */
struct commit_info *commit;
/* cstate to generate next commitment tx. */
struct channel_state *staging_cstate;
};
/* Off peer->outgoing_txs */
struct outgoing_tx {
struct list_node list;
const struct bitcoin_tx *tx;
struct sha256_double txid;
};
struct peer {
/* dstate->peers list */
struct list_node list;
/* State in state machine. */
enum state state;
/* Network connection. */
struct io_conn *conn;
/* If we're doing a commit, this is the command which triggered it */
struct command *commit_jsoncmd;
/* Any outstanding "pay" commands. */
struct list_head pay_commands;
/* Global state. */
struct lightningd_state *dstate;
/* The other end's address. */
struct netaddr addr;
/* Their ID. */
struct pubkey *id;
/* Current received packet. */
Pkt *inpkt;
/* Queue of output packets. */
Pkt **outpkt;
/* Their commitments we have signed (which could appear on chain). */
struct list_head their_commits;
/* Anchor tx output */
struct {
struct sha256_double txid;
unsigned int index;
u64 satoshis;
u8 *witnessscript;
/* If we're creating anchor, this tells us where to source it */
struct anchor_input *input;
/* If we created it, we keep entire tx. */
const struct bitcoin_tx *tx;
/* Depth to trigger anchor if still opening, or -1. */
int ok_depth;
} anchor;
struct {
/* Their signature for our current commit sig. */
struct bitcoin_signature theirsig;
/* The watch we have on a live commit tx. */
struct txwatch *watch;
} cur_commit;
/* Counter to make unique HTLC ids. */
u64 htlc_id_counter;
/* Mutual close info. */
struct {
/* Our last suggested closing fee. */
u64 our_fee;
/* If they've offered a signature, these are set: */
struct bitcoin_signature *their_sig;
/* If their_sig is non-NULL, this is the fee. */
u64 their_fee;
/* scriptPubKey we/they want for closing. */
u8 *our_script, *their_script;
} closing;
/* If we're closing on-chain */
struct {
/* Everything (watches, resolved[], etc) tal'ed off this */
const struct bitcoin_tx *tx;
/* Set for STATE_CLOSE_ONCHAIN_THEIR_UNILATERAL
* and STATE_CLOSE_ONCHAIN_OUR_UNILATERAL */
const struct commit_info *ci;
const struct bitcoin_tx **resolved;
} closing_onchain;
/* All HTLCs. */
struct htlc_map htlcs;
/* Current ongoing packetflow */
struct io_data *io_data;
/* What happened. */
struct log *log;
/* Things we're watching for (see watches.c) */
struct list_head watches;
/* Bitcoin transctions we're broadcasting (see chaintopology.c) */
struct list_head outgoing_txs;
/* Timeout for collecting changes before sending commit. */
struct oneshot *commit_timer;
/* Private keys for dealing with this peer. */
struct peer_secrets *secrets;
/* Our route connection to peer: NULL until we are in normal mode. */
struct node_connection *nc;
/* For testing. */
bool fake_close;
bool output_enabled;
/* Stuff we have in common. */
struct peer_visible_state local, remote;
/* this is where we will store their revocation preimages*/
struct shachain their_preimages;
};
void setup_listeners(struct lightningd_state *dstate, unsigned int portnum);
struct peer *find_peer(struct lightningd_state *dstate, const struct pubkey *id);
/* Populates very first peer->{local,remote}.commit->{tx,cstate} */
bool setup_first_commit(struct peer *peer);
/* Whenever we send a signature, remember the txid -> commit_num mapping */
void peer_add_their_commit(struct peer *peer,
const struct sha256_double *txid, u64 commit_num);
/* Allocate a new commit_info struct. */
struct commit_info *new_commit_info(const tal_t *ctx);
/* Freeing removes from map, too */
struct htlc *peer_new_htlc(struct peer *peer,
u64 id,
u64 msatoshis,
const struct sha256 *rhash,
u32 expiry,
const u8 *route,
size_t route_len,
struct htlc *src,
enum htlc_state state);
struct htlc *command_htlc_add(struct peer *peer, u64 msatoshis,
unsigned int expiry,
const struct sha256 *rhash,
struct htlc *src,
const u8 *route);
void peer_unexpected_pkt(struct peer *peer, const Pkt *pkt);
/* Peer has completed open, or problem (if non-NULL). */
void peer_open_complete(struct peer *peer, const char *problem);
struct bitcoin_tx *peer_create_close_tx(struct peer *peer, u64 fee);
void cleanup_peers(struct lightningd_state *dstate);
#endif /* LIGHTNING_DAEMON_PEER_H */